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A model satisfying analytic, unitary, and soft-meson requirements is found to account for all
electroproduction data in the 6{3,3) region even at very high photon momentum transfers. The 6, pion, and
nucleon axial-vector form factors are discussed within the framework of this simple yet accurate model.

I. INTRODUCTION

Although much theoretical work has been done"
on electroproduction in the b, (3, 3) region there are
several reasons for continued effort.

(1) A number of recent experiments shed light on
the pion, axial-vector nucleon, and ~ form factors.
Since the extraction of these form factors is- model
dependent a dependable simple model is required.

(2) There is no simple accurate model available
at present. Dispersive calculations have become-
quite complicated' and, furthermore, do not en-
sure soft-pion results. Isobar-type models' gen-
erally contain many parameters, are not unitary,
and also are often inconsistent with soft-pion re-
quirements.

The model which we propose combines features
of several previous approaches. We use a Lagran-
gian framework which incorporates the soft-meson
theorems and treats the 4 on the same footing as
the nucleon. In those multipoles where the 4 pole
appears we unitar ize in a manner consistent with
analyticity. The observables can thus bp directly
calculated and compared with experiment. In pre-
vious work we have shown'~ that this type of model
accounts for all of the observed photoproduction
multipoles in the 4 region. The extension to elec-
troproduction involves the introduction of form-
factor variation of the photon coupling constants.
Except for these form factors the coupling-constant
values are the same as obtained from photoproduc-
tion.

Because there is not yet a multipole analysis for
electroproduction, the unitarization step is cruc-
ial. In previous "isobar" analyses' a width factor
was' inserted into the denominator of the 4-pole
term. This is an incorrect procedure since, the
total resonant multipole including the Born term
will no longer have the phase 53 3 required by un-
itarity. In our present model we impose unitarity
without destroying the analytic behavior. Our un-
itarization method is local in the sense that the

Lagrangian amplitude modified only in. the vicinity
of the resonance.

There are three independent couplings of the on.—

shell 4 to the nucleon and photon. The three
gauge-invariant Lagrangians first proposed by
Gourdin and Salin' correspond in a simple way to
the three Pauli-type form factors of Mathews. '
We will discuss a class, of sum rules which can
sort out these couplings from the data before a de-
tailed comparison is made. In this paper we eval-
uate two of these coupling-constant sum rules us-
ing photoproduction data. The third coupling van-
ishes for real photons and we are not able to use
our sum rules since the required data, separated
into longitudinal and transverse parts at fixed pho-
ton momentum transfer, .are not available at pres-
ent. There is, however, a very stringent upper
limit for this third coupling provided by the inclus-
ive longitudinal cross section in the ~ region. The
result of our analyses is that onl. y the nonderivative
nlrb& coupling C3(k') is allowed. The dEy form fac-
tor falls off more rapidly in photon four-momen-
tum transfer (k')'~' than the nucleon magnetic fac-
tor. To good accuracy we find the ~Ny form fac-
tor C, (k') varies as

C, (k') = C,(0)(1+k'/m„') '(1+k'/4cVC„') ',
where C, (0) =0.315 and M„=0.84 GeV. This be-
havior is similar to the nucleon isovector form
factor F,'(k').

The nucleon axial-vector form factor E„(k') ap
pears in the electroproduction amplitude due to
partial conservation of axial- vector current
(PCAC). By comparing our model with w' coinci-
dence experimental data near threshold (k'(0. 9
GeV') we find that F„(k') is consistent with dipole
behavior with a -mass

M, =1.15 ~0.10 GeV. (2)

The pion. form factor is evaluated. using forward
w' data. Our result is consistent with a monopole
falloff with masses of 0.69 or 0.77 GeV or with a
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dipole mass of 0.84 GeV.
We show that serious discrepancies with the data

exist for some dispersive models and that these
difficulties are largely resolved with our model.
The dispersive models are found to badly disagree
with the data at large k for single-arm experi-
ments an.d at large-pion angles both above and be-
low the 4 mass in n' electroproduction. .

In Sec. II we discuss the Lagrangian, model. The
construction and evaluation of ~ coupling sum
rules is found in Sec. III. Section IV discusses the
unitarization. problem. We compare our model
calculations with experimental data in. Sec. V and
summarize and conclude in See. VI. Section. VI
also contains a discussion of.work by previous
authors.

II. THE MODEL

where
1 ~

O, = a&r5y, r„f
0, = 2i y,P,q„f,»
o, = r,r,q.f~~

O =2r y P„f —2MO,

O, =iy,k„q„f „,
o.= r,k.r.f~
f „=e,k„—e„k„
P= 2(p, + p, )

M = n.ucleon mass.

(2.3)

The invariant amplitudes are functions of k', the
square of the photon momentum, and the usual
Mandelstam va, r iables

Before describing the details of our model we
shall discuss briefly the kinematics of eleetropro-
duction. and our notation. We treat the pion elec-
troproduction process (see Fig. l)

e (k,) + N( p, ) —e'(k, ) + N( p, ) + m'(q)

in the on.e-photon- exchange approximation which
allows us to sepa, rate the scattering amplitude T'
into leptonic and hadronic parts,

where

s = —(p, + k)'= —(q+ p,)',

t = (t —q) = -—( p —p ),
u = —(k —p, )' = —(q —p,)',

s+t+u —2M + p. —0,
ILI, = pion. mass.

Two other useful inva, riants are

P ~ k s —u q k t —)0,'+k'
ui ' ' 2m 4w

(2.4)

(2.5)

~,=o, (p 'q ~~3 ~p ), (2.1)
The crossing symmetry properties of the invar-
iant amplitudes are specified by

&, = —,u(k, )y,u(k, ), k=k, k, .
V, "(s,t, u, k') = (++ )q, V,~"(u, t, s, k ), (2.6)

+ V ',. ' -,' [7', v'] ju( p, )0, , (2.2)

2p

FIG. 1. Pion electroproduction.

