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Mass divergences in annihilation processes. I. Origin and nature of divergences
in cut vacuum polarization diagrams
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The origin of mass divergences in internal loop momentum integrals of cut vacuum polarization diagrams is

investigated. It is found that loop momentum configurations which can give rise to mass divergences are
of a severely limited form and have a direct interpretation in terms of physically realizable processes. A
power-counting procedure suitable for estimating the nature of mass divergences is developed, and it is

found that in a large class of field theories, cross sections smeared over a small region of phase space are at
worst logarithmically divergent.

I. .INTRODUCTION

Mass divergences in perturbation theory have
been a topic of continuing interest. This is due
in large part to their importance in field theories
with unbroken gauge symmetries, such as quantum
electrodynamics and quantum chromodynamics. '
In addition, at sufficiently high energies, the con-
cept of mass divergences becomes relevant even
to theories with only massive particles. ' The
classic work of Kinoshita' and Lee and Nauenberg4
made it clear that for many purposes it is pos-
sible to approach the question of mass divergences
in a theory-independent way. In particular, the
cancellation of mass divergences in appropriately
defined cross sections already familiar from QED
(Ref. 5) was seen to be a universal feature of field
theories.

It is thepurpose of thisworkto studymassdiver-
gences in single-photon annihilation processes di-
rectly in terms of the momentum- space behavior of
Feynman integrals. The study is divided into two

parts. In the second, ' ensembles of annihilation final
states are identified, whose cross sections are free
of mass divergences. Thefirstpart dealswith the
origin of mass divergences in phase- space integrals
and the internal momentum integrals of vertex func-
tions. It is found that they can arise from only a
very restrictive class of loop momentum con-
figurations, which have a simple physical inter-
pretation. A power-counting procedure is then
developed for such momentum configurations. As-
suming the validity of this procedure, we find that
all mass divergences are logarithmic when cross
sections are smeared over a small portion of
phase space, as is inevitable experimentally.
Much of the reasoning is theory independent. The
power-counting result, of course, depends on the
theory, but it extends to theories with four-scalar,
Yukawa, and gauge couplings. It can be extended
to include (p'), and gravitational theories as well,

but this will not be done here.
This approach contrasts with studies based. on

parametric representations of Feynman inte-
grals, "but is related to the usual treatment of
infrared divergences in QED. ' The momentum-
space approach is attractive in its simplicity arid

for the rather direct physical interpretations
which it suggests. It has the disadvantage that it
does not incorporate directly the global properties
of Feynman integrals. For instance, those -having

to do with ultraviolet divergences will be largely
ignored in the following; I simply assume, that
approriate counterterms can be found to make
the theory finite. All renormalization is assumed
to have been done "off-shell" in such away as to
introduce no new mass divergences.

The cross sections for single-photon annihilation
processes are given by cut vacuum polarization
diagrams via unitarity. From graph G, a state n
gets the. differential contribution

(1.1)

where I"~" and I'~ are the vertex functions gen-
erated by cut ~ of G, as in Fig. 1. dy(") re-
presents the phase-space measure of ~, including
possible spin factors. As mentioned above, any
experimental procedure does not measure quan-
tities such as (1.1) directly, but at best those such
as

(c)— I( )d~( )I( )
L 7 R (1.2)

&n

where ~~ is some small region in e phase space.
Quantities such as (1.2) will be referred to as
partially integrated exclusive-cross sections, and
will be shown to be at worst logarithmically di-
vergent.

Section II mill deal with generalities on mass
divergences, considered from the point of view of
integration over Feynman diagram loop momenta.
In Sec. DI these results are applied to vertex func-
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FIG. l. General process to be considered.

tions which describe the decay of a timelike pho-
ton. In Sec. IV a power-counting procedure is
developed which is appropriate to regions in mo-
mentum space from which mass divergences
arise, and in Sec. V power counting is used to
show that partially integrated exclusive cross sec-
tions are at worst logarithmically divergent. An

appendix deals with power counting in more gen-
era, l situations. Except where otherwise, noted, the
discussion is for totally massless theories.

II. THE MOMENTUM-SPACE STRUC'PURE OF MASS

SINGULARITIES
/

The amplitudes 1'tz&~z& in (1,1) are represented
by graphs, which can be split into maximal one-
particle irreducible (1PI) subgraphs and tree sub-
diagrams. . The external momerita of each graph
are, of course, real and physical. Mass singular-
ities must arise from the variishing of denomina-
tors at special values of phase space and loop
momenta. I will first discuss how this happens in
lPI subdiagrams. The discussion centers on
analyticity properties of Feynman integrals and

as such is theory independent. '

FIG. 2, Simple example discussed in text.

Mass singularities in 1PI subdiagrams

Each Feynman integral is originally given as a
multiple integral over real loop momenta, but
the. ic conventions which help defirie these integrals
make it necessary to consider them as contour
integrals in a multidimensional complex space.
The original real values'of the loop momenta are
said to lie on the "undeformed" contour in this space.

Along the undeformed contour, the integral will
in general encounter points where Feynman de-
nominators vanish, and at which the integrand
consequently diverges. Call any such point a
"singular point" (SP). While there must be singu-
lar points for there to be mass singularities or

divergences, not every SP is directly associated
with these phenomena. As a trivial example, con-
sider the vacuum polarization graph Fig. 2.
Whether or not the lines k and q-0 hive a non-
vanishing mass m, when q +4, the corre-
sponding Feynman integral is well defined. This
is so despite the fact that SP's at which k'= (q-k)'
= m' are easily found along the undeformed k con-
tour. The reason for this is that the k contour is
not pinched at any such SP. (Because the k con-
tour is infinite, it can be trapped at a poirrt only
where it is pinched there between a pair of co-
alescing singularities. ) As a, result, the k con-
tour integral can be evaluated without ever en-
countering such SP's at all.

It is only singular points at which the undeformed
contour is pinched that can give rise to mass di-
vergences —as well as more general singularities
which may be associated with massive particles.
To distinguish them, these points will. be called
"pinch" SP's. The search for mass divergences
in any given process can begin with a catalog of
pinch SP's in graphs relevant to that process. At
this point it is useful to develop certain general
observations about pinch SP's, not dependent on
the masses of particles involved.

With each SP, pinch or not, is associated a re-
duced diagram, constructed froin the complete
graph by simply contracting all lines which are
off-shell at the SP. The reduced diagrams of
pinch SP's will be seen below to have particularly
simple structure in certain cases of interest.
Quite generally, in fact, the reduced diagrams of
pinch SP's have a direct physical iriterpretation
when external momenta are physical. This was
observed by Coleman and Norton. ' Part of their
analysis, modified slightly to incorporate mass-
less particles, is outlined below.

Physical picture for pinch singular points, .

Let P be an SP with reduced diagram'R. At P
each line in R has a definite on-shell momentum.
The lines and loops of R are classified into sub-
sets as follows. Let p and G be the set of finite-
momentum and zero-momentum lines of R, re-
spectively. (Lines in G'are of necessity mass-
less. ) The loops of R are also assigned to fall
into, two classes. Those in setA. pass through
lines in 5' only, and they'are choseri to form an
independent set of loops of the subgraph of R
formed by lines in I . The remaining, loop momen-
ta, set I3, all vanish. Line@ in 6 carry only loop
momenta. from B.

Feynman parameters can be used to illustrate
how the momentum contour is. trapped at P. Para-
metrizing only denominators in I' gives, for the
Feynman integral, a quantity with the structure
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where n~ is the order of F, and, any set of masses m, may vanish. Numerator momenta, which do not
enter into the argument, have been suppressed.

