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Mass divergences in annihilition processes. II. Cancellation of divergences
in cut vacuum polarization diagrams

George Sterman'
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, LI., ¹wYork 11794
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The cancellation of mass divergences in cut vacuum polarization diagrams is investigated. Ensembles of
states are identified, the summation over which produces transition probabilities which are free of mass

divergences. States included in these ensembles 'can be characterized as having a "jetlike" structure. The
reasoning is extended to a large class of renormalizable field theories, including non-Abelian gauge theories.

I. INTRODUCTION

In the single-photon approximation, perturba-
tion'-theory cross sections for the production of
elementary hadrons from e'e annihilation are
computed from cut vacuum polarization diagrams.
In this paper, which is a continuation of Ref. 1
(referred to below as I), the cancellation of mass
divergences in these cross sections is investi-
gated. '

An immediate result of Kinoshita's theorem' for
two-point functions in renormalizable field theories
without superrenormalizable coupliogs is that the
total cross section in e'e" annihilation in the one-
photon approximation is free of mass divergences
when the mass of one or more species of hadrons
vanishes. On the other hand, exclusive processes
are almost always divergent in the zero-mass
limit in any order of perturbation theory. Kino-
shita' and Lee and Nauenberg' proposed that a
ciuantity which is finite in the zero-mass limit can
be.obtained by summing only over states in which
massless particles are replaced by "jets" of
parallel-moving massless particles with the same
total energy. ' I have formalized this proposition
for one-photon annihilation processes and, sub-
ject to assumptions given below, proved it to all
orders in perturbation theory for four-dimensional
renormalizable theories with Q', Yukawa, or
gauge vector couplings. As in I, the reasoning can
be extended to (P'), and gravitational field theories

The sum over states which produce the relevant
ensembles are a straightforward generalization
of the sum over soft-photon emission familiar
from the infrared problem in QED. ' In QED, mass
divergences arise from momentum regions where
on-shell massive fermions couple to soft massless
photons (which are not self-coupled), and they
cancel. in the sum. In a theory in which mass]ess
particles couple to one another directly, we get
additional mass divergences when on-shell mass-
less lines with finite energy and parallel spatial
momenta couple at single vertices. The cancella-

tion of mass divergences in such a theory requires
a sum over ensembles of states related by the
action of vertices of this type.

Define two states as being "jet-related" if they
differ by the emission or absorption of a number
of zero-energy particles, or by the transformation
of one set of parallel-moving particles into another.
The ensembles will be specified in terms of sets
of jet-related states. To make this idea more
quantitative, define for any state a, and "angular
energy current" in the e'e c.m. frame

where the sum is over the n, massless particles
in a, with energies (q cl and momentum directions
(a, f(ur, stands for angles 8, and P,). Jet-related
states have the same j(Q). Each group of par-
ticles with collinear momenta may be described
as a jet, and any set of jet-related states is
characterized by the number of jets, as well as
their energies and directions.

Just as it is not possible to measure exactly
the total energy carried by soft massless parti-
cles, it is also not possible to determine whether
two particles have exactly parall. el momenta.
Thus the "energy resolution" of QED generalizes
to a whole set of resolutions which describe pos-
sible experimental acceptances. Each jet is de-
fined not only by its direction and total energy
&; but al.so by an energy resolution &&; and a
fixed angular region ~~, . Any massless particle
directed into &0; is counted as part of the jet. An
additional energy resolution ~&, is associated with
the emission of soft particles into the region 0„
outside of all the jet regions &0, .

Next, define a 'jet ensemble" ~, which includes
states satisfying

O'Qj, (Q) (El +5E),

0( dgQj, 0 (~ED.
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Let ~ be a vacuum polar ization graph or, in a
gauge theory, some gauge-invariarit set of vacuum
polarization graphs. The following proposition will
be shown below. The total contribut'ion
P (As, q'/M', gs) to the cross section from states
in S generated by cutting Gin all possible inlays is
free of mass divergences. Here &s stands for the
collection of dimensionless quantities &,'/q',
&&&'/q', and &0&. q is the (timelike) external
momentum of G. g~ is the renormalized coupling
defined with respect to the- reference mass W
M, of course, is nonzero' (i.e. , renormalization is
performed off shell). This proposition appeared
as a conjecture in Ref. 7, where it was invoked to
derive two-jet structure for annihilation final
states at high energy in all orders of perturbation
theory„and was verified to lowest riontrivial
order.
. The verification of the proposition outlined be-

low requires certain assumptions. It is assumed
that regularization a.nd renormalization of ultra-
violet behavior can be carried out without introducing
mass divergences, and also that the power count-
ing procedure developed in I is a valid measure of
the behavior of Feynman integrals.