We choose the following decomposition of the scat-
tering amplitude in terms of Lorentz and isospin
ma. tr ices:

6

T'=u(P )g [V',"r'+ V4'r".

where

q, = q, = q, =+ 1 an. d q, = q, = q, = -1.
Our model. for the electroproduction amplitude

in the (3, 3) resonance region consists of Born ap-
proximation. terms obtained from the axial-vector
(A) theory of pion-nucleon coupling and contribu-
tions from A(3, 3)-exchange diagrams calculated
using the most general 4 propagator. In addition. „
the resonant multipoles are projected out of the
Born- 4 background and unitarized by means of a
technique described in Sec. IV.

The motivation for inclusion of the axial-vector
rather than the pseudoscalar Born. terms is based
on the observation of Dombey and Read' that
axial-vector theory encompasses all of the Jow-
energy theorems obta, ined from PCAC and current
algebra, Provided that a choice of form factors is
made according to current-algebra prescriptions.
Recently Adler extended an older model' for weak
pion production in the (3, 3) resonance region so as
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to incorporate the low-energy constraints. The
key modification in the vector part of the amplitude
was the addition of "consistency-condition" terms
to the pseudoscalar Born approximation which, in.

fact, leads to precisely the axial. -vector Born ap-
proximation advocated by Dombey and Read. '

The axial-vector Born approximation is given by

T'„=]—)u(p, )I yi F (k. )„—,'['v', &*I

V" = " -2MF ' (S+U)+ E 'e„f 2

2p

V(P, +)
2

y(p, +)
3

ef 4MF '"
2y. 2q ~ k

[2F,' (S- U)],

v'&'i= ' [2F'"(s+U)]4 2p,

V(o,+) V(o.+) 05 6

Expressed in terms of the invariant-amplitude
V, the -axial-vector Born approximation is

(2 7)

VI ~ = [-2MF", (S —U)],

v&-'= ' ' (s-U)
2 p 2q' ~ 0

(2.9)

In the above, f is the axial-vector mN coupling con-
stant for which we use f '/4w = 0.079 + 0.001; F,(k')
is the pion electromagnetic form factor with nor-
malization F,(0) = 1; I'„(k) is the yNN vertex

V(-)
2 p,

[2F, (S+ U)],

[2F,'(S —U)],

f» 5ih') + s', (0'') ~"

)
1 &F,'(k')+ F,'(k') ~'&

(2.8)

( ) ef 4M 2F~ E,
5 2p P2 P

. ~2 q

expressed in terms of the nucleon isoscalar and
isovector form factors with normalization F,"(0)
=F (0) =1, F, (0) = a' =-0.06, F (0) = g =1.85, and
finally F„(k')= G„(k')/G„(0), where G„(k') is the
usual axial-vector nucleon form factor with nor-
malization G„(0)= 1.34 given by the Goldberger-
Treiman relation.

1S= ~2
1

U=-

Our treatment of the 4-exchange contributions
generalizes that employed is previous analyses of
photoproduction. ' The most general 6 propagator
ls /

1 g 2I'„.(P) =
M

. „.—-'y„r. +
8M (r„P. r.PI ) -8M. P„P.Q+Sy p b,

i ' 2(A+1) A+1 l '
. . 2A(A+1)

6M' 2A+1 ' ' " 2A+I) " ' (2A+1)' (2.10)

where Mz is the 6(8, 8) mass and A, is a parameter
reflecting an ambiguity in the choice of the off-
mass-shell terms. The 4 Nm interaction

and Salin for their original isobar model for pho-
topro duction:

g~y = 23+24+25,
Zg~„=gg&~6~~ 1R, n'+H. c. ,

e~, = &„„+[-,'(1 +4Z)A + Z]y~ y„,
(2.11) 8

g, = —C36, y'~@5' +H.c. ,

introduces another off-mass-shell parameter Z.
However, the form of 8„„is chosen so that 4 con-
tributions to the S matrix depend on Z but not A.

In order to choose the 4' vertex we investigated
the most general coupling introduced by Qourdi, n

e
Z4 = —

2 C49PA„'y5NEP„+H. c. ,

C 4U y d~XE~~ +II.c. ,

E~ II
= ~PAII ~PA~

(2.12)
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For electroproduction the coupling constants C„
C4, and C', are regarded as form factors depending
on k' and can be identified in terms of Mathews
Pauli-type form factors'

R(,') =, -M(M+M~)+~(1- a)k'

+ (t —p, '+k')
4

G,(k ') = C,(k '),

G,(k ') = —,
"
[C~(k ') + C, (k ')],

G,(k') = —,
' [C,(k') —C,(k')].

(2.12)

+ (t -—5 p,
' + k ')

(+) 1 k' =2M, (-"2qk (2.17)

Various considerations including a study of photo-
production sum rules discussed in Sec. lII lead us
to use only the coupling C3 in our calculation of the
electrproduction amplitude.

More precisely, consistent with our treatment
of the Nm4 interaction, we add to 23 an off-mass-
shell term giving

g(+)-
4

-', ( a —1)(s —Lc)

@=1+48, P=3, +4y,

M
uPM~+ —. (u+P+ uP —1)

3

e
&z pr y

= C3 ~p @p vx&+v x +H c )
p.

(2.14)
—(1 —a)(s —u),

C'„,„=(()„,+[1'+-,'(1+41')A]y„y,)y„y, ,

where Y is a new parameter. %e anticipate that
F along with Z wBl have the same values as in the
photoproduction case.