Look at the l and n integrations for fixed k near 0. Diagonalizing the last denominator in terms of the
l loop momenta gives

ftp tie

d k q] k +zg . du]5 . o] —& —-2 —. l' + —„' ' +s&,
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&=x
(2.2)

(x)cf. = 0
(2.3)

are satisfied with positive z's and real q's, with
the sum taken around each loop of finite-energy
lines. I

It-was necessary to separate the zero-rbomen-
tum lines in order to obtain (2.3) for finite-mo-
mentum lines, just because any loop k, say, which
appears in a denominator k'+ i& is always trapped
at k = 0, regardless of other loops and lines. This
is reflected in the fact that the analog of the Landau
conditions (2.3) can be trivially satisfied for any
loop, one of whose lines is massless and has zero
momentum.

Coleman and Norton' pointed out that the Dio-
menta at the pinch SP P describe a physical pro-
cess in which each vertex of R can be associated
with a space-time point, separated by intervals
proportional to the vectors e, q, The constant of
proportionality may be fixed for the entire dia-
gram at once, or separately for subdiagrams
which share only loops in B with each other.

For massive lines, ~,. is interpreted as the
ratio of the proper time separating the line' s
emission and absorption to. its mass. For mass-
less lines such an interpretation is no longer pos-

where Cz(n) and D~(a, p, A )are s. tandard functions
defined, for instance, in Ref. 10, and constructed for
for the subgraph of 0, consisting of lines in F. p
represents the external momenta and I is the
number of loops inA. The Sp p is at k = l' = D~
= 0 in (2.2).

First of all, the km 8 are trapped at k = 0 in- '

dependently of the l'and z integrations: Eve'ry
denominator q,.'+ i& supplies a double pole pin-
ching 'each contour at the origin. Next, the E'

integral( can be evaluated -explicitly to give an in-
verse power of D~. It is worth noting, however,
that the $' integral diverges at D~ = 0 because the
l' contours are trapped at the origin as jg~, van-
ishes. Finally, the z integrals themselves will
be pinched at values for which Dz = 0, if the
Landau equations

I

sible, but o, can still be viewed as the frame in-
dependent ratio of time eIapsed to energy. Zero-
energy lines have no restrictions from the Landau
equations, and this makes sense in terms of the
infinite wavelength corresponding to such lines.
Vertices which connect only zero-momentum lines
have arbitrary positions in 'this space™time pic-
ture.

Vertices of reduced diagrams

Because the reduced diagrams of pinch SP's
describe .physically ralizable processes, it makes
sense to classify vertices into two sets, which
characterize the nature of the "event" which each
vertex represents. (1) "Soft" vertices connect
zero-momentum lines and/or a set of finite-en-
ergy lines at threshold in both incoming and out-
going states. The finite-energy lines connected
at a soft vertex must be all massless or all mas-
sive. Lf the finite-energy lines at a soft vertex
are massless, they have collinear spatial mo-
menta, and if massive they are relatively at rest.
The action of a soft vertex therefore preserves
the flow of spatial momentum. Any number of
zero-momentum Lines can attach to a soft vertex.
(2) Any vertex connecting lines whose momenta
are above threshold in either the incoming or out-
going state is called "hard. "

In terms of the physical picture developed
.above, soft vertices posses~ what might be de-
scribed as "translation invariance. " The re-
placement

o](qg o](q{ lx] q + 6q ) o(( & 0 (2.'4a)

for every incoming line at any soft vertex along
with

o( q. o)~y = o! q -Kq o( & 0 (2 4b)

for each outgoing line leaves the Landau condi-
tions (2.3) satisfied. [&q, of course, must be
proportional to every q,. and q, , which therefore
must themselves be proportional and the vertex
soft if (2.4a) and (2.4b) are to be satisfied;] Such
a variation shows that the position of a soft ver-
tex V is not fixed, but may vary anywhere along
the interval connecting the last emission of a line
absorbed at V and the first absorption of a line
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emitted at V.
Tree subdiagrams

Qn-shell tree subdiagrams fall into the same
physical picture. The vertices of any tree dia-
gram can always be ordered so that the diagram
realizes a physical process when external mo-
menta are real and physical. As with zero-mo-
mentum lines, the lack of constraints analogous
to (2.3) corresponds to the fact that the scale of
separation between each pair of connected ver-
tices is arbitrary.

III. PINCH SINGULAR POINTS OF CUT VACUUM

POLARIZATION DIAGRAMS

In this section I will discuss simple conse-
quences of the results of Sec. 0 for cross sections
calculated from cut two-point functions via un-

itarity. The idea is to look for pinch SP s iri ver-
tex functions (all describing 1-n processes)
which are generated by cutting an arbitrary time-

like two-point graph. The form of such pinch SP's
will be seen to be strongly restricted by the fore-
going considerations. Here, as in the preceding

section, the results do not depend on the details

of the theory used to generate the graphs in ques-

tion (aside, of course, from the masses involved}.

Massless theory

Suppose G is a graph in a massless theory, with

a single incoming line of timelike momentum q

and a number of on-shell outgoing lines. I will

refer to G as a "decay" graph. The results of

Sec. II lead easily to the following.
I.emma. Let p be a pinch SP of massless decay

graph G with reduced diagram R. Suppose the ex-
ternal momentum q enters Q at vertex V, . As-

sociate with R and I a physical process as in

Sec. G. Then, among vertices of R through which

finite energy flows, V, is the one with earliest
time, and every other vertex in R is soft.

Proof. p, is first because in a physical process
energy flows forward in time, and V, is the only

source of positive energy in R.
Consider the finite-energy internal lines of g

which emerge from V,. If two such lines l~ and

l, reinteract, they will do so at some vertex V'.

Both V, and V'are associated with points in space-
time, say x, and x' Ix', &(x')']. Since l, and 1,

begin and end at the same space-time point, their

spatial momenta must be collinear. The particles
a.ssociated with /, and l, are to be pictured as both

being emitted at V„ traveling with the speed of

light in the direction of x —x„and finally beirig

reabsorbed after a time x 0 —(x')' has elapsed.
Thus, finite-energy lines emerging from V, can

only reinteract if they have collinear spatial mo-

menta, and their interactions take place only at
soft vertices. But soft vertices preserve-mo. -
mentum flow, so finite-energy lines emerging
from soft vertices can still only reinteract mith

the same set of collinear lines, coming either
from V, or subsequent soft vertices. Zero-mo-
mentum lines can be emitted or absorbed any-

where in R, but all resulting vertices are by

definition soft.
This lemma results in a particularly simple

physical picture, which must be satisfied by the

reduced diagram of a pinch SP in any massless
decay graph, and which can be summarized in

the following points.
(a} The spatial momentum flow is determined

at the initial vertex V,. After V„only such in-

teractions occur which leave not only the total

momentum conserved, but also the quantities

g; ~k,".
~

where the sum is over all lines which co-
exist at any particular time after the action of V,.

(b) Aside from V„possible vertices are all

soft, describing the scatteririg of collinear finite-
momentum lines or the emission, absorption, and

scattering of zero-momentum lines.
(e) The reduced diagram may then be con-

sidered to describe the evolution of a series of

states. Each such state mill consist of a set of
"jets" of finite-momentum lines as we11 as a
"cloud" of zero-momentum lines. The number

and individual energies and momenta of the jets
are conserved by the action of soft vertices, and

thus are the same in each state, including the

final state, although the number of finite-momen-

tum lines which make up any jet will depend on

the state in general. Figure 3 illustrates a typi-
cal physical process satisfying points (a)—(c).

