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Corrections to the sixth-order anomalous magnetic moment of the muon
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The contribution to the muon anomaly from fourth-order electron vacuum polarization is determined to
order m, /m„. The result, including the contribution from graphs containing two second-order lepton vacuum
polarization snbgraphs is (a/n)'[(2/9)ln'(m„/m, ) + (403/108 —4rr /'9)ln(m„/m, ) + g(3)/2+ 2rr'/27

+ 5/27 —6.56m, / m J.

En contribution& to the muon anomaly from a vac-
uum polarization insertion G into a muon vertex
diagram (Fig. 1) is given by'

"dt Imtr(o) (t) (,)( )
m

where

x'(I —x)
x'+ (t /r)t„'}(I —x)'

I

Using the dispersion relation

"dt Imtro(t }
t —p

we can write the contribution in the form

g A
0

m

1

dg(l —x)Rem (p*=| m„' . (3)

For fourth-order vacuum polarization insertions,
the real and imaginary parts of the vacuum po-
larization kernel are known from the work of
Kallen and Sabry. ' As shown by LButrup end de
Hafael, ' the contribution from the proper diagrams
(a), (b), (c) of Fig. 2 can be written as the fol-
lowing sum of terms:

imrr*")(t) " dt (,)( )
4m 2

fft~

and Imt[*"' (t)/t( is the contribution to the spectral
function from the proper diagrams. The terms
8 and S are O(m, /m& ). We can easily extract the
m, /m„coefficient from S by using the asymptotic
expansion' for K„(t):

K„.(t)=(—)[-' —Irvv —4v ln4v —2m+0(v' )],
(&)

tas v. = . , -0.
4rnq'

We find

We now extract the coefficient of r)t, /r)t„ from R.
Upori making the change of variables t =4m, '/

(1 —()s), we obtain B in the form

X., If(s) (t ) 2g

where the substitutions

+If(s) (0} dt Imtr*'4) (f ) —Imt(*") (2— +8
t

= @ +& + S+higher-order terms,

where

r)tq g(3),

e

dt Imtr* (t ) —Imt[* (~)R=
4~ 2 7r

x [g(2) (t ) ~(s) (0)]

4mImtt* (™) e df
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FIG. 1. Contribution to muon anomaly from vacuum
polarization insertion into vertex diagram.
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FIG. 2. Feynman diagrams representing the fourth-order vacuum polarization contribution to the sixth-order
anomaly.

K~' (0)=-
2m

have also been made. The coefficient of m, /m„
1s

lim!u

Cd'
(1 —52)'

lim
~g/p ~ 0 PB

Making use of the analytic expression' for K"„~(t )

valid for 0 ~t ~4m

If@& (t ) = ——,
' —4~ —4T(1 —2v} ln4T

where

Z!2
—2(1 —8v +8~') cos 'vv

1 —v

(8)

(~, /m„)'
g2

we obtain

~p (2) Q 0 ~ 7T

w, iw)( o m, " 2v v (1 —6')' 'Iim Z' (t)-—
(9)

which gives the coefficient of m, /m„ from the ft
term:

Imw""' (();(c: )* ()o)

Although the integral for Q~ could be evaluated
analytically, an. accurate numerical result is suf-
ficient. We will use a geometric interval method
with Pade approximants (type II) for accelerating
the convergence of a sequence of Gauss quadrature
approximations. '~ To verify that the method is
applicable we must examine

lim.
U

~I 0

where U„=C(0, 1 —e„„)—Q(0, 1 —e„) and the vari-
ables in C refer to the integration limits in Eq.
(10):

g„(0,1)=C, .
Setting e„,=re~ with 0 & y &1 and 0 & q, &1, we
easily determine that

lim "'" = (Wr )
~I
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TABLE I. Sequence of quadrature approximations S to &s is shovtn along with differences
0& arid ratios U~+&/U~.