There are two resuIts of I which are esseritial
to the proof of the proposition. Suppose & is
a vacuum polarization graph, cut to give a p/physical
state &. Mass divergences come from points in
the loop momenturi~ spaces of the vertex functions

into which G ig cut where loop momenturii
contours are trapped on shell, or from points in
& phase. space where tree subgraphs of the I'
are forced on shell. The former are called "pinch"
singular points (SP's). With any SP is associated a
reduced graph of G formed by contracting lines
which are off shell.

In I it was shown: (i) That every internal vertex
of the reduced graph of a.ny pinch SP is ' soft".
That is, it connec. s only parallel-moving finite-
momentum lines and/or zero-momentum lines.
Therefore any physical state found by cutting the
reduced diagram of ~ at a. pinch SP is jet -.1 elated
to state q; (ii) that divergences in exclusive cross .
sections smeared over finite regions of phase
space are at worst logarithmic. (ii) is actually
what limits the applicability of the proposition to
theor ies without super -renormaIizable couplings.
As we will see below, the basic cancellation mech-
anism has little to do with the details of the theory.
It operates in any theory, but can only eliminate
logarithmic divergences in sums over physical
states. Since massless theories with super-re-
normalizable couplings in general have power di-
vergences even in unphysical Green's functions,
they are not covered by these arguments.

The essential idea is that it is natural to expect

the mass divergenc'e associated with any cut + of
to be canceled by divergences in precisely those

other cuts P which appear in the reduced diagrams
of pinch SPs of G . Since such states P are all
jet-related to &, they will all contribute to any
PG to which & contributes.

To implement this expects. on, it is useful to
notice the following fact: I et & be g, pinch Sp in
the loop momentum space of ~, and suppose that
state P is found by cutting the reduced diagram of

at R Then state & will also be found by cutting
the reduced diagram of z at just the same point I'
in its loop momentum space. Indeed, the reduced
diagrams of ~ and G~ corresponding to I' are
identical. This suggests that we might try to com-
bine theintegrands of sets of cut diagrams, and
then integrate over neighborhoods of their common
pinch SPs.

Actually, it turns out to be more convenient to
do the combining after the "minus" component, l
= l' —l', of each loop integral has been done. This
leads, as was shown by Chang and Ma, ' to a set
of terms suggestive of infinite-momentum time-
ordered perturbation theory. ' After this integra-
tion, the combination of terms is easy. Some
manipulations put the resulting expression into a
form which can be shown to be finite after inte-
gration over a region in the remaining loop mo-
menta of ~. The contour integration reasoning
used in I plays an important role here as well. .
The necessity for integration translates into the
presence of phase-space resolutions in the de-
finition of the finite quantities & .

The argument is organized as follows: In Sec.
II the method of Chang and Ma.' is reviewed and
used to show how contributions from different cuts
can be combined to produce expressions from
which mass divergence has been eliminated.

In Sec. III a set of regions in the loop momentum
space of an arbitrary vacuum polarization graph
is identified. We show how these regions make it
possible to organize the combination of.cut
graphs so as to sum over states in. &' only.

In Sec. TV; I' is calculated for an arbitrary
graph ~ in a scalar theory, and is shown to be
finite. Section V extends the results of Section
IV to theories with spin. Certain technical'dif-
ficulties resulting from the use of infinite-momen-
tum variables at intermediate stages of the cal-
culation are dealt with in this section.

H. METHOD FOR COMBINING CUTS

In this sanction we will describe the kind of mani-
pulation by which contributions from different cuts
can be combined. This process, coupled with the
power counting techniques developed in Sec. V
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represents the phGse-space element, 1n-
cluding any numerator momenta and matrix fac-
tors. For now, however we will specialize to
the case of all scalar lin, .s. I'~()» is the left
~i»ght'i vert-x function formed from ~~ by cut o. .

of I, will el)able us to express Bach quantity
P ( I,I . ..) as a finite sum of terms, each of which
is free of mass divergence.

Consider a specific cut of a vacuum polarization
graph ~. 'In the fol.lowing, "cut" wil1. ah@..~" s refer
to a cut of ~ in the qchannel. Also, a cut; '~fill

be refer, 'e~jI to as "'on shell" when all its lines are
on shell with physical momenta. Define

gee have, schematically,

dk+ d'k dk I (2.2)

wher'e II. is the Feynman integrand and the pro-
ducts run over all loop momenta. We will per-
form the k integrations first, employing the
method described by Chang and Ma. '

I.et there be n line~~-, v vertices, and l loops in
I"I, '. The prescription of Ref. (8) for scalar
lines s as follows."Factors of r~„coupling con
starts, and combinatoric factors, which do riot
affect the argument, will be suppressed below.
Change variables from loop momaenta k" to line