The couplings Z&„„and 2«& along with the 4
propagator I'„, lead to the following 4-exchange
contributions to the invariant amplitudes:

&{-)
3

'{ ) 1
2 (M+M~),

1 M
, [aPM~+ -(u+P+ aP-1)],

3Mg

(2.18)

+R(;"(s, t, k')

M M k'
b,, = t/2 — (Z~+M) + —(M+M~) $+(1 —$)

I

k'
6, =-1+(

Our invariant amplitudes V, Pauli amplitudes
F;, and electric and magnetic multipoles reduce
to those of Chew-Goldberger-Low-Nambu (CGLN)
for k' =0. To obtain the corresponding quantities
with Adler' s normalization',

VAdler 2
Vt y

cp(+,o)Ad& 4 ~~ p{&,o)
Me

I
h3 = -2(&+M~) +

b, ~
= ~(M +M~) +—1 I

(Elf~~ —M )

b 8 =-2 (M+M~)$+ 3 (K~+M),

(E~+M) = [(M+M~)' —t).'],1

, (2M~'+MME —M'+ p,'),

(2.16)

v",.) = v(',.) +2v(,. ), V(3) V(+) V(-)

For the relations between the invariant, Pauli,
helicity, and multipole amplitudes we refer to the

c@(W, O)Adler I

~( Ii( S,O)

Me )

where SR is a magnetic or electric multipole am-
plitude. The four electropr'oduction reactions y„P-w'p, y„n- m'n, y„P- m'n, and y„n- m P are de-
scribed by the linear combinations V; +V &, V;
—V ';, W2(V +V; ) and v 2(V(; —V; ). Finally,
the isovector transition amplitude V can be ex-
pressed in terms of the amplitude V '~ corres-
ponding to isospin & and 3 in the final-state
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relevant Appendices of Adler's' work. The unit-
arization of the resonant multipoles described in
Sec. IV is incorporated into the model by subtract-
ing out the resonant Lagrangian multipoles and
adding back the unitarized ones. The calculation
of the observable quantities is discussed in Sec. V.

scattering. Subsequently, we evaluate the photo-
production sum rules for C, and G, .

An invariant amplitude V '~(v, t) satisfies the
fixed-t dispersion relation

ReV~ (v, f) = Born+ —P ImV (v', t)
"a

III. RESONANT SUM RULES

The 6-resonance coupling constants appearing in
the Lagrangian of the preceding section cannot be
directly determined from the resonant multipoles
alone. The reason for this, of course, is the sing-
ularity at the 6 mass. Although this singularity
does not appear in the nonresonant multipoles it
implies a serious weakness of the model since the
resonant multipoles are often dominant features in
the observables. There are several ways of deal-
ing with this problem:

(1) Compare the model only with nonresonant
mu1'tipoles and resonant multipoles far from reso-
nance thus ignoring the problem completely. This
method is useful in the case of photoproduction
where a,ccurate energy independent multipole anal-

, yses exist. The photoproduetion results are very
encouraging, but if no multipole analysis exists,
as with electroproduetion, we must do better.

(2) Subthreshold behavior: Dispersion relations
can be used to calculate the invariant amplitudes
below threshold. Model comparisons then can be
made without serious difficulties with unitarity.
This has been done successfully with mN elastic
scattering, ' and it could also be done in the photo-
production case where detailed knowledge of the
multipoles is available. "

(3) Resonant sum rules: These sum rules pro-
vide a method of directly extracting the Lagran-
gian-model coupling constants from the observ-
ables in a model independent way. Using the coup-
lings so determined we can predict the nonresonant
and subthreshold amplitudes. This is the main
subject of the present section.

(4) Unitarization of the resonant amplitudes: Us-
ing unitarity and analyticity we construct a "phys-
ical" amplitude which reduces to the Lagrangian
model result above and below resonance. The ob-
servables can then be directly computed and com-
pared with experiment. The method of derivation
will be discussed in Sec. IV.

The evaluation of sum rules for the resonant
coupling constants has a distinct advantage. Be-
fore a detailed data comparison is made, the var-
ious types of resonant coupling (for example, the
C„G„and G, types in electroproduction) can be
examined and the coupling constants fixed. %e
discuss the construction of sum rules for 6 eoup-
lings in elastic, electroproduction, and Compton

x + — dv~

(3.1)

where p =+1 depending on the crossing property.
If we separate out the direct channel 6-excitation
term and project the isospin- —,

' part we obtain

ReV'~'(v, t) = (Background)'='~'

ImV ~ (v', $)d p'

7T v —v

where the "background" consists of Born, reso-
nance exchanges, and nonresonant terms. The
Lagrangian model ean directly predict the first
term on the right side. By comparing the disper-
sive and Lagrangian-model results for direct A

excitation we obtain sum rules for the 6 coupling
constants. The Lagrangian model expression for
direct 6 production is

(3.3)

where g; are coupling constants and a; are known
kinematic terms. In the integral term of Eq. (3.2)
we assume the following:

(1) The a-excitation partial waves are the only
ones which contribute to the imaginary part of V.

(2) ImV. ' '~ is sharply peaked in the vicinity of
v= v~. On either side of the 6 resonance the term
v' —;vcan be replaced by vz —v and we obtain

] t
Ij

Z;g; a; = — ImV ~ (p, $)d v .
"a

Using the convenient integration variable

s-M —p,
2 2

2M

(3.4)

(3.5)

which is just the incident laboratory pion energy
for elastic mN scattering and differs from v by a
constant at fixed t, we find sum rules of the form

C

Z; g') a; = — ImV'/'(u))du
I

(3.6)

The integrand may be evaluated either by a partial-
wave analysis or in some cases by an optical theo-
rem'
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3)2( )
47I' Q~+ (X2 f Im fg3
3 E.M

(3 'I)

where the notation is standard. " The Lagrangian-
model expression for the left side of Eq. (3.6) is

Elastic scattering

The sum rule for nN elastic scatter-ing was eval-
uated by Hohler et al."and we only include it here
for completeness, Here there is only one coupling
constant gz, so V can be taken to be either of the
riN invariant amplitudes. Using the partial-wave
expansion we have

where D;=(E, +M)' '; E,=(M'+ )k[')' ', E =(M'
+ ~q)')'~', and M„and E„are two resonant photo-
production multipoles (in electroproduction we have
in addition the longitudinal resonant multipole
I.„).