(c) implies that the momenta of the cut lines of

a vacuum polarization diagram determine the

number, energies, and directions of jets to be

the same at the pinch SP's of both the right-hand

and left-hand vertex functions in an expression
such as (1.1). This enables one to speak of pinch

SP's of the cut vacuum polarization graph, speci-

PIG. 3. Qlustration of a reduced diagram with two

jets, represented by sets of nearly parallel unbroken

lines. Soft lines are represented by dashed lines. A11

vertices may involve contracted off-shell lines.
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fied by a point in the cut phase space as well as
by a pinch SP for each vertex function. It should
be noted, however, that such a point is not a
pinch SP for the uncut graph. In any case, these
are the pinch SP's of the integrals of phase-space
averaged exclusive cross sections.

Space-time picture. of mass divergences

Referring to Fig. 3 we see how the set of jets
realized at a pinch SP with reduced diagram g is
associated with a set of subgraphs {r,.) of R whose
elements are connected only at V',. Assigning'
loop momenta according to the scheme described
i.n Sec. II, the z& share only zero-momentum
loops, and the space-time scale associated with
each jet in the physical picture my be chosen
separately. In addition, in Sec. II the "translation
invarianee" of all soft vertices was noted. This
means that if v„v,+»e;+, are consecutive ver-
tices in a given jet subdiagram or in the suMia-
grains of zero-momentum lines of A, then any
physical. picture where v„, occur's between e,.
and v„~ is equally acceptable.

These observations lead us to a space-time
yicture in which mass singularities manifest
themselves as sealing freedom in the physical
processes associated with pinch SP's. In Fig. 3,
V, represents off-shell piocesses which take
place within s, limited space-time region, and
which determine the distribution of momentum in
the physical state which will eventually develop.
Once this disributi. on i.s realized, interaction does
not cease, but involves no new finite-momentum
transfers. It occurs only between collinear finite-
momentum lines moving away from V, with the
velocity of light, and via zero-momentum (in-
finite wavelength) lines. The space-time posi-
tions of the vertices which describe these inter-
actions can be sealed to infinity independently
for each jet, and also indepe'ndently within each
jet (if the direction in time of lines is preserved).
The space-time position of vertices connecting
zero-momentum lines is completely under-
determined, and may lie at any point before or
after '~,. These two kinds of scaling freedom cor-
respond to "collinear" and "infrared" divergences,
respeeti. 'vely.

Inc1usion of massive partic1es

The introduction of massive lines" into the the-
ory complicates the situation considerably because
associated finite-energy thresholds lead to a
much less restrictive structure for physical pro-
cesses corresponding to pinch SP's. It is easy,
however, to identify general properties of pinch
SP's in certain interesting situations, particularly

FIG. 4. Reduced diagram with internal massive lines
at threshold and three external jets.

the massive pair production form factor at low-
energy.

For simplicity, assume a single species of
massive particle which, because it carries some
conserved quantum number, must be created in
pairs. Pinch SP's will be identified by examining
possible physical processes, as above, for vari-
ous ranges of the initial invariant q'.

0&q'&4m . In this range, massive particles
appear neither in the final state nor, because of
energy conservation, in any foregoing state in
the reduced diagram of a pinch SP. So, below
threshold, massive lines are never pinched on-,
shell in the Feynman integral, and the reduced
diagrams of pinch SP's hire are just the same as
in the massless case.

4m' ~q'& I6m'. Suppose fiist that the final
state is all massless. I.et I' be a pinch SP of
diagram R, and go back to the reasoning of, the
lemma, considering the first physical state S of
R after the vertex V,. If all the lines in 8 are
massless, no massive lines can ever be produced
in a later state, since this would require non-
collinear lines to interact (at a har'd vertex), an
event which cannot occur in a physically realiz-
able process when these lines all emanate from
the same space-time point (V,). Therefore, if
massive lines are to show up in 5i', at all, they
must be present already in S.

By assumption, the pair annihilates at some
later vertex V'. To travel together between the
two space-time points corresponding to V, and
V' the two lines must be relatively at rest —that
is, at the two-particle. threshold —in; 8 and in all
succeeding states. Of course, between V, and
V' they may interact any number of times with
zero-momentum lines and with each other at
four-point vertices. Their annihilation at V is
easily seen to give rise to a new set of jets of
finite-energy massless lines which cannot "catch
up" with any of the lines of jets emitted at V,.
For an example, see Fig. 4. In summary, mass-
ive lines may occur. only in the form of a "bound
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state" propagating from V, to a later vertex V'
where it "decays" into a new set of jets of mass-
less lines. V, and V' are the only hard vertices
in g.

Now consider the situation when the pair of
massive lines appears in the final state above
threshold. Here the only hard vertex is V, . and
each massive line acts individually as a jet, inter-
a.cting only with massless lines. There may, of
course, be jets of massless lines in p as well,
also emanating from V„ if they appear in the final
state.

Of special interest are the pinch SP's of the
massive pair form factor, where no massless
lines appear in the final state. Because V, is
the only hard vertex, there are no finite-momen-
tum massless lines at all in R. In terms of the
physical picture, this is because any jet of finite-

momentum lines emitted from V, would simply
"outrun" the massive lines and appear in the final
state. The massive lines are also moving apart
so that they cannot reinteraet at a point to emit
or absorb finite-energy massless lines. In A all
massless lines have zero momentum, and "col-
linear" divergences play no direct role, even in
the presence of mutual interaeti. on of the massless
lines. This case has been discussed elsewhere
from this point of view. "

16m &q . Above the four-particle threshold the
situation is complicated by the possibility of mul-
tiple "bound states. " It is ea,sy to see that many
hard vertices ean arise as the "decay" products
of these bound states interact, so that very com-
plicated physical processes may be generated.
All such processes must begin, however, with
sets of massive lines at threshold in S.

Example

A simple illustration of the foregoing ideas is supplied by the triangle diagram with all massless lines.
Its reduced diagrams with two or more lines are shown in Fig. 5 where heavy and dashed lines repre-
sent off-shell and zero-momentum particles, respectively. Of these four cases, (a)-(c) correspond to
pinch SP's, while (d) does not,

Dropping any numerator factors, the Feynman integral is of the form

dk dksd'. k

(k,' —k, ' —k'+ie)[(k, +q)' —(k, +q)' —k'+ie][(k, —q)' —(k, +q)' —k'+is] '

where we have chosen a frame where pp pp p3
= —p,'= q and ~p ~= ~p' ~=0. Except where otherwise
noted, vector notation will be reserved for two-
dimensional "transverse" vectors.

At the pinch SP's, where k is either zero or
proportiona, l to p or P', k= 0 in the chosen frame.
Consider, for example, the pole structure of the
k, plane. Each denominator in (3.1) is of the
form d, —k,'+(e, and the k, poles are at +(d, '~'

+(e). That is, poles at positive (negative) val-
ues of k, are'always in the upper (lower) half-
plane. The same, of course, is the case for k, .
We can choose the k, contour as in Fig. 6, where
it crosses the real axis only at the origin. With
this choice of contour, the SP's corresponding to
Pig. 5(d) never occur at all. On the other hand,
at each of the pinch SP's the k, contour is pinched
at the origin. Thus, by deforming the contour, an
integral is found whose only SP's are the pinch
SP's.