. momenta I" by substituting a ~ function at each
ver tex:

p
- j (fM) .n V+l

j=l mOO

0

dk; d'k, IIdf~(I'+i&) ' I I
~(f« 0„-).

k=l
(2.8)

Here I„and O„represent the sum of minus momenta entering the kth vertex and leaving the kth vertex,
respectively. Z; I p is the sum of ~inus momenta. of tho outgoing lines. Next, apply the Fourier

I

transforms

5(i 0 ) — 6 "««"«
(2)l)

The l and t integrations can be done explicitly to give

il(q —P. p, .)i","' =(-i)."' f '.tldk;d'k;
11~

dr,

(2.4)

(2 5)

Fl

1(I«(' I «) - I(«)»+.— — —BXP -I (~) &«) - ~ II«) ) P
N

X eXP -ZQ & l+t P )g & ~(~g)

Ll (2.5), Ty( )«Rnd &I(«) Rre tile Foul lel" tlRnsfol'111 pRI'Rllleters Rssoclated wlttl tile vertices Rt: wlllctl lllle k
arrives and leaves, respectively. &', is associated with the vertex at which the off-shell momentum q
attaches.

Pinally, the ~ integrations can be performed, 'eading to a set of "7 -ordered" diagrams which can be
written down according to lhe usual rules. ' State denominators are of the form (q —8~ +iq), with

Pl/

le I'

(q" -S, +i&) '.

where the sum goes over the mz lines in state P. 13ecause of the 8 functions in (2.5), only graphs in which
positive energy flows forward in 7 occur, in accordance with the rules of infinite-momentum perturbation
theory. ' Letting &(I') denote the set.of permissible & ordering of I' we find

flr"'=- F YT, dkdk n e(l') IT (2.7)I
T( rg )

(ad) 5 = l I J FT(r' )

We can go through the same process with I'I) and derive a, result of the same form as (2."i).. Substitut-
illg Into (2.1), Rnd Bxpl'Bsslllg d& 111 Rn Bxpllclt. form we fllld

N

+(af),„yy+d2 k
, (r(o)) ~cg(r(e))p(rR ) 2"(r~ )

g er(r( ')
R

(e -Sg -i&) ', (2.8)
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where N is now the number of lines in the vacuum polarization graph t", and L is the number of loops in
G.

Next we can sum over all possible cuts a of &. Grouping the terms by 7' orderings of G,
'L E

g' '=
~

[dk;d'k, I J ' g g ] I (q S ie)'5(q S„) ', [ (q S„~)-', (29)1: g=1 Eg T(G) 0! g gc

E g

Q g' '=i dk,'dk, ,' Q (q S„+i&) ' ]Q (q S„ i~) '
I' '.

~, =f ' j=f g T(c) - V y

(2.10)

The second form follows easily from a repeated
application of the distribution identity

(&+i~) ' —(x i~)-'= -2)Ti 5(x) . (2.11)
r

E(lu&ation (2.10) is immediately recognizable as
a. restatement of the Cutkosky rules" as applied
to the graph &: The discontinuity of the diagram
is found by summing over the relevant cut di-
agrams. The reasoning leading up to (2.10) can
be reversed to derive the Feynman integral form:

I»"'(R) fr~"'(=R)dI"'I„'"' (R), (2.13)

where

(2.14)

R onto the phase space of cut &. Then the contri-
bution of region R to the cut diagram ("cut subin-
tegral") is

L

x dk~g~ Ib ). (2.12)

xL denotes the region of internal integration of
~L specified by R. A similar definition holds for
y jC (0')

Adding together all the cut subintegrals we find
the analog of (2.12),

The significance of this rederivation of a standard
result lies in the fact that the whole calculation can
be carried out at fixed values of all the plus and
tdiansverse momenta in ~. That is, once all minus
integrals have been evaluated, the discont&nuity of a
subintegral over any finite region in the plus and
tRraiisverse momenta of G is equal to the sum of the
coi'responding subintegrals in the cuts of G. Notice
that these subintegrals involve phase space, as
well as the internal loops of the cut graphs.

That this result is relevant to the cancellation
of mass divergences can be seen once we observe
that the four-momentum of an on-shell line is
uniqu&ely determined by its plus and transverse mo-
ment@ alone, unless they all vanish. Thus a
singular point is specified by giving these three
components for all the loops of the corresponding
reduced diagram. Integrating over a small re-
g'ion m plus and transverse momenta, we will
encounter only a limited class of singular points,
even when the minus momenta are fully integrated
over. In the limit of vanishing plus and transverse
momenta for some subset of the lines, the minus
integrals sum over singular points related by a
i edistribution of energy among those on-shell lines
moving in the -s direction.
: Let B denote a region of this type. Let a be a
cut. of graph G, and let x denote the projection of

(2.15)I&» (R) = —& f . d I,. (I —I&,. ) .
Cg R i-"I

Now each h( ' in (2.13) is in general mass di-
vergent; these quantities will not even be defined
unless they are regulated in some way: by adding
a small mass to propagators, or by dimensional
regularization, for instance. On the other hand,
the sum (2.15) is less singular than the individual
eut subintegrals. The multiple integrals in both
terms of (2.15) are contour integrations and can
be deformed in just the same way as in the full
Feynman integral, except that now the plus and
transverse momentum contours must be fixed
on the real axis at the boundary of the region R.

