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A systematic study is made of the relevant degrees of freedom and the dynamics of quantum
chromodynamics (QCD). We find that the dynamical properties of QCD are, to a large extent, a
consequence of the structure of the vacuum arising from the tunneling between degenerate, classically stable,
vacuums, and that the relevant degrees of freedom can be taken to be the Euclidean path histories that can
be used to calculate the tunneling in the semiclassical approximation. This nonperturbative vacuum structure
appears well suited to the major features. of QCD, i.e., the dimensional transmutation that determines the
size of the hadrons and the strong-interaction couplingconstant, the source of dynamical chiral symmetry
breaking, and the mechanism responsible for quark confinement.

I. INTRODUCTION

It is widely beIieved that the strong interactions
are generated by a non-Abelian [SU(3)] gauge theo-
ry of quarks and gluons, permanently confined in
color-singlet hadronic bound states. This theory
is called quantum chromodynamics (QCD). It can
be described by the Lagrangian density

F

2'„ is an SU(3) gauge field, and g, are quark fields
with the index i labeling the various quark types,
or flavors. The theory is thus parametrized by
the one coupling constant g and the values of the
quark mass parameters nz, . The total number of
quark flavors is so far unknown. In addition to
the established up, down (m„=m~ -10-100MeV),
strange (m, = 100-300 MeV&, and charmed (m,
=1.3-1.4 GeV) quarks, there might very well
exist many heavier quarks with new quantum num-
bers. Fortunately this is of little relevance to the
bulk of hadronic physics, although it is of fundamen-
tal importance in understanding the structure of the
weak interactions. The properties of light hadrons
willnotbe affectedby such heavy quarks. Charmed
quark' can be neglected to a very good approxima-
tion in describing the properties of noncharmed had-
rons.

Our knowledge of the nature of the constituents
of hadroris and their interactions derives from
their symmetries, the success of various phen-
omenological quark models, and, most impor-
tantly, the observed short-distance behavior of
hadronic currents. The success of the SU(3)-

symmetry scheme and simple nonrelativistic
quark models leads to the picture of hadrons as
bound states of spin- —,

' triplet colored quarks, "
The absence of colored states leads to the hypoth-
esis of confinement-namely that the only physical
states are color singlets.

That the strong interactions are mediated by
vector mesons coupled to color is strongly in-
dicated if one is to explain confinement. Even
proponents of dynainical schemes outside tbe
framework of QCD invoke colored gauge vector
mesons to explain why quark-antiquark bound
states occur whereas quark-quark states do not.
The obIservation of scaling in the deep-inelastic
scattering of leptoris off hadrons singled out non-
Abelian gauge theories as the only ones capable
of possessing the asymptotic freedom necessary
to produce such free-field-like behavior at short
distances. 3 In addition these experiments, as
well as e'e annihilation to hadrons, allow us to
observe directly the quantum numbers of quarks
and to derive qualitative predictions that test the
validity of the theory. '

Although one cannot claim that the precise
predictions of the theory as to the short-distance
structure of hadrons have been experimentally
confirmed, the qualitative picture is in remarkable
agreement with the data. The asymptotic freedom
of QCD has the enormous benefit of allowing one
to control the short-distance behavior of the
theory. Thus all properties of the theory are
calculable in terms of an effective coupling which
can be made arbitrarily small by going to short
enough distances. As one goes to larger dis-
tances, the effective coupling increases, leading
to the hypothesis that the increasing coupling in
the infrared domain leads to quark confinement-
infrared slavery. 4 6
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However, we are still far from possessing a
quantitative theory of hadrons in which we could
calculate their masses, couplings, and scat-
tering amplitudes. We do not even have a qual-
itative understanding of the dynamical mechanism
for quark confinement. In this paper we shall
propose a new approach to QCD, based on an
improved understanding of the nature of the QCD
vacuum, which might ultimately lead to a quan-
titative theory of strong interactions.

Before describing the nature of our program we
would like to focus on a few of the most difficult
and important dynamical problems which must
be faced in any serious attempt to solve QCD.

A. Dimensional transmutation

( +p(Z) &(g, V) =0 ~—
Bp, Bg

(1.2)

In particular, masses of physical particles, or
any physical parameter with dimensions of
masses is given by

QCD possesses few adjustable parameters. In-
deed we shall argue that to a good approximation
it has no adjustable parameters. As discussed
above the free paramters in the QCD Lagrangian
are the coupling g and the various masses, m, ,
of the quarks. If we restrict attention to non-
charmed hadrons we need three flavors of quark.
We should obtain an excellent (10 —20%) approxi-
mation to the real world by setting m„=m„=nz,
=0. This chiral SU(3)xSU(3&-symmetric approx-
imation to the world is quite reasonable as is
evident from the small value of the pion mass.
Even if we wish to include the effects of the ex-
plicit chiral and SU(3)-symmetry breaking gen-
erated by nonvanishing quark masses we do not
believe that they would have an important effect
on the dynamics and couldbe treatedperturbatively.