(b}

(c)

IV, BEHAVIOR OF INTEGRALS NEAR PINCH SP's:
POWER COUNTING.

So far I have identified the pinch SP's which oc-
cur in vertex functions generated by cutting vac-

FIG. 5. Reduced graphs for SP's of the triangle dia-.
gram.
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plane which avoids SP's of
reduced diagram Fig. 5(d).

uum polarization diagrams. In the following I
look at the effect of pinch SP's on phase-space
averaged exclusive cross sections, and show that
mass divergences in these cross sections are at
worst logarithmic in a massless theory. In addi-
tion, I will derive limitations on the structure of
those pinch SP's, as illustrated by their reduced
diagrams, which can give rise to logarithmic
mass divergences.

To arrive at these results it will be necessary
to apply power counting to the behavior of rno-
mentum integrals, both phase-space and internal
loop, near pinch Sp's. An obvious difficulty with
this approach is that, for Feynman denominators
in Minkowski space, k'=0 does not imply 9=0,
so that naive dimensional counting will not neces-
sarily bound the true behavior of the integral. As
a result, it will be necessary to find a more ap-
propriate power-counting scheme based on vari-
ables more closely related to the structure of the
integral.

The choice of these "natural" variables is made
possible by the observation that, if the freedom to
deform loop momentum contours except at pinch
SP's is used, caneellations in Feynman denomina-
tors will occur only at pinch SP's. A catalog of
pinch SP's relevant to cut vacuum polarization
graphs was made in the preceding section and is
illustrated by Fig. 3 for massless theories. The
structure of their reduced diagrams, consisting
of jets and soft lines with hard vertices only where
the external momenta attach, will suggest the
appropriate choi.ce.

The aim is to change variables and approximate
the integral near the pinch SP in questions so that
every denominator is a homogeneous function of
a set of variables which vanish there. This will
be referred to as the "homogeneous integral. "
Such variables will be called "normal" variables,
and will be distinguished from the remaining vari-
ables, which will be referred to as "intrinsic. "
The terminology comes from the fact that pinch
SP's are not isolated; rather, they lie on sur-
faces in momentum space. At any pinch SP, the
intrinsic and normal variables parametrize the
surface and its normal space, respectively. For
instance, k, and k, were normal variables for the

pinch singularity surfaces in the triangle diagram,
while k =k, +k, wa. s an intrinsic variable for the
surface corresponding to the reduced diagram of
Fig. 5(b), when k is proportional toP. Similarly, for
an integral in Euclidean space, theonly SP's (which
are all pinch SP's) are those at which the momenta
of some set of lines vanish in all four components,
and here the normal variables can be chosen as
all components of the loop rmmenta of the reduced
diagram, and the intrinsic variables as all other
loop momenta. Power counting will directly in-
volve only normal variables. The homogeneous
integral will still encounter various singular
points where internal cancellations occur among
the variables in subsets of the denominators. But
again, if contours are deformed when necessary,
such cancellations will occur only when the inte-
gral is pinched at the corresponding SP. If power
counting is carried out for an arbitrary SP, the
behavior of the integral near this SP will already
be bounded. This last point is implicit in dimen-
sional counting for Euclidean integrals as well. In
fact, from this viewpoint, the Wick rotation that
makes dimensional counting possible for vertex
functions with Euclidean external momenta is a
special case of the deformation of contours re-
ferred to above.

Let x~, . . . , x and y„.. . , y„denote the intrinsic
and normal variables, respectively, near pinch
SP P. The homogeneous integral J near I' will be
of the form

where the hypercontour C passes through the point
y& = y, = ~ ~ ~ = y„= 0. Y represents the set of ratios
formed from the y's. The power-counting esti-
mate of the integral's behavior at P is found by
scaling the normal variables y with a scale A.:

We will see that for partially integrated exclusive
cross sections, p ~ 0 and divergences are at
w orst logarithmic.

It should be pointed out that there may be pinch
SP's in the homogeneous integral which are not
pinch SP's of the true integral before nonleading
terms have been dropped. This can happen when,
in the complete integral, two poles do not quite
pinch the contour, but are separated only by sec-
ond-order terms. Such a situation corresponds
to enha, neernents of the integral, as will be seen
below. The extent of these "spurious". SP's in the
homogeneous integral is a measure of the success
with which the variables parametrize the noi ma].
space of the singularity surface. The variables
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given below are chosen to minimize the spurious
SP's.

Information about the particular field theory in
question was not used in Sec. II. In the process
of estimating integrals, however, properties of
the theory such as the order of the vertices and
spin of its particles will play an important role.
Also, it will sometimes be necessary to examine
the integral after certain loop momenta have been
integrated over. For instance, sometimes it is
useful to integrate the internal momenta of two-
or three-point subgraphs in a reduced diagram.
Notice that the only pinch singular points which
will be encountered in these internal integrals are
ones for which subsets of the internal lines of the
subgraph are collinear to its external lines.

For power-counting purposes, the 5 functions
which set cut lines on-shell will be treated in the
same way as Feynman denominators. Normal
variables wiI1 be c'hosen for an arbitrary pinch
81 of the cut vacuum polarization graphs (not for
vertex functions individually), since these are the
pinch SP's of the integrals from which are derived
the phase-space averaged exclusive cross sec-
tions. Mass-shell 6 functions act to eliminate a
number of normal variables equal to the number
of cut lines (leaving over a factor proportional to
the inverse product of the cut lines' energies).

In the following the choice of popover-counting
variables natural to our arbitrary pinch SP is
made, and the corresponding homogeneous inte-
gral is discussed.

f

Choice of variables for cut vacuum polarization diagrams

A surface of pinch singularity points will be con-
sidered as being specified not only by the set of
lines which go "on-shell there, but also by its soft
lines and the assignment of its finite-energy lines
into jets. Figure 7 is a typical two-jet reduced
diagram of a cut vacuum polarization graph.

Within the reduced diagram of a pinch SP, "jet"
loops which pass only through finite-energy lines
are distinguished from "soft" loops which pass
through one or more zero-momentum line. As in
Sec. II, the jet loops are chosen as a complete set

4
FIG. 7. Example of an SP illustrating the choice of

normal variables.

of loops for the subgraph of the reduced diagram
consisting of only the finite-momentum lines. In
the particular choice of variables given below,
jet and soft loops are considered separately.

Soft loops are treated in the same way as in the
Euclidean case: All four components of each
loop are chosen as normal variables. This is be-
cause pinch singularity surfaces with different
numbers of soft lines are distinguished, and
varying any subset of the soft-loop momenta will
ensure that at least one soft line acquires mo-
mentum. In Fig. 7, for instance, three loop mo-
menta must vanish in all four components to set
the four soft momenta s„.. . , s~ equal to zero.

For jet loops it is easier to first identify intrin-
sic variables for an arbitrary pinch SP P on some
surface of equivalent pinch SP's. These para-

.metrize the variations 5P for which P+ 5P is on
the same surface. Aside from leaving all lines
on-shell, 6P, should not give momentum to any
zero-momentum line, nor break up any jet. None
of these things happen under translations which
(A) vary the jet energies and directions or (B)
redistribute energy among lines moving in the
same jet.

Because each jet subdiagram begins at the same
vertex (V, for the two jets in Fig. 7) and ends at
the same vertex (Vo in Fig. 7), jet loop momenta
can be assigned so that, if there are n jets, n —1

loop momenta pass through more than one jet
while the rest are internal loop momenta for.in-
dividual jet subgraphs. In Fig. 7, where n=2,
k is the only shared jet loop, while j» j, and j3
are internal jet loops.