The evaluation of these sum rules proceeds
straightforwardly by the use of multipole analyses
in the 6 r'egion and above. ' Since M,+ is roughly
an. order of magnitude larger and of the opposite
sign as E„we see that there is a large cancella-
tion between the terms in the G, sum rule. When
evaluated in detail we obtain

(3 8)
gz,C, (0) = (0.62 + 0.04) p.

g~G, (0) = (-0.018 a 0.020) p '. (3;13)

so the sum rule is then

gz,
' 3 ) & 2M Imf»

4v 7 ~, E+M iqi'
(3.9)

Thus G, is consistent with zero and is certainly
much smaller than C,. The result for C.,(0) is
quite consistent with our previous analysis val-
ue '

where we have divided out the slowly varying fac-
tor n, + a, t. This last step is necessary for self-
consistency since the same sum rule must be ob-
tained from the B(v, f) amplitude.

When the latest data is used the sum rule yields
the value"

= (0.28 + 0.015)p ',
4m

g~=(1.88 ~0.05)p, '.
(3.10)

This result is quite insensitive to the cutoff energy
&, here taken to be about 1500 MeV. The coupling
constant gz obtained in this way agrees well with
an analysis of nonresonant mN scattering. '

BV+mx ImM~+ + I~~+

(3.12)

Photoproduction

In electroproduction there are six independent
gauge-invariant dispersive amplitudes and three

, coupling constants each with form factor variation
in O'. Unfortunately, a multipole analysis has only
been done at k'= 0 (photoproduction). In this limit
there are only two couplings C, (0) and G, (0) (the
G, amplitudes vanish at k'= 0), and four invariant
amplitudes. Using the same method as in the elas-
tic case (but with more algebra) we obtain two sum
rules,

du) & D
[ j)k( (W M)'

x (ImM, „+ImE„), (3.11)

g~C, (0) = 0.61p, '. (3.14)

Unfortunately, there is no way to determine 6, by
use of photoproduction data and there is no reliable
multipole analysis for k't 0. There is, however,
a method of obtaining electroproduction sum r'ules
by considering the Compton amplitude. '

IV. UNITARIZATION

As stressed earlier a method must be worked
out to modify the Lagrangian-model result for
resonant multipoles if observables are to be pre-
dicted. The method presented in this section is
based on three principles:

(1) The unitarized multipole must reduce to the
pole-model result away from the resonance.

(2) Unitarity must be preserved: In the case of
electroproduction multipoles in the 6 region this
means that the complex phase at all energies must
be the same as the ela, stic (3, 3) phase. shift. This
implies that the simple prescription of inserting
a width factor in the .resonance denote. inator cannot

Compton scattering

For brompton scattering with massive photons,
there are two spin averaged optical theorerns" in
terms of o ~ and o~, the transverse and longitudi-
nal electroproduction total cross sections. Thus if
cr r and o z, were known as a function of II"(for s.
fixed k') two of the coupling constants could be
found for this value of O'. Since o I and g& have
not been extracted as a function of lI' (at fixed k')
we shall not proceed further. As we will see in
Sec. V there are excellent separated data taken at
fixed electron angle which will essentially rule out
the G, coupling type.



M. g OI SS K. T. OS YPO% SKI, AN D KEVELYN H. MONSAY

M (+)=B((u)+ (4.1)

where B(~) is a known kinematic faa ic actor character-
eci ic multipole and B

orn, projected in
e the elastic mNpartial wav

agrangian result is

fi(~) =f3(~)+ (4.2)

be used ssince the phase of the ts e total multipole in-

(3) Analyticit:
assumed to have the

y: The resonant multiu ipole wi11 be
ave the normal sim le

ture consisting of a
p e analytic struc-

hold, a 4 resona
o a branch point at h adronic thres-

onance pole on the se
other singula 'tri ies due to the 8

second sheet and

Fo a eso a t 1

e orn te
mu tipole M co th

ssion is of the form

where

MM, (Z, + M)(W+ M)!q~'

127s

and fs is the background (again mo
jeeted into the (3 3e, 3 partial wave.

Below the double- ' - ne-pion-production th

same complex ph

a, oth f(z) and M e) have the

p ase and that the 3 3
wave amplitude b fe o the form

partial-

3/2 i6,+ (&u) =e' sin5/

M((u) =- ,+ (~) . (4.4)

Fiirst observe that if the elastic am
h th Lagrangian value

resonance the 1

~(~) away from
e multipole does lik

e case near threshold w
b ifi d' th t f',/'=at „'=f1. Secondly, since Mz,

!

We propose that the re

(4.3)

by
e resonant multipole be given
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and f~ are real, M~ automatically has the same
phase as f',t'(u) satisfying the unitarity require-
ment.

Finally, we see that M(&u) has the required ana-
, lyticity properties. Near threshold M(&u) = M~(+)

so that M(&u) has the correct branch point. The
poIe at (d = u& occurring in the Lagrangian ampli-
tudes cancels in the unitarized multipole expres-
sion (4.4) and the second sheet pole in M(&u) comes
from f', t+ (cu).

Combining Eqs. (4.3) and (4.4) we obtain

M~ ((u)
M(&u) —

~-~f ( )
e sin5 . (4.5)

For photoproduction we show the comparison for
the M„and E,.cross sections in Fig. 2. The M„
cross section given by

FIG. 3. Isobaric-frame electroproduction kinematics.

cr~= M„ I

Bw~q~

lkI
(4.6)

in Fig. 3, The coefficients T, can be expanded in
terms of the pion polar angle in the isobaric frame
L9„, as

fits mell if we choose

g~C, (0) = (0.58 +0.01)p
'

in agreement with the resonant sum rule value
(3.13). The E„cross section

24m Iql
(g~ — ~ — El +

~k(

prediction is sensitive to the 4 mass and we find
a value of about 1.210 GeV is optimum.

In principle the nonresonant multipoles should
also have unitarity corrections using the prescrip-
tion given in Eq. (4.5). Since the nonresonant nÃ

phase shifts are small in the ~ region we do not ex-
pect these effects to be large. In Ref. 4 nonreson-
ant unitarity corrections were calculated in the
photoproduction case and found to be quite neglig-
ible so we feel justified in their neglect in our case
also.