Thus, to a good approximation, the theory is
described by a single dimensionlessparameter g,
and contains no relevant dimensional parameter
to set the scale of masses. In such a scale-
invariant theory the parameter that sets the scale
of all dimensional quantities is the renormalization
scale parameter p, . This is the arbitrary param
eter (with dimension of mass) that is introduced
to get the length scale at which the normalization
of the quantum fields and the coupling g are
defined. Thus all Green's functions will depend on

g and p, , although physically measurable quantities
P(g, p, ) must depend only on a combination of g
and p, invariant under the renormalization, since
a change in g merely indicates a change in what
one means by g. Thus

dx
m(g, p, ) = p exp

P(x)
(1.3)

B. Dynamical symmetry breaking

Owing to the remarkable success of approximate
chiral SU(3) symmetry and partial conservation
of axial-vector current (PCAC), we believe that
the strong interactions possess an almost exact
chiral symmetry which is realized in the Gold-
stone mode. Thus to solve QCD we must not only
understand the confinement mechanism but also
we must construct the true, .chirally asymmetric,
ground state. In a theory such as QCD, which does
not contain elementary scalar meson fields, the
chiral symmetry must be broken dynamically.
Thus the fields that acquire nonvanishing ex-
pectation values in the true vacuum will be com-
posite (i.e., @), the Goldstone bosons will be
quark-antiquark bound states, and the dynamically
produced ma, sses will obey Eq. (1.3).

The problem .of dynamical symmetry breaking
is very difficult, particularly in a gauge theory.

and all dimensionless physical parameters must
be independent of p and therefore calculable
numbers independent of g.'

Consequently, except for the overall mass scale
of the theory, there are no adjustable parameters.
Given some definite renormalization prescription
(or definition of g) QCD will be characterized by
an effective coupling g(p) for a given range of
momenta, where

u
~ =+p(g)dg

d(p)

The value of this coupling for momenta of the order
of hadronic masses is a calculable number, g(m„).

This phenomenon of dimensional transmutation
has serious implications. It means that ordinary
perturbation theory can be of little value in any
attempt to calculate the properties of hadrons.
This is because Eq. (1.3) implies that hadronic
masses behave as

m(g, g) -
p, e bo~~

for small g. Ordinary perturbation theory, or
even fancy resummation techniques, will not
produce masses that have zero asymptotic ex-
pansions in powers of g. Even to construct the
vacuum state of QCD, nonperturbative techniques
will be required.

One of our major tasks will therefore be to
identify nonperturbative mechanisms which could
set the mass or length scale of hadronic states,
and to attempt to evaluate the magnitude of the
hadronic coupling at lengths comparable to the
hadronic size.
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Until now little progress has been made in ident-
ifying the mechanism that generates the symmetry
breaking, and most attempts to understand con-
finement have sidestepped the problem by explicitly
breaking the chiral symmetry. It is clear that
to obtain an accurate description of hadrons it
will be necessary to solve this problem. In ad-
dition it might very well be the ease that the
problems of confinement and symmetry breaking
are interrelated. In fact, as we shall argue below,
the mechanism that we envisage for confinement
requires that the quarks acquire a mass dynamic-
ally, through a mechanism that we shall identify.
The properties of massless quarks might very
well differ substantially from those of massive
quark s.

C. The Ut'I) problem

The U(1) problem arises in any quark model
which does not contain fundamental scalar fields.
It arises due to the fact that in addition to the
desirable )U(1V) chiral, symmetry that obtains
for zero quark masses, there also exists a chiral
U(1) symmetry generated by the axial baryon
number current. ' lf the only explicit breaking of
this symmetry is due to the nonvanishing of the
quark masses then the dynamical symmetry
freaking of chiral U(~) would be expected to gen-
erate an, isoscalar Goldstone boson with a mass
comparable to that of the isovector pion. Weinberg
has given plausible arguments which show that in
the absence of spontaneous symmetry breaking of
SU(3) this would lead to an q particle whose mass
would be Pounded by ~m„ in blatant contradiction
with experiment. '

Consequently any attempt to derive the properties
of hadrons and to understand the mechanism of
dynamical symmetry breaking in a quark-gluon
gauge )heory must contain a solution to the U(1)
problem or face disaster.