If all the lines of a jet subdiagram are to be on-
shell, its external momentum must be lightlike.
For n jets, this puts n conditions on the n —1
shared jet loop momenta. In Fig. 7 the two condi-
tions are (q —k)'=k'=0. These conditions being
satisfied, the remaining Sn —4 variables will
determine the jet energies and/or directions (only
the latter in Fig. 7), so by (A) they are intrinsic.

There are more intrinsic variables to specify,
since translations of type (B) have not yet been
considered. At this point it is useful to rotate in-
to a different frame for each jet (while always
staying in the external momentum c.m. frame).
Let p, denote the external momentum of the ith
jet, and suppose that the shared jet loop intrinsic
momenta have been fixed, and that ~p, 2~ «
max„~j," ~' (i.e., P, is nearly on-shell). Then let
E, be the frame in which the transverse com-
ponents p, of P; vanish, and where. p, » ~p', ~.
That is, in E&, P,- is nearly lightlike and traveling
in the -z direction, and at the pinch SP all lines
in the ith jet have nonzero' minus components
only. Corresponding to (B), then, the minus com-
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ponent of each internal loop of jet i is chosen as
an intrinsic variable, and similarly for all other
jets. In Fig. 7 this means j~ in the frame where
(q —b} = ~q —k~ =0, and j, and j3 in the frame
where b' = ~k~ =0. Of course, actually evaluating
an integral with this choice of variables involves
evaluating a complicated Jacobian. But the
Jacobian will be nonsingular, since it comes from
simple rotations, and will therefore not affect
power counting.

The frames Il, are also used to define normal
variables for the pinch SP I'. To get all the lines
of all the jets on-shell, it is necessary and suffi-
cient to have all the external jet momenta light-
like and parallel in spatial momentum to their
respective external jet momenta (two conditions
for each loop).

In I"„ then, normal coordinates are picked as
p', for the external momentum of the ith jet, and
j» &

and ~1»,.~' for the kth internal loop of jet i
Left over are the azimuthal angles (in frames F,).
of each internal jet loop, which are undefined at
the pinch SP, and which can be considered as in-
trinsic variables. Together with the other in-
trinsic and normal variables, this specifies a
complete set of variables for the loop momenta
of the reduced diagram.

Notice that the scale A. must be chosen the same
for both soft and jet variables whenever a set L
of jet lines carries soft momenta iri addition to
jet momenta. Since lines in L, are linear in both
jet variables and soft variables, choosing one set
smaller than the other would result in many new
surfaces of spurious SP's in the homogeneous in-
tegral.

V. POWER COUNTING FOR CUT VACUUM POLARIZATION
DIAGRAMS

tive to linear terms. Denominators of soft lines
will be quadratic, and denominators of jet lines
will be linear, in the normal variables. There-
fore, each soft denominator contributes a term
-2 to P, and each jet denominator contributes -1.

Consider now an arbitrary pinch SP P with re-
duced diagram Rp'. Let J and S be the number of
finite- and zero-momentum lines in Rp, re-
spectively, and suppose Rp has L ' "soft" loops,

internal "jet" loops, and K jets. Then

p = (4L '1+ 2L~~l +K}—(2S+8)+N, (5.1)

where N is the contribution of numerator factors.
At this point it is useful to separate the effect

of soft lines and loops in (5.1), which can be found
by simple dimensional counting:

p = (2L~' ~ + K —J+N~' l') + b + ,f, — (5.2),
where b and f are the number of soft boson and
fermion lines attached to jet lines. Notice that if
a single soft line is attached to hard lines at both
ends (e.g. , s4 in Fig. 7) it is counted twice in b or

As will b0 seen below, N~' can be written as
Px, n~', where n&~~ is the numerator contribu-
tion from the ith jet. The quantity in parentheses
in (5.2) can thus be expressed in terms of a sum
over individual jets. In an obvious notation

P=g (2l~ +n,' —j, +1}+b+,'f. -(5.3)
i= 1

To put (5.3) into a more useful form, we use
Euler's identity and the relation between the num-
ber of lines and vertices in each jet:

~i ~i vi+1 q

(5.4)

Having identified a set of normal variables, I
will now go on to show that p ~ 0 for any pinch SP.
This requires knowing the behavior of the homo-
geneous integral under scaling. For simplicity of
presentation, I will postpone the discussion Gf
vector particles and begin with nongauge theo-
ries. First, those pinch SP's are discussed whose
reduced diagrams have only elementary vertices.
Second, the inclusion of contracted vertex subdia-
grams is discussed. Finally, I show how to ex-
tend the results to gauge theories. p is the sum of
contributions from on-shell denominators, normal
variable differentials, and numerator momenta.

Elementary vertices, no gauge particles

The homogeneous integral is constructed by ne-
glecting terms quadratic in normal variables rela-

Here v, is the total number of vertices in the ith
jet, while x,. is the number of soft vertices in
jet i with n jet lines and no soft lines attached.
y, 8 is the number of soft vertices with one or
more soft lines, in addition to P jet lines, at-
tached. Finally, y, and 6, are the number of jet
lines of jet i attached to, the left- and right-hand
hard vertices (Vo and Vo in Fig. 7). Using (5.4)
and

U~=g ~~ n+g N a+2~

(5.5)
2lI' +nI —4+1 = —' Q( —4),. „+—' Q (p 4)y

a~3

+-.'(y, +5, —2)+n',

The next step is to find a lower bound for n ~i j~.
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8; ~pX~ 3+pZi'(J)

Substituting (5.5) arid (5.6) into (5.3) gives

p& Q hQ(n —4)~;, +2 Q(P —4)y;, n
i=1 8)4

+ iy, + II,:—2)}
E

1, 1 .3+ ~ (-2V;, + 2 ~; —X&,2)+ 5+ if ~

(5.6)

(5.7)

On the other hand,
F.

'(5+f) - z Q-(y;., +yg, ,),

K

2f =-iQ(y;,.—~;),

(5.8)

so that

i =1 (x=4

+ Q (P —4)y,. 8+y,. +5,. —2
8~&

+ —2(b+f) ~0, (5.9)

as was asserted.
For p &0 the pinch SP in question gives no di-

vergence at all, so (5.9) also supplies necessary
conditions for divergence. These are

b=f =0, (5.10a)

W&-. consider only theories without trilinear scalar
couplings; the remaining three-point eouplings
must be fermion-scalar or pseudoscalar, with
vertices proportional to the identity or y, . But
each such vertex is sandwiched between a pair of
fermion numerators. Let k be the momentum of
the spin-zero linc. Then ther is @ factor in the
integl"and of the foil m

(p'+ 0')(a, + a,y, )y'= (a, —a,'r, )(P'+ 0')0'

which is associated with each three-point vertex.
Suppose both fermion lines, of monienta p and
p-ik, are in the same jet. In the Brigit that p and
p+k go on-shell and parallel to the jet ~momentum

k is either vanishing or becoming proportional to
p.(if the boson line is also in the jet). In ei'ther

case, the quantity (P'+ iV) P' vanishes at least as
fast as the transverse components of the internal
jet loop momenta on which p and p+&' depend. In
terms of the variable A. , this gives a, factor A.