Mass divergences could arise in (2.15) either
from the plus and transverse momentum end
points, or from pinch singular points in the in-
terior of R. But the reasoning of I shows that the
only pinch singular points in the interior of B are
those whose on-shell lines have zero momentum,
and such singular points cannot lead to mass di-
vergences in the theories being considered. "
Thus mass divergences can only arise from the
boundary of R, a region of lower dimension.

In the appendix of I it was shown that power
counting at an arbitrary SP (not necessarily a
pinch SP) indicates no worse than logarithmic di-
vergence, except for contributions in gauge theo-
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ries which decouple from- cross sections. The
power-counting estimate in the neighborhood of a
surface of SP's results. from the behavior of both
the integrand and the volume element for variables
normal to the surface. In particular, if the integral
is not trapped everywhere- on the surface, but only
on a submanifold of lower dimension, the effect is
to increase the dimension of the normal variable
volume element, and correspondingly suppress
scaling behavior by a power.

To be more precise, divergence was shown in I
to be at worst logarithmic for SP's where plus
momentum (equivalently energy} does not flow in
the same direction as the loop momentum in every
line of any loop. of the, corresponding reduced dia-
gram. But for any reduced diagram containing
such a loop, the minus momentum integral of that
particular loop has poles in only one half-plane
and is not pinched at the corresponding SP. If
the regions R extend to +~ in all minus momenta,
any such SP's can always be avoided in expressions
such as (2.15). The exceptional case where the
plus and transverse momenta of every line in the
loop vanishes (so that, at the SP, the integrand is
independent of the minus momentum) is automati-
cally restricted to a submanifold of reduced di-
mension by rotational invariance.

Consider a specific surface Q of SP's, where a
given set of lines, not all with zero momentum,
goes on shelL Suppose Q has dimension D. If
a region like B in (2.15) is chosen so that its
boundary intersects Q in a submanifold whose
dimension is D —1 or, less, then the power count-
ing associated with surface Q is suppressed by a
power. If R is chosen this way for every Q, (2.15}
is finite, and the sum of the h' 's is calculable
in this form without ever introducing any of the
regularization necessary to define each h' ' in-
dividually.

The shortcoming of,(2.15} is that we have not
introduced information about any jet ensemble 8
into it, so that the intermediate states encountered
in the sum are not limited to any subregion of
phase space in general. Below, we derive a set
of .subintegrals along the same hnes as (2.15},
but which are more directly related to the quan-
tities P (A~, . . . ).

III. IDENTIFICATION OF REGIONS

I et G be an arbitrary vacuum polarization graph,
and S some jet ensemble. In. this section we ident-
ify a set of regions y~ in the loop momentum space
of t", each associated with a iubgraph g of . The
Subgraphs g are formed from t" by contracting
some set of lines into the two vertices of at
which the external momentum q attaches. They

are constructed to contain no tadpole subdiagrams.
For any such subgraph g w'e define, for each cut

Q ofg,

i(y,:,n)= f ar. ' 's'& l„t.&
8(e)(g} a~(e) (g, T

'"'

x d'/' I~( }
~R(g, T)

(3.1)

where s' '(g) is the projection of y~ on o phase
space, and kz'~(g, ~) and k„'"'(g, r ) are the pro-
jections of y~ on the internal loop momentum
spaces of I"z, ' and I'„' ' at point &. i(y~, o) is
defined to vanish if n is not a cut of g.

Roughly speaking, each y, is constructed so that
the mass divergences in any i (y~, a) come only
from. pinch SPs whose reduced diagrams are sub-
graphs of g It will be shown that, in accordance
with comments made in the Introduction, summing
over cuts of e of g gives a quantity

i(g)= g i(y„~), (3.2)

which is free of mass divergences. As mentioned
above, for this purpose each y~ must be chosen
to intersect surfaces of SP's only in manifolds of
lower dimension. At the same time, the y~'s are
to be defined in such a way that

Q I(g) =P'(Ag, ~ ), (3.3)

so that the finiteness of each f (g} ensures that
P (A. z, . . . ) is also free of mass divergence.