To=to+ t~cosO~+$2cos 6~+' '
)

T, = sin8„(t, + t, cos 8„+t, cos'8, + ~ ~ ). ,

T, = sin'8, (t, + t, cos 8„+t, cos'8, + ~ ~ ~ ) .
(5 2)

d 0' ' dQ

dQ, ..dE'dQ„' dQ, '

e' K E' 2 cot'( —.,' 8,)
E t,

(5.3)

where K = (s -M')/2M, 8, is the isobaric-frame
angle between incoming and outgoing lepton mo-
menta, k is the isobaric photon momentum, and

The triple differential cross section can also be
written as a product of two factors': the flux fac-
tor I „describing the electron- photon vertex,
and a second factor describing the virtual-photon. —
hpdron interaction. In thi. s case, we write

V. DIFFERENTIAL CROSS SECTIONS AND
COMPARISONS WITH DATA

The electroproduction differential cross section
can be written in the gneral form"

— + e + e sin 8,U(8, ) cos2$,d(x do'
g der

dQ~ dQ„dQ~

+ [p E( +el) j S(8~) sin 8~ cos@~ ~

with electron polarization

(5.4)

d'a M (e')' E '

dQi, dE'd0„4(2m)'(k )' E 5'

x(T, + T, cosP, +.T, cos2$, ), (5.1)

where E(E') is the initial (final) electron labora-
tory energy, k' is the lepton four-momentum
transfer, q is the pion three-momentum in the
isobaric (pion-nucleon center of mass) frame, W

is the invariant vN mass, and Q, is the pion
azimuthal angle in the isobaric frame as illustrated

81+2 — tan'
2

o ~ and o.J are called the transverse and longi-
tudinal cross sections, referring to the two types
of polarizations possible for virtual photons.

Various aspects of the electroproduction pro-
cess, each capable of limiting the behavior of
certain parameters of our model, can be studied
by fixing the electron or pion angles and/or inte-
grating over some of the kinematic variables. In
this section, we will compare our model with data
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C,(0)) ~ ' =0.315+0.01. (5.6)

1.0
For the remainder of this paper we shall a,ssume
that

Ol~O~tL
o

C9

EV

Q.g-
Cl. QJ
C9

O.B— k =fO limit
2

C,(0) = 0.315,

G, (0) =0,

Z =-0,

V= 0.25.

(5 7)

I I

6
k' (Gev')

FIG. 4. Experimental proton form factor G@~(&2) plot-
ted to show deviations from the usual dipole expression
Qdlpot+ (k ) = {1+ k /0. 71 GeV )

relevant to the fixing of the form factors used in
the model, in particular, we will investigate the
behavior of the form factors C, (k') [C,(0) is taken
to be the value required by photoproduction data],
G, (k') = 2 [C0(k') —C,(k')], E„(k'), and F,(k'). The
behavior of the proton and neutron -electric and
magnetic form factors G~E'" and G~~'", which is seen
to deviate substantially from a simple dipole form,
was fixed by investigation of the data of Stein
et al."and Atwood, "assuming the form factor seal-
ing relation G ~ "= l(, ~ "G~~ (G~ = 0). We found that the
functional form for G~~" (or G~z) at high k' pro-
posed by Atwood was not capable of reproducing
the beha, vior at the low k' of G~E graphed by Stein
et a/. We use the following form for G~~(k'), which
is consistent with both low-k' and high-k data
(see Fig. 4):

A. (k')G~; „,(k'), k'&5.8 GeV'
gP

0.4/k', k' &5.8 GeV', (5.5)

1'(0') = ( (0 000+0.01)0)sis —
)

4.00k
1+0,22k

k = (k')",
where Gd~, ), (k') =(1+.k'/0. 71 GeV') '.

In this analysis we fix the 6 coupling constants
at k' =0 to those values obtained by photoproduc-
tion. In Sec. III we found the sum rules yield

(0) — ' '
0 33 003

g~ 1.88 + 0.05

The above values S and P a,re obtained in a pre-
vious photoproduction analysis. ' Slightly dif-
ferent values of the off-shell coupling constants
were found when vector-meson exchanges were
considered. For simplicity we have neglected the .

generally small vector-mesonic effects and hence
the earlier' values for Z and F have been used.
The neglect of vector-meson exchanges is most
evident in the isoscalar multipoles E,, a.nd I,

Axial-vector nucleon form factor F (k2 )A

The behavior of the triple differential cross sec-
tion at threshold is particularly sensitive to the'

.axial-vector form factor E„(k'). lf we expand the
coefficients T, of Eq. (5.2) in terms of lql and e„,
then at threshold, ~q~ —0, the triple differential
cross section behaves as

K d 0

iqi dQ, .dE'dQ„

=A., +A, l q) cose, +A, [q]'cos'e,

+A, (ql sine, cosy,

+A, )q[' sin'e, cos2@ „+A,(q('

+A, lq~' sine, cose„cos(t), .
Good data" exist for the coefficients A., and A4.

The A,- can be expressed as sums of process
multipoles. If we assume that only 8- and P-wave
multipoles need be considered in the cross section,
then we can write the coefficients A., and A4 as"

X, = Iim . lE„l'+~ ., ]Z.„~',4~@"

qI o M " &0'

E(E+ 1) k

2

x lim ( Re[E0, (I.~ —2L,~ )-+]
2 4~v
q M

G, (0) = 0.
When the unitarized form of the rrmltipole ampli-
tudes was compared with the resonant photopro-
duction multipoles in Sec. IV we found

+Re[(-M~ +M~, —3E,+)L~,]],
where ko is the photon isobaric energy. Data from
several experimental investigations of m' electro-
production" for k' up to 0.9-6eV' is plotted in
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)00—

phofoproduction

f.15+0.05 GeV

(o)
Fig. 5 for the coefficients A] and A4. A, is parti-
cularly sensitive to E„(k'), varying by as much as
75% at k' = 0.9 GeV' for M„between 1.00 and 1.50
GeV. Our model predictions are plotted for those
values of the dipole axial-vector mass parameter
M„ found most consistent with all of the available
data on A„ i.e., M„= 1.15+0.05 GeV. A, data and
our model prediction (M„= 1.15 GeV) are also
shown. We find, as noted by Bloom et aL and
Nambu and Yoshimura, ' that a larger value of
M„, I„=1.5 GeV, is required for agreement with
large-k' threshold data. from the SLAC inelastic
ep scattering experiments. "'"

We believe that the present m' coincidence data
is certainly consistent with a value for the dipole
nucleon axial-vector form factor of

50—

0
0 0.2

I I

0.4

k (GeV )

0.6 0.8

m„=1.15 + 0.10 GeV .