' '
in the r~umerator for each three-poirit vertex con-
necting three jet lines, or two fermion jet lines
and a soft boson line. Let z, be thy number of
vertices at which soft bosons attach to jest fer-
mions. Then

FlG. 8. Form of SP's which can give rise to mass
clivergences in theories without vector part;icj.es.

y] =5. =1

x,- „=0, ~&4.
(5.10b)

(5.10c)

According to (5.10a), the reduced diagram of a
divergence point can have no soft lines, by (5.10b)
each jet must constitute a self-energy, and by
(5.10c) no soft vertex may be of higher order than
4. [Notice that by definition (5.10a) implies all
y,. 8=0.J Figure 8 illustrates the kind of reduced
diagram associated with divergence in these theo-
ries. Notice that (5.'10a) corresponds to the ob-
servation that Yukawa and Q~ theories have no IR
divergences in form factors. '3

Contracted vertices

Gauge theories

The extension of the above reasoriing to gauge
theories is complicated by the presence of un-

The next problem is to see what happens when
one or more vertices of the reduced diagram of a
pinch SP represent a set of contracted lines.

If aH the external lines of the vertex are soft,
. then. dimensional counting, after integration over

the internal loops of the vertex, gives the same
results as above.

Suppose the contracted vertex occurs in a jet
subdiagram. First, (5.9) shows that if the order
of the vertex is greater than, or equal to, four,
it can lead to no enhancement of the integral.
After integration over internal loops, two-point
functions will be of the form P'f(p') or p'g(p')
for spin-zero or —,', with no worse than logarith-
mic divergences in f or g at P' =0. (This is as-
suming that mass renormalization makes sense
and has been carried out. ) In. both cases, the two-
point function cancels a denominator and supplies
a factor X to the numerator to within logarithms.

Again after integration over internal loops, two-
fermion-scalar vertices are of the form f,(t)
+y.,f,(t), where f denotes collectively the in-.
variants formed from the external momenta. f,
and, f', are dimensionless, and can therefore
diverge no worse than logarithmically. As for
elementary vertices, a factor A.

' ' is associated
with ones for which both fermions are jet line' s.
From the above, it is easy to see that (5.9) is un-
changed in the presence of contracted vertices.



MASS DIVE RGFNCE S IN A N NI HII, ATION PROCESSES. I. . . .

(k( ))2k&(k„'(
).t)

where for any vector a„, we define

a =e' a a~ =Q. 5=1 2 30 o~ i s~

The corresponding ghost Lagrangian is

y()(8)S&(~ g abc' ()(8)g&(~
I

so that the ghost propagator is
2')(k') = 2/k(" k. -

(5.11)

(5.12)

(5.13)

(5.14)

The propagators (5.11) and (5.14) have a num-
ber- of interesting properties. Fir.st, notice that

k( ) "G(,)(k) =0. ('5.15)

physical degrees of freedom. Consider, for in-
stance, an elementary two-fermion-vector cou-
pling of the form y„. Then

(P'+ W)r„f/'= r„-(P'+ k')P'+2(f + k)„f/'.

As seen .above, the first. term contributes a fac-
tor A.

' ' to numerator scaling. The second, how-
ever, is unsuppressed. Suppose all three lines
are in the same jet. In the limit that p and 4 are
on-shell and parallel, p is proportional to k, and
the vector line carrying k has an effective longi-
tudinal polarization, It would be surprising if an
Unphysical degree of freedom coul. d give rise to

(.mass divergences, since divergences can be in-
terpreted as resulting from degeneraccies among
physical states. If, in this case, . longi. tudinal
polarizations can be dropped, remaining terms
will be of the order of transverse loop momenta,
and will give a factor X' ' to the numerator.

We know, of course, that B,ll such unphysical
degrees of freedom are in fact canceled after
sums over gauge-invariant sets of graphs (in
general including ghosts) are taken. They are,
however, present on a graph-by-graph basis in
covariant gauges, and individual graphs may be
worse than logarithmically divergent. As a re-
sult, the approach developed above, describi. ng
divergences on a graph-by-graph and point-by-
point basis, i.s not immediately applicable in
covariant gauges. There exist, however, a set
of noncovariant gauges in which divergences as-
sociated with unphysical degrees of freedom are
eliminated within each graph individually.

Let us define such a set of gauges by means of
gauge-fixing terms of the form (1/2(2)(e' B,A,
—y-A)', whe re 0( 8((&/'2, and the limit o, 0
is taken. By the standard manipulations'~ ti)%is

gives a vector propagator of the form

k~G'„8&(k) does not vanish, but has no pole in k',
and in fact diverges only when k„=0, p. =I, . . . , 4:

I

(8~& '

( (8& (2

Fquations (5.15) and (5.16) show that in these
gauges there is no phy ical pole for either longi-
tudinal. or scalar polarization, and, in particular

(e)
i5„Gt, = (e' —1) '

(

' k~'&
k&(G( 8) (8-(8 1) 1 va'" k

p, =l

(k'" )'k
(k( 8 & .'

k)2

(5.1'I)

(k(8))2k
(k'" k)'-

Similarly, according to (5.11) and (5.14), the
gauge terms and ghost propagator diverge only
when thei. r momenta vanish iri all four compo-
nents. Finally, notice that in the limit 8-0' the
ghost and vector propagators go smoothly to their
forms in the Landau gauge. Taking 6 finite is simi-
lar to taking e finite in a subset of denominators
of the form q'+ie. The effect is always to move
the corresponding energy poles away from the real
axis without crossing the axis, so that integrals
along the undeformed contour remain defined. It
is also not difficult to verify that so long as ().=»/2
the presence Qf k - k denominators does not
interfere withWick rotation for Euclidean Green's
functions, although the resulting quantities are in
general complex and noncovariant.

An important point is that the introduction of
this gauge actually simplifi. es the catalog of
pinch SP's found with a cova, riant gauge. This is
because covariant denominators such as A.'+is in
ghosts and gauge terms are replaced by k . - k,
which vanishes only for k =0 on the undeformed
contour. Therefore, no finite-energy on-shell
ghosts appear at SP's', and gauge term denomina-
tors give no power-counting enhancement to.in-
tegrals.

We can now count powers for pinch SP's with
on-shell vector lines, using the fact that, by
(5.16), longitudinal polarization does not propa-
gate in the gauges we are using. As above, pinch
SP's with only elementary vertices are con-
sidered first.

The relation (5.16) results in a suppression of
order X ' for every elementary. trilinear soft
vertex where all three lines are in a jet. Such
vertices may connect three vectors, or a vector
and two fermi. on or scalar lines. In the first
and third cases this follows immediately from the
momentum-space forms of the vertices. In the
second it fol.lows from the fact that the vertex y„
leads to longitudinal polarization for tQe vector
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line, as mentioned above. In contrast to the
scalar-fermion case, however, there is no sup-
pression associated with a vertex at which a
finite-energy jet line emits a soft vector. The
analog of (5.6) in a theory coupling vectors to
charged fermions or scalars is thus

(z) z j. (p)2Xi 3+ 2z
&

(5.18)

where z is the number of soft scalars emitted
at three-point vertices by jet lines. Otherwise,

'

the reasoning leading up to the bound (5.7) on P is
unchanged, and for gauge theories we find

K

p
—' (o(-4)x,. „+—' (P —4)P;, 8+.(1' -(+~; —2) + g(- & . +1 . )+ b'"+ I)'"+ 'f (-5.18)

a~4 8)4

f t ft l d vector l~nes respectively, - and where otherwl

is the same as above. Using the analog of (5 8),
E

'K

y(~ —4)r, „+ g(0 —4)r, rrri+&i —2)+-'*g ( ("r((') '-*) '))r *'f-
e~4 g)4 i=1 '

(5.20)

where z, ' is the number of soft vector lines emit-
ted by jet lines of jet i at three-point vertices.
Since bP' ~ z (", the right-hand side of (5.19) is
positive. The conditions'for P =0, and hence loga-
rithmic divergence, are [compare (5.10)]

g(x) z (x)
i

5(0) f 0

y, =5,. =1,
&& n Xi ~ 0~ &~4.