The following are the conditions to be imposed
on the regions y, :

(a) in (3.1), &' '(g) equals the projection of S on
a phase space for every n, and at each point w in a
phase space the collection of regions k~&„'&(g, 7)
cover's the complete loop momentum spaces
of I'z', &s'& without overlap. This gives (3.3).

(b) If P is a pinch SP of any i(y~, o.'), and & is
the reduced diagram of P, then the finite-energy
lines of R form a subgraph of g. This means that
lines not in g are never trapped on shell with-
finite energy in any i (y, , a).

(c) Let Q be a manifold of SP's in the momentum
space of G. If Q is of dimension Do, the intersec-
tion. of Q with the boundary of any y~ is of dimen-
sionLD-1 or less.

(d} The definition of y~ involves restrictions on
plus and transverse momenta only; minus momenta
are always integrated from minus infinity to plus
infinity, as in the last section,

The construction of a set of regions satisfying
(a)-(d) is in principle easy. For a given g, con-
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sider the union x, of all SP's consistent with (a)
and (b). The y~'s are formed by simply expanding
the x~'s into the full 4L-dimensiona1. space of ~
loop momenta, subject to the additional con-
straints. (c) presents no particular difficulties,
because for any graph there are only a finite num-
ber of manifolds of SP's. Otherwise, the details
of the construction are free.

IV. CANCELLATION OF DIVERGENCES: SCALARS

We now proceed to calculate i(y, n) by integra-
ting the minus momenta in (3.1) using methods de-
scribed in Sec. II. For the time being we restrict
ourselves to all scalar lines.

We get

L N

((),a)= f 11 dk d'k;), [[,-'—-) ~&,&,( (q —S~+H)' ()(q —8„)

x P P (q- S,, -t~)-'
~(~(a) )

(- g~
R

(4.1)

(4. 3)

(y)=J (lid);d'i)(11 „,", )P g (P P 11(q- s, +(~)')

x P 2 II (q. s, +(a)'ge s.) II (q -s, -~&)'
)T(gy, y~) n — P pp

The next step will be to reorganize the sums over vertex orderings in (4.1). Let fz, and fz be the left-
and right-hand subgraphs which are contracted to form g from . We group each vertex ordering accord-
ing to the right-most vertex p in fl. and the left-most vertex p' in fa. T„(II, ') will stand for the set of all
vertex orders of graph I'z, ' in which P is the right-most vertex in fz, . Similarly, , T(la( ')will stand for
the set of orderings with l(' the left-most vertex in fz Then.

i(y, o.) = I jg dk,'. d'k, . —,' P g II (q —Sz +is) ' 5(q S )
t 1 j=J j' — 0 ~ (r(OI))I,

x g g lI (q- S,, t~)- . (42)
T(r' ')

g R
In each term in the p sum, the vertex ordering T~(I'i ') determines the state & which appears just to the
right of vertex p, and in the saine way ~, T(I'z ') determines the state X' appearing just to the left of p'.
Now & splits I'1. ' into two subgraphs, which we will call yl ~ and y~'~, and &' splits I"~ ' into subgraphs

and y~~. By definition, vertex p will be included, in both 71.1. an~. y~'~, and vertex p' in both y„J'
and p'„„. The "dissection" of according to this procedure is illustrated schematically in Fig. l. In
terms of this regrouping,

'(,„.)= j (]Id&, d~, ) ('g -'-';
) gg( g ][I (,- s, „.)-)

x J „. O' —Sg+
"&I'.Z &

'
x &(q 5 ) Q g g (q- S,, t&)-' g II(q- S,, &e)-

X'
& („O.sz ~ ~(v' ) &'

RL ~RA

In (4.3), t, (h) and „t(h') denote the set of vertex orderings in which v and v' are the right most an-d left
most vertices in graphs h and A", respectively.

The point of the reorganization leading to (4.3) is that all the states P and P' of v~z, 'a and y„'z', must be
cuts of g, and therefore, because of requirement (a) on y~, can be on shell only in region S. States &

and &' of pzz, a.nd &zan, on the other hand, must be cuts of G which involve one or more lines in fz, and fz,
respectively. The consequence of this restriction will become clear below.

We are now ready to sum over cuts o,'for which i(y~, n) is nonzero. Because cuts to the left of p or the

right of p involve lines not in g, cuts which contribute to the sum for a given vertex ordering always ap-
pear between X and X'.

Performing the summation over n, we find

x q--S,, —ig -'

g'"zz '
(4.4)
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where g ~ ~. is the vacuum polarization graph formed by contracting everything in G to the left of p a.nd to
the right of p' to a poi:nt.