The larger value obtained using the SLAC data is
bothersome, but we feel that the systematic er-
rors such as radiative corrections are better
understood in a. coincidence experiment. A more
serious problem lies in the comparison with
neutrino quasielastic scattering where a recent
analysis" gives

m,„' =0.94+0.05 Gev. (5.8)

2.0

f 5—

C9

1.0—

0.5—

0
-0

I

0.2 0.4
I

0.6

k (GeV )

I

0.8

If the neutrino and electroproduction data. continue
to provide different values of rn„ the consequences
could be serious for the current-algebra, PCAC
picture. ' On the other hand, the discrepancy does
not seem too serious at present and a,s the ex-
perimental data improves one would hope that a
unified picture will evolve.

Pion form factor I'„(k2 )

Whereas the threshold region is particularly
sensitive to the parametrization of E„(k'), the W

region immediately above threshold and yet still
below the b. (1232) peak is found to be sensitive to
the choice of (y', Z} made and to the k' dependence
of the pion electromagnetic form factor E„(k').
Positive pion electroproduction da, ta has been
taken at the Saelay electron linac" with W = 1.175
GeV for 8, =O'. From Eqs. (5.3) and (5.4) we see
that for this choice of 8„ the triple differential
cross section reduces to a sum of two terms

FIG. 5. (a) Threshold &+ electroproduction. coefficient
A&(&~) from the experiment of Del Guerra et al. (Ref. 19)
with photoproduction point (Ref. 19). The theoretical
curves show the sensitivity of A&(& ) to the nucleon di-
pole axial-vector form-factor mass. The three curves
correspond to M~(1.15 +0.05) Gev. (b) &+ electroproduc-
tion coefficient A4(~ ). The experimental data is from Del
Guerra et al. (Ref. 19) and the theoretical curve is cal-
culated for M~ = 1.15 Ge V. This coefficient is not as sensi- '

tive to the nucleon axial-vector form factor as is A~(& ).

d3g do ~ do~
d'n,',dz'dn, dn, '

dn, ' (5.9)

By varying e, the transverse and longitudinal dif-
ferential cross sections can be separated. Both
the transverse and longitudinal differential cross
sections are found to be very sensitive to the choice
of (F,Z} made. The values of (F, Z}=(—,', 0}sug-
gested by the application of the our model to the
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problem of photoproduction' were reexamined here.
Consistency with the Saclay electroproduction data,
as well as with the photoproduction (k' =0) point"
for der/dA„was best achieved with the choice
(Y,Z)=l —,', 0), although, for very high k', k'= 9
GeV', the choice (Y, Z) =(-„2)also works well.

If we set jY, Z)=f-,', 0), we might also be able to
use the Saclay data to constrain the k' dependence
of E,(k'). Several forms of E,(k') were investi-
gated, including (a) a single-pole form found by
Bebek et al.' with a mass parameter m = 0.69 GeV,
(b) a single-pole form with rr2 =rr22 -—0.77 GeV, and

(c) a dipole form with M=M~=0. 84 GeV. Although
our model is sensitive to the form of E,(k') used
in the region of W and k' studied by the Saclay
group, their data is not sufficiently accurate to
rule out any of these forms of k' dependence com-
pletely. Furthermore, as can be seen in Fig. 6
the transverse-cross- section measurements are
apparently not normalized correctly to the photo-
produetion data points, ,

and we note in fact that
the sum of the longitudinal and transverse cross
sections agrees very well with the theoretical
values.

The forward transverse cross section is parti-
cularly model dependent at %=1175 MeV because
of the near cancellation of the 6 and Born terms.
A better analysis could be done with data at both
0, =0 and 180 degrees and also including larger
values of O'. Although it is widely assumed that
the forward longitudinal cross section is model
independent"" we note that it too is quite sensi-.
tive to the off-mass-shell b. coupling constants Y
and Z.

Finally, we might mention that even at low-8'
values, such as 1.175 GeV, the forward cross
section cannot be accurately calculated with only
s- and p-wave multipoles due to the pion term;-
the full amplitude must be used.

5 Form factors Cs(k2 }and Ga(k }

Much of the experimental data concerning elec-
troproduction involves the double differential cross
section obtained by integrating over the pion solid
angle in Eqs. (5.8) and (5.4), i.e. , one looks at

(5.10)

)0

O
5

U

0

photopmduction
tA

II

5-
O

b C0 'Q

0
0 0.05

I

O. 10

k (Gev }

0.)5

FIG. 6. Separated &+ transverse and longitudinal
cross sections for pions in the same direction as the
virtual photon (0~= 0}. The ~~ &0 data is from Bardin
et aE. (Bef. 22) and the photoproduction point is from
Fischer et al. (Bef. 23).