(5.21)

Equation (5.21) indicates the difference between
theories with vector particles and those without.
It shows that in the former case the reduced dia-
gram of a divergence point may include soft lines,
provided only soft vector lines attach to jet lines,
and these only at three-point vertices. Notice,
however, that soft fermion and scalar loops are
not excluded, although they must not connect di-
rectly to finite-energy lines.

The extension of these arguments to include con-
tracted self-energy and three-point vertices is
somewhat more complicated than above because
of the noncovariance of vertex graphs for 19Q.
Consider, however, a single-loop contribution

V„,z to the three-vector interaction, correspon
ding to graph G. The Lorentz covariance of V&„),
has been broken only in the time component, and
it still possesses rotational covarianee. V'„~'~

may therefore be proportional only to vectors of
the type z„(8),where z„(8)can be a complicated func-
tion of 0 for n= 0, but is a 6I-independent linear com-
bination of external spatial momenta for n= 1, 2, 3.
V'~„', may also be proportional to g ~, as well as
5 0(00

Suppose that all the external lines of G approach
the mass shell with finite momenta, according to
the scale A. . Then (5.17) shows that each vector
such as z„(8), or term such as 5„0, appearing in

V&, ~ cancels a pole in one of the propagators

connected to G. Hence, except for terms propor-
tional to momenta transverse to the jet direction,
every component of V„~ ), cancels a vector pro-
pagator pole. We have already seen that pinch
SP's involving the internal lines of G lead to no
worse than logarithmi. c divergence, so the be-
havior of scalar functions of 6 and the rnomenta
need not be inquired into. The result is that any
soft single-loop three-vector vertex connecting
jet lines gives a suppression of order X' ' to the
integral, in the same way as an elementary three-
vector vertex. Similar reasoning applies to a two-
scalar-vector vertex, with the same result.

For a two-fermion-vector vertex I'& at the one-
loop level, we recall again that I'„ is taken be-
tween fermion numerators P' and P +))(' where, at
the pinch SP, p' = p k = k' =0. If z is a vector of
the type defined above,

gy'= [,(8) —IzI]1;p+O(X"), (5.22)

(I'„, ,[=0 (5.23)

and I „must be odd in y matrices. Therefore, the
most general form is

+ o(z')'),

where t ' denotes scalars formed from combina-
tions of the z s. As with the three-vector case,
we need not worry about singular behavior in the
variables I;, since such divergences must come
from pinch SP's where the internal lines of I" go
on-shell, and these are already known to be no
worse than logarithmic. Anticommuting P(+ k

where here Iz I denotes the norm of all the space
components of z. By rotational invariance, I', can
have y matrices in the form g'(8), y, or y,5,. Also,
because the fermions are massless,
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past I'„ in (5.24), and using (5.17), we find here
also a suppression of order A,

' '.
Our conclusion is that (5.18), and therefore

(5.20), continue to hold for pinch SP's with con-
tracted single-loop three-point and higher jet
vertices. The argument can now be iterated to
include contracted vertices of arbitrary numbers
of loops by treating at each step contracted ver-
tices of lower order as "elementary" for power-
counting purposes.

Self-energies for any line are of the form 6m(8)
+G '(p)Z(p, 8), where 5m(8) denotes a possible,
0-dependent mass term, removed by renormaliza-
tion, and G(P) is the propagator. G '(P) cancels
one of the two external propagator poles. Notice
that by (5.17), any term P& or z„(8) in a vector
self-energy cancels a pole by itself. Every two-
point functio'n therefore supplies a suppression
factor X to the numerator near the pinch SP.
Therefore, (5.20) is not changed by the inclusion
of self-energies.

In summary, the power-counting. estimate (5.20),
and consequently the conditions (5.21) for loga-
rithmic divergence remain valid for any pinch SP,
with or without contracted vertices.

Feynman gauge

In the Feynman gauge, power-counting argu-
ments are more indirect, since there is no analog
of (5.16), and individual propagators can carry
longitudinal polarization. Helicity conservation
alone results in some suppression, corresponding
algebraically to the fact that the scalar product of
two momenta generated at vertices within the
same jet vanish on-shell. It is not difficult to
see, however, that there can still be power di-
vergences on a, point-by-point basis in the Feynman
gauge. An example with two jets is shown in Fig.
9. All lines are vectors. At the Sp in question,
s=0, while k,'=k, '=0 and l,'= l, .k, =/, '=k, k, =0.
We ar'e interested in the numerator factor where
the momentum of each vertex u& is carried by
line k, for i = 1, . . . , 4 while the momenta of ver-
tices p, and u, are contracted together by the

propagator of the soft line. As a result, there is
no numerator suppression at all, and the counting
procedure outlined above indicates quadratic di-
vergence at the SP. This example can be gen-
eralized to find (at worst) nth power divergence
with n jets. In view of the above, however, power
divergences do not appear in partially integrated
cross sections. We can see this explicitly in the
Feynman gauge by use of Ward identities. "

An SP at which power counting indicates nth-
order power diver'gence must involve at least n
longitudinally polarized vector lines, labeled
k„.. . , k„. Each has propagator g„„/k, but it is
always possible to add a term —k,. „k, , /(k, ~)' to
each line without affecting the cross section when

k„.. . , k„are held fixed but other momenta are
integrated over, and a gauge-invariant set of
graphs is summed over. This follows from the
generalization of current conservation for non-
Abelian gauge theories. In the Landau combina-
tion g„„—k, „k, „/k, ', however, longitudinal
degrees of freedom are absent. Although it gives
zero overall, the second term eliminates longitu-
dinal polarization in each case. Evidently, the
qontribution of longitudinal polarization in each
lipe is zero as well, and all power divergences
must cancel in the gauge invariant cross section.

Spurious pinch SP's

We can now return to the question of the effect
of dropping nonleading terms in denominators
when forming the homogeneous integral. The only
terms of this type are soft transverse momenta
(in frame E,), which are dropped in the denomina-
tors of jet lines in the ith jet.

Neglecting these variables leads to a new set of
pinch SP's in the homogeneous integral which
are not present in the full integral. The simplest
example is shown in Fig. 10. We are interested in
the region near k' =k . /= l' =0. In the homogeneous
integral, (I+s)' is replaced by I'+2l s'. In the
limit k' =k ~ I= l' =0, the denominator (k+ l+s)'
will also vanish when s' =0, irrespective of the
other three components of s. The result is a
pinch SP at the origin in the s' integral. The
numerator momenta associated with vertices u,

FIG. 9. Reduced diagram corresponding to an SP
with quadratic divergence in the Feynman gauge. All

lines are vectors, ; the dashed line carries zero momentum.
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FIG. 10. Example for illustrating spurious SP. All
lines are vectors; dashed line carries zero momentum.
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and u, ensure that this pinch SP ha, s associated
with it only a logarithmic singularity. This homo-
geneous integral pinch SP, related to threshold
singularities with massive particles, "is asso-
ciated with an enhancement in the full integral
when the pinch SP at s =0 is approached from the
di.rection s' =0.