We can now apply (2.11) to give

i(q)=i J ( [ qq; q k. ,)'( ][[
)
.'()P (p

LL

x Q (q —S +i&) — [ (q —S„
y

(q —q, +iq) ')
6

(4.5} includes all the vertex-ordered state de-
nominators corresponding to the vacuum polariza-
tion graph 8~ ~.. This suggests that we might undo
some of the minus integrals, as we did in going
from (2.10) to (2.12), to get an integral in which
there is more freedom to deform contours.

This process would leave us with the question of
what to do with the state denominators for the
graphs 'YLL and 7 ~~. Notice that, even after p

and p' are summed over, not all the vertex order-
ings of these graphs appear in (4.5}. We can, how-
ever, relate these'state denominators to Feyn-
man integrals as follows:

Consider, for-instance, the quantity

g(y~~~) = Z „(q S, +i&) ' ]1.
g g(yLL ) . 6 a E:yLL

In this sum, all-vertex orderings have p as their
last vertex, and the vertex of ~ at which q attaches
as their initial vertex. As a result, the first and
last state denominators are always the same. If
there are Vvertices inyLL, then there are ~-1

state denominators, and the last one is

l.2l; g lq

j EQ Ef', g ~=X

where the set Q consists of all lines in yz, z, at-
tached to vertex p, a,nd the set N of all lines
which are shared by y~LL and g». . We can now
recognize $(yI~~) astheresultof integrating over
the minus momenta of the vacuum polarization
graph HL formed by "pinching" the lines in set

at vertex p, up to plus-momentum factors for
lines in K Thus

(4.7)

(
8(fg)

~ ~ ~ ]f.'] '""
inHL )

x ($ 2+i g) l~q)(H+) ) 1 (4.S)
I ines
in &L

The graphical relation of HL to y» and N is il-
lustrated in Fig. 2. n(H~) is the number of lines inH~.

Now we can rewrite I(g) as

Bggi golgi

(u')+
~ ). ~ j.

I
looys of

Hg

(4 9)

FIG. 1. Schematic "dissection" of a vertex-ordered
cut vacuum polarization graph, discussed in Sec. Dr'.
3, m, and A.

' are cuts. The points labeled p and p'
represent the vertices jus't to the left of cut & and the
right of cut A,', respectively.

FIG. 2. Illustration of "pinching" procedure dis-
cussed in Sec. Ql. In this example, lines 1, 2, and 5
make up the set N of Eq. (4.9).
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In (4.9),. we see that each of the lines in N and
N' is "doubled" in the sense that each one in N

. contributes a denominator to both, I~ andIB~ ~.,
for instance. The extra units in the denominator
are made up by an extra plus-momentum factor
in the numerator and an extra minus loop momen-
tum relative to the G integrand.

Contour integration arguments can now be ap-
plied to f(g) in the form (4.9) to show that it is
free of mass divergences.

From the point of view of the integrands and
minus loop momenta, (4.9) looks like the pro-
duct of integrals for three independent vacuum
polarization graphs: III, g~ ~. , and &„, as shown
schematically in Fig. 3(a). The difference is that
the plus and transverse loop momenta are still
those of the original graph . Nevertheless, as in
(2.15), the set of points at which momentum con-
tour integra1. s are trapped is drastically reduced in
(4.9) relative to the individual quantities [the'

i(y~, u)'s] which go to make it up.
The first thing to realize is that f~&I& &

is a sub-
graph of Hz, &», and because of condition (b) of
Sec. Ill, all the lines of fz, &» can be deformed
off shell everywhere in the interior of y~. (We
neglect here pinch SI"s with only zero-momentum
lines, since. they never give rise to mass diver-
gences in the theories we are considering. ")
Therefore all the lines in fz, &s& are contracted at
any pinch SP of (4.9) in y~. This reduces the pos-
sible form of the reduced diagram of a pinch SP
of (4.9) to that shown in Fig. 3(b).

Next, we can apply the reasoning of I to show
that the contour may be further deformed to take
additional lines in Hz, If&, and Hs/f „off shell.
This is straightforward for those lines not in N or¹:Any loop with nonzero momentum flowing in
H~/f~ cannot satisfy the Landau equations [Eq.
(2.3) of I] at the SP. The situation is more com-
plicated for the loops which flow through lines in
X or N'. By construction, their plus and trans-
verse momenta flow both in H~/f~ or H„/f „
and Q„„., so there is the possibility of their con-
tours being trapped between singularities from
separate diagrams. In any case, contours can be
deformed so that only these lines are on shell in
HI or Hs, as shown in Fig. 3(c).