U~+ (/U~

1
2

6
7
8

-7.073 097 930 873
-7.124 283 159471
-7.160 577 302 491
-7.186281 005 333
-7.204 471 873 494
-7.217 340 811834
-7.226 442 854 412
-7.232 879 860 763

-0.051 185228 598 83
-0.036 294 143 01998
-0.025'703 702 841 63
-0.018190868 160 58
--0.012 868 938 339 89
-0.009 102 042 578 740
-0.006 437 006 351 021

0.709 074 551
0.708 205 255
0.707 713 914
0.707 439 481
0.707 287 760
0.707 204 596

Choosing r = —,
' corresponds to doubling the num-

ber of quadratures from one approximation to the
next. The interval (0, I) is divided into 2» ' equal
subintervals. An eight-point Gauss quadrature is
then applied to each subinterval. The partial
sums S„of the numerical quadratures are shown
in column II of Table I. The results of column
IV of Table I indicate that the ratios Us„/U~ are
indeed approaching I/W as k increases:

a =So„—Sa

The first three Pade approximants to the sequence
S, are

-7.2482938528627, N= 1

S("'")(0) = -V.248 420 797 243 5, N= 2

—7.2484219685548, pf =3,

We combine the I3, 3) estimate for C„with the
coefficient of m, /m& from S to obtain

additional check on our routine VAC4' we com-
puted numerically

dhO —xl R~w"' m *)
& —x

+ Rem~'

as a function of m, /m„. The results, Q(tn, /~„)
—I(m, /m„), along with those for the direct num-
erical evaluation of A(m, /m„)+S(m, /m„) from
Eqs. (4}, are shown in Table II and plotted in Fig.
3. The results in the figure are seen to be con-
sistent with a curve that is asymptotic to a line
passing through the origin with slope 5.68. Finally,
we consider the contribution from the double-
bubble diagram' [Fig. 2(d)],

——7.248'42 ' = —5.677~ ~ ~
2 Alp Alp

As an independent check on this result and also an
physical point

0

20

TABLE II. Q- I and R+.S are computed numerically as
a function of the mass ratio. The asterisk denotes the
physical mass ratio case.

10.

10
mp

1 . 4 39666
2 8.79332
3 . 13.189 99
4 17.586 66
5 21.983 32
6 26.379 99
7 30.776 65
8 35.173 32
9 39.569 96

10 43.966 62
*11 48.363 28

103 q/m, lf'mP
( m„- l m„

2.430 285
4.972 909
7.150 836
9.284 515

11.416 20
13.532 35
15.614 07
17.665 35
19.675 72
21.651 24
23.590 54

103(R+S)

2.425 92
4.768 81
7.046 65
9.268 54

11.440 55
13.567 17
15.651 95
17.697 79
19.707 09
21.681 95
23.624 17

2 3 4
m e
m„

7 8 9 10 11

FIG. 3. Fourth-order vacuum polarization contribu-
tion to g„6 (proper diagrams) from terms of 0(m~/m„).
The units for the abscissa and ordinate are 4.39666
&&10 4 [physical (me/m )/11] and 10 3(z/x), res-
pectively.
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This contribution has been determined with. suf-
ficient accuracy to verify the O(m, /m„) term, as
well as to determine the next term, which is
approximately 2(m, /m& )S ln'(m„/m, ). The results
are shown in Fig. 4. Taking this into account, as
well as the leading contribution Q from the proper
diagrams, and the contribution of the mixed dia-
grams [Figs. 2(e} and 2(f}J we finally determine
the contribution to the muon anomaly from all the
diagrams of Fig. 2 to be

3 4 5 6
m

e
m„

9 10 11

FIG. 4. Double-bubble contribution to a ' from terms
of 0 (m~/m ~) . The analytic value T;(me lm ~) is given in
Eq. (13). The computed moment is evaluated from the
second term of Zq. (12). Units are the same as for
Fig. 3.

9 ln — ln +~~4+27

For the mixed:: lepton double-bubble diagrams [Figs.
2(e) and 2(f) J, it was explicitly verified that there
is no O(m, /m„) term. [The remainder goes as
(m, /m„}'. J

. In summary, our numerical result [including
terms of O(m, /m„) and smaller J changes the
contribution of these graphs by

3
-0.0291 —= -0.36x10 ' -4 ppm .
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