This is easily generalized; the vanishing of n
soft plus components s', can set as many as 2n
jet lines on-shell, while numerator momenta and
graphstrueture ensure at worst logarithmic di-
vergence. This can be seen explicitly by starting
out with a graph with on-shell jet lines, and then
attaching soft lines arbitrarily.

VI. DISCUSSION

One thing to be emphasized from the foregoing
discussion is the theory independence of the origin
of mass divergences in cut vacuum polarization
diagrams. Arguing from the nature of the mo-
mentum-space integrals which define Feynman
diagrams, we were able to identify a common
form for reduced diagrams of pinch SP's in any
theory; the subset which actually gives rise to
mass divergences depends on the numerator mo-
mentum and vertex struc ture 'of the theory in
question. It is worth remarking on the role that
gauge invariance plays in the case of gauge theo-
ries. It is necessary to eliminate contributions
from nonphysical degrees of freedom, associated
with power mass divergences, from cross sec-
tions. Taking this into account, we find at worst
a logarithmic divergence in smeared cross sec-

tions8.

This reasoning can be extended in several di-
rections. First, it is not difficult to extend power
counting to include massive lines. In this ease,
however, the rule of logarithmic divergences in
smeared cross sections no longer applie s w hen
account is taken of threshold singularities. "
Second, it is possible to apply the entire method
to more complicated physical processes. Of
particular interest are potential and four-particle
scattering amplitudes. Here again contour inte-
gral considerations limit the structure of possible
pinch SP's, and power-counting reasoning can be
applied to limit divergence-causing regions still

- further.

APPENDIX: POWER COUNTING AT AN ARBITRARY SP

Although by definition integrals are not trapped
except at pinch SP's in cut vacuum polarization
graphs, it is always possible to ask what would
happen if the contours were constrained to pass
through a, surface of SP's which were not neces-
sarily pinch SP's. The singularity surface might
be chosen to define the end points for finite inte-
grals over loop momenta, for instance. In this
appendix, it will be shown that power counting
gives at worst logarithmic divergence for any SP
whose reduced diagram contains no loop where plus
momentum (or equivalently, energy) flows in the
same direction as the loop momentum for every
line in the loop. Such diagrams can be "ordered"
so that plus momentum flows in the same direction
for every line in the diag~am. This result is im-
portant for a discussion of the cancellation of mass
divergences. ' The reasoning is applicable to more
general scattering processes.

At an arbitrary SP the reduced diagram may be
much more complicated than at a pinch SP be-
cause hard vertices can be present, and it need
not represent a, physically realizable process.
Nevertheless, if the momenta of on-shell lines are
real, the reduced diagram will fall into the same
general form as for pinch SP's, consisting of jets
of parallel-moving finite-energy particles along
with a set of soft lines. In contra, st to the case of
a pinch SP, however, the jets may scatter in a
nontrivial way, excha, nging finite momenta, , or
changing direction altogether. Because of this,
each jet may have a number of independent finite
external momenta rather than just one. Each
such independent external momentum may be
carried by a single line, which, of course, is then
on-shell.

To see how this possibility affects power counting
at such an SP, consider a case where the ith jet
has w,. external momenta (m;~ 2), each of which is
carried by a single line. This is clearly the most
singular case; the power counting at an SP where
one or more external jet momentum is carried by
more than one line is suppressed.

Power counting for soft lines is the same as at
a pinch SP, and (5.3) is replaced by
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where A is the number of normal variables as-
sociated with external jet momenta. For a pinch
SP, A =K, as in Sec. V. Going through the same
reasoning as in Sec. V gives for a theory with
gauge lines [compare (5.20)]
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. K

p (n —4)x; „+p (p 4)y.
n~A 8~m '

—See,. +4

+A + & g [k(o) + (k( j.) (i))] + ~ f (A2)

If the right-hand side of (A2) js to be non-nega-
tive, we must have

K

A ~ Q [-,'(u), —2) +1]. (A3)

Proving (AS) is basically a matter of counting.
Consider the reduced diagram R~ of an arbitrary

SP P. Rp is made up of a soft lines as well as
jets, but soft lines can be ignored for the purpose
of this argument. In each jet i, contract every
line in the jet to a point exception; —1 of the ex-
ternal jet lines, chosen arbitrarily. The re-
suiting graph Rp is still a va, cuum polarization
graph, but it has only hard vertices. Using the
fact that hard vertices to which no external lines
attach are fourth order or higher, it is easy to
show tha. t

(A4)

that is, that in Rp there are no more than two
lines for every loop.

At the SP, all the external momenta k„' of jet i
must be lightlike and parallel. As a result, all but
one of them can be treated on the same footing as
internal jet loops in Sec. IV. As in Sec. IV, a
single externa. l momentum k,'" defines a frame I',.
in which k, ',) =0. (k('))' is chosen as a normal
variable. For k ', o. & 1, (k' ")' and ~k' "~' are
normal variables. We will refer to k," as the
"reference" momentum of jet i. Altogether, there
are 2(zv (

—1) —1 normal variables, as expected.
This does not necessarily mean that A equals
+[2(w, —1) 1], because theyneed not all be inde-
pendent. This is not a problem in Sec. IV, where
the normal variables are simply components of
internal jet loop momenta.

What we can do is to identify an independent sub-
set of the normal variables; if there are

K

P [-,' (~, —2)+1]
i=1

or more of them than (A3) is verified, and what-
ever the status of the remainder of the normal

variables, divergences are at worst logarithmic.
With each loop y of R~ associate a. set S,

of lines of RP Sy may consist of either one or t 0
lines which carry the momentum of loop y. The
8 are chosen. so that no line is counted twice and,
if S„contains two lines, they are not both of the
same jet. The idea is to choose the normal vari-
bles for the line(s) in S„ irom the four com-
ponents of loop y. This is clearly no problem if
S contains only one line. Suppose S contains
two lines k'" a.nd k&"'. A possible choice of vari-
ables is (k'„")', ~k"~', and (k~z")'. [Recall that

(k~' ')' is defined in frame F, while .(k'")' is de-

fined in frame F, ]If (.k',")' and ~k(')~' are chosen

from the components of ), (k~")' will depend on

other loop momenta as well as y, in general.
Nevertheless, for an ordered SP, it is not difficult

to choose the loops so that the complete set of such

variables is independent, as fol.lows.
It is not hard to show that if R is ordered,

R' can always be chosen so that there is at
least one loop y„attached to the initial vertex
V„with only two lines (not both in the same jet).
After choosing S as above, we can contract y~ to

form a new diagram R' with one less hard vertex
than R. The variables of R' may be chosen inde-

pendently of those for y„starting with just such an-

other loop y, . This procedure can be continued

until there is only one hard vertex left, and all
the remaining S„can be chosen to have only one

momentum each.
For any loop y, if k'~" is the reference momentum

of jet j this isacomplete setof variables, but if

neither k' "nor kz' ' is a reference momentum this is
one variable too few. - Since ~k" '~' involves two corn

(i) 2
ponents of loop y, it is not clear whether ~k z'

~

is independent or not. The minimum number of

independent variables that are chosen this way is

+ [2 (~, —2) + 1]——,
' Q (m, —2)

[-', ()(), —2)+1], (A5)

when every nonreference momentum occurs in a
set Sz with another nonreference momentum (in
this case, of course, Q;,m, is an even number).
This verifies (A3).
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