Suppose for the time being that none of the lines
I& in N or N' have precisely I; =

~
I,

~

=0. Then the
contours of the minus loop integrals which pass
through the lines in N and ¹ (and do not appear
in 8„&,.) can be deformed to take the N and N'

lines off shell, giving a reduced diagram like Fig.
3(d). This is just a vacuum polarization graph,
and we know that its SI"s can all be avoided. It
can be concluded that, barring the case of some
subset of lines in. N or ~' moving in exactly the

(a)

(b)

(c)

(a)
F/Q. 3. Reduced diagrams related to the discussion

of Eq. (4.9).

-z direction, no pinch SP's with on-shell finite-
energy lines are encountered in the interior of

Xg ~

What happens when lines in N or N' do move
into the -z direction'? Here our ability to deform
the minus loop momenta passing through these
lines does not help us, since l, is multiplied by
l,'- in each Feynman denominator. But these SP's
are eliminated by the factors of l,' in the numera-
tor associated with each such line. The contour
integrals of (4.9) are thus trapped only at SP's
encountered on the boundary of y~.

We are now in the situation discussed for the
integral Eq. (2.15). Condition (c) of Sec. Ill im-
plies that power counting from any surface of sin-
gularity points encountered on the boundary is sup-
pressed by a power relative to the estimate found
using the methods of I. But, as observed at the
end of Sec. II above, power counting indicates that
divergences associated with any relevant mani-
fold of SP's are never worse than logarithmic.
This is true of each of the i(y„&&&) which are
summed to give (4.9). It can be concluded that
f(g) is free of mass divergences, at least for the
scalar theories which we have considered so far.
By (3.3), P is also finite, and the proposition is
verified for scalar theories.

V. INCLUSION OF SPIN

Spin requires a modification of the reasoning of
Sec. IV because of the presence of factors of mi-
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nus momentum in Feynman integral numerators.
Factors of plus and transverse momentum, of
course, do not affect the procedure, since only
minus integrals are actually evaluated. For gauge
theories, we work in the Feynman gauge, which
is chosen to avoid having to deal with gauge de-
nominators which would complicate the minus in-
tegrations. In treating non-Abelian gauge theories,
ghosts are treated on the same footing as other
lines, since their propagators are defined with
the same ic prescription as for normal particles.
Since gauge-invariant cross sections are to be
computed, those contributions which cancel
ghosts will automatically be included.

On a formal level, the problem of numerator
momenta is easily dealt with. Use momentum
conservation to express each factor of minus
momentum as a sum of the minus momenta of indi
vidual lines, and then apply the simple algebraic
identity

(5.1)

to eliminate explicit minus-momentum dependence
in the numerator. This process has a simple
graphical interpretation: In the first term the l
factor of a given line is simply replaced by T'/l',
and in the second, the line is contracted, and a
factor 1/I+ associated with the vertex into which
that line is merged. For each of these new graphs
the analog of (4.9) can certainly be. derived.

In general, singularities are introduced by (5.1)
at 1'=0 in individual terms, but they are spurious

'
and cancel in the sum. For this reason, no i~

prescription need be given for the l' denomi-
nators, although for purposes of definition any
prescription will do, since, for I20,

(5.2)

In addition, the substitution (5.1) can lead to dia-
grams with "tadpole" subgraphs, connected to the
rest of the diagram by only a single vertex. No
lines from such a subgraph can be cut, and its
minus integrals can be evaluated without reference
to the rest of the graph. Situations of this type do
not modify the reasoning of the last section, and
will be ignored below.

The substitution (5.'I) does not solve all the
problems associated with numerator momenta.
This can be seen by considering a loop each of
whose lines has a minus momentum factor in the
numerator. The product of the (1/I') terms for
all the lines of such a loop is completely inde-
pendent of the minus loop momentum, whose in-
tegral then diverges linearly. Such large k di-

4

vergences are related to the fact that, in the
presence of numerator momenta, the plus and
minus integrals do not always commute. This
point is discussed below. What is important here
is simply to realize that problems of this sort are
all associated with regions of infinite minus loop
momenta and have nothing to do with mass diver-
gences. They are present as well for diagrams
with only massive lines.

If we delay consideration of these problems,
ee can continue with the procedure of the last
section and arrive at the same result; P~(A~, ... }
remains free of mass divergences when the ef-
fects of spin are taken into account. It should be
emphasized, however, that in gauge theories fin-
iteness is a property only of gauge-invariant
combinations of graphs, where the power diver-
gences identified in Sec. V of I are eliminated.

Having formally extended the argument; to theo-
ries with spin, we return to the question of the
large k divergences found after the substitution
(5.1). In particular, I will argue that they will not
contribute to the full integral when account is taken
of the correct integration procedure.

