
PHYSICAL RE VIE% 0 UOLUME 17, NUMBER 10 15 MA Y 1978

Form of parity-covariant relativistic two-particle forces
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For two-particle Newtonian equations of motion that are parity-invariant as we11 as Poincare-invariant, the
accelerations are in the plane of the relative position and relative velocity. This simplifies the Currie-Hill
invariance conditions, which then show that in the relativistic forces (the proper-time derivatives of the
relativistic momenta) the scalar coefficients depend on the momenta of the two particles only through their
Lorentz-invariant dot product and their dot products with the relative position. These properties, which were
discovered in the manifestly invariant formalism, are shown here to follow also very simply from the
Newtonian formulation.

Consider a classical-mechanical system of two
particles (n = 1, 2) described by positions x„, veloc-
ities v„=dx„/dt, and Newtonian equations of motion
that give the accelerations as functions of the pos-
itions and velocities at one time,

dv„/dt = f„(x,v„v,) .
Ne make these equations invariant for time trans-
lations by not Jetting f„depend explicitly on time,
for space translations by letting f„depend on the
positions only through the relative position
x =x, —x„ for rotations and parity by letting f„be
a vector function of x, v„v, (that rotates as a vec-
tor when x, v„v, rotate and changes sign when

x, v„v, change sign). Our real interest is in
Poincare-invariant equations of motion, but let us
consider Galilei invarignce first.

Galilei invariance implies that f„depends on the
velocities only through the relative velocity
v=v, -v, . Then we have

f„=a„x+b„v, (1)

with a„,b„ functions of the GalOei-invariant scalars

For Lorentz-invariant equations of motion, f„
depends on the velocities in a complicated way to
satisfy the Currie-Hill invariance conditions. ' '
Nevertheless, for equations of motion that are
parity-invariant as well as Poincare-invariant, f„
is of the form (1); the accelerations are in the
plane of the relative position and relative velocity.
This simplifies the Currie-Hill invariance condi-
tions, which then show that in the relativistic
forces (the proper-time derivatives of the relativ-
istic momenta) the scalar coefficients (to which
a„, b„are simply related) depend on the two rela-
tivistic momenta only through their Lorentz-in-
variant dot product and their dot products with the
relative position.

These properties were discovered in the mani-
festly invariant formalism of predictive relativis-

tic mechanics. ' ~' Here it is shown that they also
follow very simply from the Newtonian formula-
tion. This is a correction to my earlier misunder-
standing of one of the equations of the manifestly
invariant formalism. ' It completes a direct proof

-that the two formalisms are equivalent in this
case. '2

Let us first consider the implications of parity
invariance. There are certainly reference frames
for which x, v„v, are a11 in a plane at some time
(for example, a frame in which one particle has
zero velocity at some time). Then the accelera-
tions f„also are in that plane, because they are
vector functions of x, v„v, for rotations and pari-
ty. From this and the equations of motion it fol-
lows that x, v„v» f» f, are in that plane for all
time. This means that the particle paths lie in a
fixed plane in space, - for this reference frame.

The other reference frames are obtained from
the Poincare group of transformations. Each
transformation in the Poincare group is a product
of space and time translations followed by a rota-

. tion followed by a Lorentz transformation. " For
a space or time translation, or a rotation, a fixed
plane is transformed into a fixed plane. For a
Lorentz transformation, a fixed plane is trans-
formed into a plane moving with constant velocity;
if we consider (without loss of generality) the
Lorentz transformation( to a frame moving with
velocity P in the x direction, and the fixed plane

y =ax+6,

we get

3 '=3 =~(~'+Pt')(1 P') "'+-&

+(] P2) 1/2+1 +f ++P(1 P2)-1/2tt

(We use units such that c =1 throughout the paper. )
Thus, for any reference frame, the particle

paths lie in a plane moving with constant velocity.
This means the accelerations are in the plane of
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the relative position and relative velocity; the f„
are of the form (1) with a„,b„scalars for rotation
and parity.