D. Confinement

The central problem in QCD is to understand
the mechanism that confines quarks and gluons in
color-singlet hadronic bound states. An under-
standing of this mechanism should then allow one
to calculate the properties of the hadronic bound
states. At first, however, one wants a simple
criterion for confinement. Such a criterion is
provided by considering a pure gauge theory (no
quarks) and evaluating in such a theory the energy
E(R) of a singlet state consisting of two colored
external sources separated by a distance A.'
These sources can be regarded as infinitely mas-
sive quarks. A necessary condition for confine-
ment is that E(A) grows with R for large enough
separation, so that colored states cannot be pro-

duced with a finite expenditure of energy. The
advantage of this criterion is that it can be ad-
dressed in a gauge-invariant fashion and invest-
igated by means of Euclidean path integrals. Of
course, in order to calculate the properties of
the hadronic bound states one must contend with
real, light, quarks. However, E(R) might be of
some physical relevance in treating the low-lying
bound states of very massive quarks (e.g.
charmonium).

How is one to make progress toward a dynamical
understanding of these problems within the frame-
work of QCD? It is clear that a straightforward
perturbation. theory is useless. Because of infrared
slavery, there is no way in which one can ensure
s small coupling for low-momentum states. Fur-
thermore, owing to dimensional transmutation
and dynamical symmetry breaking, one expects
the theory to contain terms which have no asy-
mptotic expansion in powers of g. Such terms,
of the form g ~exp(-const/g ), can be large even
if g is very small. Of course they will never show
up to any order in perturbation theory. It is
therefore extremely unlikely that any approach
based on perturbation theory, even one that utilizes
summation techniques to sum divergent asymptotic
serfes, will be useful in solving QCD.

The most ambitious attempts to calculate within
the framework of QCD to date have utilized lat-
tice formulations of the theory. " 'The advantages
pf this approach are many. By introducing a space-
time lattice (or spatial lattice in the Hamiltonian
approach) one renders finite the number of degrees
of freedom in a finite volume and introduces extra
parameters (cutoffs) that can be varied. In ad-
dition, lattice QCD gas an extremely simple strong-
coupling hmit which exhibits confinement and

many of the qualitative features of hadrons. The
systematic approach to lattice QCD envisages the
utilization of renormalization- group techniques
to proceed from the known dynamics at short
distances of the order of the lattice spacing to an
effective Hamiltonian appropriate for large
fhadronic) distances. At these distances one will
presumably be in the strong-coupling regime
where other techniques are available (i.e., strong-
coupling or high-temperature expansions).

However, the introduction of a space-time lat-
tice has many severe disadvantages. In addition
to destroying manifest Lorentz invarianee the
lattice approach has difficulty in accommodating
fermions without explicitly breaking chiral sym-
metry. Whereas these unphysical features might
disappear in the continuum limit, they produce
problems at any finite stage of a lattice theory
calculation.

In an asymptotically free theory such as QCD
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there is no need for an ultraviolet cutoff of the
type introduced in lattice approximations since
the short-distance structure of the theory is
completely calculable and under control. Thus
it might prove profitable to construct other ap-
proximations to the theory which, similar to the
lattice models, reduce the number of degrees of
freedom but do not spoil the short-distance be-
havior of the theory or introduce new parameters.
Our approach to QCD is an attempt to system-
atically explore the relevant degrees of freedom,
starting from short distances. What we have
found is that as one proceeds from short dis-
tances physically significant effects are generated
by instantons.

Historically the interest in instantons arose
because of the discovery of an exact finite- action
solution to the classical Yang-Mills equations in
Euclidean space-time, " and the realization that
the existence of such finite-action field config-
urations indicates that the structure of the vacuum
in QCD is much more complicated than one would
have surmised from straightforward perturbation
theory. "" Thus the classical ground state of
QCD is infinitely degenerate and the true quantum-
mechanical vacuum is a coherent superposition
of these classically degenerate vacuums. For
sufficiently weak coupling the true vacuum can be
constructed by semiclassical techniques, where
the role of multiple-instanton field configurations
is to give the dominant contribution in summing
over path histories that travel from one classical
vacuum to another.