In this case, fixing 6~ and measuring E', for a
given E, fixes the value of k' for a given invari-
ant mass 5'. This form of the double differential
cross section, as well as an alternative form

d2a c22 cos (8L2/2)

dAL dE' 4E'sin'(8L/2)

6}L
x W, (k', v, )+2 tan' —' W, (k', v, )

I

(5.11)

where v, =E —E', and o. is the fine-structure con-
stant, are often used to investigate seal. ing behav-
ior in the hadronic system. Usually, the experi-
menters look at inclusive ep scattering; we will
use their data in the region 1.08» 8'» 1.35 GeV.
The structure functions W, (k', v, ) and W, (k', v, )
are related to err(W, k2) and cL(W, k2) by

K K
Wl 2 cT W2 ' 2 ( T L) '

4m(y . 4n (y

Data has been reported by Bartel et al. ' for
0.3»4'»0. 9 GeV' by Stein et a/. "for 0.1»k'
» 1.8 GeV, by Cone et al."for 1»0' » 4 GeV',
by Breidenbach" for 0.5» 4'» 7.0 QeV', and by
Atwood" for 0' = 9 GeV'. The data of Bartel et al.
has been separated into o~ and 0~ components. The
wide range of 0' investigated in these experiments
has allowed us to parametrize C2(k2). This was
done by examining the deviation of C,(k') from a
simple dipole form, (1+0'/Mv2)~, where M„=0.84
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FIG. 7. Total inelastic electron scattering data due to Bartel et al. (Ref. 26} separated into transverse and longitu-
dinal parts. The solid curves are our model values with 63(& ) =0 and &3(& ) given by Eq. (5.12). The dashed curve on
the E=1.12 GeV data results if II"3(& ) =0.015&3(& ). The data, is consistent with assuming G3(& ) =0.

-0.315.
(1+k'/M, ')'(1+k'/4M, ') (5.12)

The separated Bartel et al.26 data are graphed in
Fig. 7. The solid curves are our model expecta-
tions with C, (k') n;coupling alone. The Stein et al.
data" along with our paodel predictions are shown
in Fig. 8. %e compare in Fig. 9 our model and
that of Adler" with the Cone et al."data at their
largest photon masses and finally in Fig. 10 we
show the data, of Atwood's at extremely large val-
ues of k'. The inelastic data protrayed varies in
0' from near zero to about 9 GeV.' The cross

GeV. It has been noted previousl. y,"that the 4
form factor falls more rapidly with k' than a simple
dipole. Shaw" suggested that C,(k') might have the
same k' dependence of E,(k'), i.e. , C,(k') = (1+k'/
M~') '(1+k'/4M') '. In this form, C,(k') still does
not fall rapidly enough with k'. The parametriza-
tion given by Dufner and Tsai" also, does not re-
produce the data. We find that a good fit to all
the available data is obtained if we take

sections correspondingly fall over eight orders
of magnitude to the picobarn range at 0'= 9 GeV'.
As k' increases we see a relative rising trend for
the cross section above the &. This rise is par-
ticularly evident in the Atwood data and apparently
is due to the tails of higher resonances whose form
factor dependence falls off less rapidly than that
of the 4. At the highest 0' values the 4 peak is
no longer prominent and, in fact, the cross-sec-
tion va, riation is. given by the deep-inelastic scaling
curve.

The longitudinal cross section o~ is particularly
sensitive to contributio'ns from G, (k') = ~[C,(k')
—C,(k')] and we can use this sensitivity to limit
the value of this form factor. Using the separated
data of Bartel et al. ,"we find that a contribution
with G, (0) of only 1.5% of C,(0), giving G,(k') the
same k' dependence as C,(k'), is decidedly ruled
out, as can be seen in Fig. 7. Even a value for
G, (0) of 0.5/0 of C,(0) proves troublesome at k'=9
(GeV)', causing an uncomfortably highly peaked
8' distribution. The solid curves on Fig. 7 are
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FIG. 8. Inelastic ep data of Stein et al. (Bef. 17) scaled by lG~~(& )l . The actual data at the & peak falls from about
200pb at 4' =0.22 GeV to about 0.6pb at & =1.8 GeV . The onset of a background at large ~'and & can be seen.
This background will become the scaling curve at very large &2.

calculated with C, (k') alone and are seen to account
nicely for both o'r and a~; hence we feel that G, (k')
is consistent with zero.

E=4.874 GeY; 9,=51'

t 0 k =3.6 GeY
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Severa1 experimental studies of m' electropro-
duction have been made by Mistretta et al. ,
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FIG. 9. Inelastic eP data of Cone et al. (Bef. 27) at
k = 3.6 GeU. Shown also on this curve is the prediction
of Adler (Bef. 15).

FIG. 10. Inelastic ep data of Atwood (Bef. 48) at very
high &2. The scaling background on the upper ~' range
is clearly seen.
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Albrecht et al. ,
"'~ and others, "for W in the first resonance region and for k' from 0.25 to 1.0 Qep'.

These groups investigated the distributions in 8, and Q, oi the virtual-photon differential cross section
dg/dA, ot Eqs. (5.3) and (5.4). do/d0, may be rewritten as

Qo'
=A+B cos8, + C cos'8, + (D+E cos8, ) sin8, cosP, +E sin'8, cos2$, . (5.13)

The coefficients A. through I may be expressed in terms of s- and P-wave

&=
M~ &IE"I'+! IM. I'+ ~ IE..I'+ IM -I'+Re[M.-M*.-3E..(M"™)"]-

+~ —,[II,, I'+4IL..I'+ IL,„I'-4R Le, L,*.]),
0

B = (Re[E„(M„-M, + 3E„)*]+a —,Re[LO, (4L,„+L, ) ]j,
k0

g + R M 3+ M JQ
0

(5.14)

D= [~ q(j+1)]'~2(-2) — —[Re[Eo,(L, —2L„)*+ID,(3E~,+M, —M„)]],
0

E = [-,'~(~+1)]'~' -- —{Re[E„(L,+I„.)*+I.„(M, M„)*]],, , (-12) IqIW 0

0

(3 IE„I'- IM,.I'- 2Re[E„M+,+M, (M„-E„)+]].~~ lq!W
!

. The data and model predictions are graphed in
Figs. 11-13. Generally, we find good agreement
with the exception of the coefficient E, for which
our model predictions are hi'gh, and the coefficient
C, for which our model predictions are low, es-

pecially at high k'. We also find, for the high-
k' data, a crossing from negative to positive val-
ues for the coefficients B and D not seen in the
data. In Fig. 14, our model predictions for -the-'

Q, distributions at fixed 8, and W are compared

I
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FIG. 11. Angular distribution coefficients as in Eq.
(5.13) for the data of Mistretta et al, . (Ref. 30) for &

electroproduction.