The problem to be dealt with is that integrating
, over k in a loop all of whose lines carry minus
numerator factors seems to give a linear diver-
gence. The first thing to notice is that a con-
nected subgraph, all of whose lines have minus-
momentum factors in the numerator, can contain
'at most a single closed loop. This is due in part
to the fact that if every line in a subgraph is to
have a minus-momentum factor, no invariants-
which require plus momentum factors as well—
from that subgraph alone can occur in the numer-
ator. Thus no vector polarization sum can both
begin and end at internal vertices of the subgraph,
since such a situation would certainly generate an
invariant numerator factor. As a result, there
can be no loops involving vector lines beginning
and ending on scalar or fermion lines.

It is also easy to see that no fermion loops with
external scalars are possible, because the fer-
mion-scalar vertex is proportional to the identity
(or y, ) and the numerator of one fermion can be
commuted (or anticommuted} past the vertex to
give a product w. ith the numerator of the other.
But in PP' the coefficient of P P' is zero because

, y+' =0. In fact, the only possible loops are pure
scalar, fermion, or vector loops, connected to
external vector lines. - Connecting two such loops
by a vector line, however, always results in a
polarization sum, and therefore a plus factor in
the numerator. Loops that give problems of this
type are therefore isolated, and can be dealt with
one at a time.

The main point of this discussion is that any
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Feynman integral is defined with the prescription
that the energies be integrated ove'r first. An
.operation such as Wick rotation, which makes
symmetric integration possible, depends precisely
on the convention that energies be dealt with first.
A simple example will help to illustrate the signi-
ficAnce of this rule to our case.

Consider a fermion loop with n lines, 'and in
pa, rticular that monomial of numerator momenta
with a factor (k ), m & n, where k is the loop mo-
mentum. Other numerator factors do not enter
into )he argument, and can be ignored. The cor-
rect definitio~ of the diagram thus involves the
integral

I„= dk3 . dko
(k, -k,)"

11 [(k, +E;)' —(k, + P,)' -K,.'+ ig ]
(5.3)

i"-1
I

where (E;, P;, K;) is the momentum of the ith line when k, =k, =0.
Suppose we now decide to change variables to k'=k, +k3. As a first step, we find

In m

OO m

dk3 dk
ll $[k +(E;-P()][k +2k, +(E +P,)].-R'.+is} (5.4)

There is no problem in exchanging the orders of integration and then changing from k, to k, . So,
oo I

dk k dk+ -„
"11([k +(E~-P;)]Ik,+(E~+P;))-K +4} ' (5.5)

We now have the right variables, but with the
prescription that k, be integrated over first. If,
as in Sec. IV, we want to evaluate the k integral
first, we have:to be able to exchange the orders of
integer'ation. But if m=n, this is not possible.
fact, form =n, (5.8) is linearly divergent if k

is integrated first. When the' k' integral is done
fir@, on the other hand, the resulting integral
vanishes for k &-m ax(E; P, ) or -k &-min
(E, —P, ), and (5.8) is finite. It is easy to see that
first changing variables to k, does not solve the
problem.

Using (5.1), we always organize numerator mo-
menta to replace minus momenta with factors of
plus and transverse momentum, so that we can
apply the reasoning for scalar diagrams directly.
This simple substitution, of course, does not
solve the problem of interchanging the integrals
for the case ni=n. We can, however, easily use
it to see that the difference between integrating
k and k' first, although formally infinite, has
bvo simplifying properties.
~ The first results from the fact that after the
substitution (5.1), the two-dimensional regions of
integration which lead to problems are given by k
very large and k'- —(E, +P;) for some i. For
finite k and nonvanishing k++ (E; + P; ) the order
of integration is irrelevant. As a, result the differ-
ence ig independent of the minus components of
momenta which are external to the loop (i.e., the
quantities E, —P;);

Second, ; =the difference in an integral like I„„
is purely imaginary. Using (5.1) and defining the
k' denominators by any consistent ie convention,
either the k' or k integral can be evaluated first

I

by Cauchy's theorem. In either case, the result
is of the form 2~i times a real number. The re-
maiping. integral has both pole terms, which give
an overall real contribution, and principal values,
which give an overall imaginary contribution. The
real part thus comes from a product of 5 functions.
But the integrals commute for 5 functions, so the
difference has no real part.

The 'result is that, if we insist on integrating
minus momenta first, the extra infinite contri-
butions which are generated can be canceled by
the addition of special vertices, in which the loop.
in question has been replaced by a formally in-
finity pure imaginary function of plus and trans-
verse momenta. Such vertices do not affect the
reasonirig leading to Eq. (4.9).

It is worth reemphasizing that the problems
w'jth noncommuting integra. ls are completely a
artifact of the infinite momentum variables tha,
have. been chosen. The troubLe would have been
avoided had energies been integrated over first.
In this case, however, the resulting perturbation
expansion has many more terms, corresponding
to arbitrary orderings of vertices, and the mech-
anism by which the different terms combine to
eliminate divergences is more complex.
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