An algebraic statement of this is that x && v ~ f„ is
zero. This is certainly true for a frame where
x, v„v2, f„f, are all in a fixed plane. To show that
it is true for every frame, we just need to show
that it is not changed by a Lorentz transformation
from a frame where x, v„v„f„K are in a fixed
plane. For a Lorentz transformation to a frame
moving with velocity P we have'

x„' =x„-[1—(1 —p')"']p '(x„.P)P,

This is zero for accelerations of the form (1) be-
caus e

f„=m„'(u„'+m„') '[F„-(u„'+m„') '(u„F„)u ]

=m„'(u„'+m„') '[A„(x„-x„,)+B„(u„2+m„2)'/2v„

+C„(u„.'+ m„,')'/'v„,

-(u 'F )(u 2+m ') "'v ]

In other words, we have

(1 - v„P)v„' = (1'-P')'/'v„

+[1-(1-P')"']P *(v„.F)P-P,

(1 —P') '(1 v„'t—I)'f„'=(1 v„'—P)f„+(f.'P)v„

-[1-(1-P')"']P '(& P)p

where for t' =0 we take x„,v„,f„at t =x„(t) 'P.
Since x, v~, v2, f„f2 are in a fixed plane for all
time, which implies that x, (t =x,(f) 'P)
—x2(t =x,(t) 'p) also is in that plane, it is straight-
forward to calculate x'&& v' f„' and see that is zero.

Let

u„=md„/d'/„=m„v„(1- v„') '/',

F„=du„/d7 „=m„-'(u„'+ m„')" 'du„/dt .

m„'II„=[(x„-x„,) u„]A„

+[5 u, —(u '+m ')'/'(u, '+m ~ ')'/']C„

for two-particle equations of motion that are pari-
ty-invariant as well as Poincar e-invariant.

Then the other terms of the invariance conditions
(2), proportional to the nine tensors u„,.(x„k -x„,k),

n/ nkvd lan/ n'kl k'ln(/Xnk n'k)9 +n'J+nks lan'/2/n'kt '

(Xn/ Xn'/)kinks (Xn/ n'/) n'kr (Xn/ Xn'/)(Xnk Xn'k)
are separately zero. The first six of these simply
tell us we get zero when we operate on A.„, B„, or
C„with D„or B„„where

In terms of these, the Currie-Hill invariance con-
ditions are"

(x„,.—x„,,)m„, (u„,'+m„, ') '/' g E„,,BF„/Bu„, ,
l=l

JX we make a change of variables from u, ', u2',
2 2

ul 'u2 to Pl ul p P2 u2 s a,nd

y=u 'u —(u +m ) (u +m )l

3
+ (x„/-x„,/)(u„. 2 pm„, 2) '/' u„„BE„k/Bx„,, we find that

+ (u„'+m ) BF„k/Bu„/+(u„, +m„, )' BF„k/Bu„,/

8 8

Bp„su„2

(u„'+m„') ' '(u„~ F„)=0, (2) +-,'(u„'+m„') "'(u„,'+m„,')"'
eu~ '

u2

for j,k= 1, 2, 3 withn'=2, 1 for n=1, 2. Let

F„A„(x„-x„,)+&„u„+C„u„,.

In the invariance conditions (2), the tensor &» is
multiplied by

'(u 2+m 2)l/2~ + (u, 2+m, 2)l/2C

—(u '+ m ) ' '(u„' F„).

8„=2(u„'+ m„')'/'
n

so A„,J3„,C„are independent of p, and p, . In other
words, for two-particle equations of motion that
a're parity-invariant as well as Poincare-invariant,
4„,8„,C„depend on u, , u2', u, u only through the
Lorentz-invariant dot product (3).

Of course A„,B„,C„are also functions of x,
(x„-x„,) 'u„, (%„-x„,) 'u„, . The remaining terms
of the invariance conditions (2) are
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3
(u„, +m„, ) '~ m„, F„.,sF„ /au„. , + g +„.,sF„ /ax„. ,

+(u„'+m„')'~'[(x„,-x„,,)sA J'e(x„-x„,) u„+u~»„/&(x„-x„,) u„+u„,pC„/&(x„-x„,) u„]

+(u„,'+m„, ')'~'[(x„, x-„,,)8AJ8(x„-x„,) u„. +u„,»„/{)(x„-x„,) u„, +~„,„&c„/8(x„-x„,).u„,]=O,
for 0=1,2, 3 with n'=2, 1 for n=1, 2. An overall factor of (z„&-x„.,) has been dropped.
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