FIG. 12. Angular distribution coefficients for & elec-
troproduction as defined in Eq. (5.13). The data is frorn-
Albrecht et al. (Ref. 31).
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FIG. 13. 7to electroproduction angular coefficients de-
fined in Eq. (5.18). The experimental. data is from
Albrecht et al. (Hef. 32).

with the predictions of the dispersion-relation
models of Adler" and Zagury' and with the data
of Mistretta et al." We find that the Lagrangian
model tends to reproduce the data at least as well
as, and often better than; these dispersion-rela-
tion models of electroproduction.

VI. DISCUSSION AND CONCLUSIONS

"this paper has discussed electroproduction of
a single pion in the 4 region. Qur model is quite
simple. It is based on Lagrangian couplings which
ensure the content of current algebra and PCAC
will be reflected in the scattering amplitude. "She

analytic structure of the resulting amplitude is cor-
rect in the tree approximation except for the three
resonant multipoles. In these cases we modify
the Lagrangian result such that the resonant mul-
tipoles have a pole on the second sheet and satis-
fy unitarity. We have considered the most gener-
al coupling of the ~ to (XZ) and (Nw) and find only
the nonderivative photon coupling C, (k') is required
and that the off-shell couplings fF, Z) have the

ZAGURY
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I I
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FIg. 14. , f angular distributions zt fixed 0~ and S' for & electroproduction. The d~t+ is f«m Mi«r«ta. ~t «- (~ef.
go). The solid curves are our results. . The dashed curves are from the models of Adler (Ref. 15) and Zagury (Ref. 1
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same values as in an earlier analysis of photopro-
duction.

The form factors, depending on the photon mass,
are free i:n this model and by comparison with the
data we have found, that the ANy transition form
factor C, (k') falls off faster than the usual dipole
expression. The additional f actor (1+0'/4m„')
with ns„' =0.71 GeV' accounts for the ANy coupling
strength out to 0'=9 GeV'. Our results for the
nucleon axial-vector form factor and the pion form
factor are consistent with earlier work.

We are able to account for a wide range of elec-
troproduction and photoproduction data within a
simple model with few parameters. There are,
however, two refinements which might be made.
First, we noted in the preceding section that since
the higher-nucleon-resonance transition form fac-
tors do not fall off as rapidly as the A's the tails
of these higher resonances could be important at
large k' in the A mass range. At the highest avail-
able Q' values of about 9 GeV', the individual-res-
onance effects seem to disappear and a smooth
background remains which is consistent with the
deep- inelastic scaling result. This background
effect is of increasing importance at high 0' in
the A region as evident in Figs. 8 and 10.

A second improvement in our model concerns
the inclusion of vector-mesnonic effects. As in
the photoproduction case we expect & and p ex-
change to manifest themselves primarily in the
E„danM, multipoles of the isovector (+) and
isoscalar amplitudes. 'These multipoles inter-
fere with the dominant M„multipole in several
of the w' angular coefficients given by Eg. (5.14).

Because of the substantial efforts already de-
voted to the problem of electroproduction we would
like to discuss briefly the different approaches and
compare them with ours. By far the most popular
type of calculation' is an extension of the CGLN
method" to electroproduction. In this calculation
fixed-momentum-transfer dispersion relations are
projected into an infinite set of coupled integral
equations for the electric and magnetic multipoles
in the "elastic" region where an additional pion
cannot be produced. This set of equations breaks
down when inelasticities are important and also
c'ontains little information about t-channel ex-
changes. The coup1.ing of a given multipole to the
others is described by a set of kernels in a coup-
l.ing intergral. These kernels are algebraicly com-
plex and their calculation is difficult. The solution
of the integral equations is carried out in some ap-
proximation often in effect neglecting some of the
kernel terms. Usually an ansatz solution is pro-
posed for the dominant M„multipole and then
one or more iterations of the integral equations
are considered.

. The main strength of the dispersive method is
its "fundamental" nature since the ~ coupling and
form factor are fixed within the model. The dif-
ficulties are mainly due to practical restriction to
"elastic" amplitudes where Watson's theorem fixes
the rnultipole phase. Since the integrals range over
all energies some cutoff procedure must be de-
vised. The low-energy behavior of the small mul-
tipoles (e.g. , E,") involve a cancellation between
the large pseudoscalar Born terms and the re-
scattering contributions. The later is sensitive
to high-energy behavior and thus the low-energy
amplitude can be quite model. dependent. In par-
ticular the low-. energy theorems of current alge-
bra and PCAC are not assured. The dispersive
approach cannot say much about possible t-chan-
nel exchanges. Since in the usual model the k'
dependence of the Born terms is specified the in-
troduction of vector-meson exchanges may involve
serious double counting. Finally, the .numerical
work involved in finding an accurate solution is
great and there are difficulting associated with the
numerical stability of a set of coupled singular
integral equations.

An alternative procedure known as the "isobar"
or "propagator" modeP was introduced by Qourdin
and Salin. ' Here one evaluates Feynman diagrams
for the various particle and resonance exchanges.
The virtue is that now the calculation is mechani-
cally very simple as there are no integral equations
to solve. The equivalence of a propagator model to
the dispersive calculation was demonstrated by
Amati and Fubini. " Again, one encounters several
problems. First, the soft-pion results do not
automatically follow and secondly, without modific-
ation the propagator model will certainly violate
unitarity since the r'esonances have been treated
as stable particles.

Our model reformulates the propagator model
to avoid the above defects. The effective I agran-
gian method with axial-vector coupling ensures
the soft-pion*theorems and our unitarization meth-
od shifts the resonance pole from the real axis
to its proper position in a way which maintains
the unitarity of the entire rnultipole as well as
its analytic properties. In addition we find that
the "off-mass-shell" A coupling is quite impor-
tant. '~~
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