In a scale-invariant theory, such as QCD, there
is no way one can adjust the coupling to be small
for all distances. Indeed, as we have remarked
above QCD has no relevant adjustable parameters.
Thus one cannot use senuclassical or weak-
coupling methods to determine the structure of
the vacuum, which involves all scale lengths.
However, all physically relevant questions in-
volve some external length parameter or mo-
mentum which sets the scale of the field con-
figurations. Our approach is to explore physical
quantities, such Bs the "potential" between mas-
sive quarks [E(R}],characterized by a scale
length R, as a function of R. For small enough

R, asymptotic freedom will ensure that the ef-
fective coupling will be sufficiently small that
one can use semiclassical techniques (saddle-
point approximations) to eva. luate functional in-
tegrals. The net effect in this small-distance
region, as we shall explain below, is that the
path integrals can be replaced by the partition
function of a "gas" of instantons characterized by
their position, scale size, and SU(3) orientation.
The density of instantons of size p will be given by

const
(p p2( )

p ~2( )

where g'(p) is the effective coupling at distance
p. For small R only instantons of size p~R
will matter and since g'(p) -const/ln(1/p) as
p-0, for small R the analog gas will be suf-
ficiently dilute that one can trust a virial ex-
pansion of the partition function in powers of D.
As one increases R, the effective size of the
relevant instantons increases and the effective
coupling increases.

Thus there are two sources of corrections to the
free-field asymptotic behavior that occurs for
R = 0. First there are the ordinary perturbation
theory corrections to the integration about a
given saddle point (including perturbation theory
about the ordinary vacuum~. These can in prin-
ciple be calculated by standard perturbation theory
(summing Feynman diagrams) and are of order
g'(R). In addition, there are the nonperturbative
effects due to tunneling, proportional to the density
of instantons, D(R). Now one would think that the
quantum-mechanical corrections to the ordinary
vacuum sector would be much greater than the
tunneling effects for small g'. This is the case
in ordinary quantum mechanics, where tunneling
can be neglected for small coupling (g»e '
and while for large coupling the tunneling effects
may become substantial, they cannot be calculated
by semiclassical techniques. In QCD we find,
however, that this is not the case. Owing to the
large phase space available to instantons, the
density of instantons, D(R), becomes large (=1)
for distances at which the coupling P/8m is still
very small (=+}. Essentially there exist so many
distinct paths to tunnel between the degenerate
vacuums, that even though the individual tun-
neling amplitudes are small, the net amplitude for
tunneling can be of order one even for very small
coupling. Thus as one proceeds from small dis-
tances one first arrives at a region where in-
stanton effects are substantial, yet reliably cal-
culable using the dilute-gas approximation and
ordinary perturbative corrections are small.

As one goes to larger di;stances the density of
instantons rises rapidly. One must then take into
account the .i.nteraction between instantons and
anti-instantons. In this highly nonlinear gas the
interactions are quite complicated, and at pres-
ent one can only make semi-quantitative estimates
of their effects. Crudely speaking we find that
the gas is analogous to a paramagnetic medium
of dipolar objects. In this medium there is an
effective renormalization of the coupling constant
associated with large. instantons due' to the
screening caused by smaller instantons. The re-
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suit is to cause the coupling g(p) to grow dra-
matically with distance, leading to the density
rising rapidly to large values at a sharply defined
distance, p, = 0.2p, .

It is this distance that we associate with con-
finement. The actual confinement mechanism
requires the consideration of field configurations
other than instantons. In particular, instantons of
scale comparable to p., have a tendency to dis-
sociate into pairs of half-instantons —or "merons. "
These merons have logarithmic attractive iriterac-
tions, proportional to I1/g (R)]lnR, where R is
the separation of a meron pair. However, for
large enough It the entropy (log of the volume in
function space) of a meron pair is proportional
to ln A and can dominate —leading to a phase
transition to a plasma of merons. These liberated
merons, we shall argue, will confine quarks. To
be sure we are still unable to treat the confinement
phase very precisely or calculate hadronic mas-
ses. However, it seems inevitable that if our
mechanism does lead to confinement the- size of
hadrons will be of order p, and the hadronic mass
scale will be of order 1/p, . Thus the expression
of dimensional transmutation in QCD is that the
renormalization- group- invariant equation which
determines the scale size of hadrons is D(g(p, ))
=1.

Now one of the consequences of dimensional
transmutation is to fix the size of the hadronic
coupling constant- i.e., the effective coupling at
distances corresponding to hadronic size. This
is of course the coupling that is of physical in-
terest. The effective coupling for larger distances
is of little interest since as one pulls quarks
farther apart than the size of a hadron it will be
energetically favorable to produce a quark-anti-
quark pair from the vacuum, and the stretched
hadron will split into two smaller hadrons. Now
the phase transition to a. meron plasma already
occurs for small g'/8v and it is conceivable
(although we certainly are unable to prove this)
that confinement will occur on this distance scale
and one will never need to go to larger distances
where g'/8m' becomes substantial. We therefore
conjecture that the haChoriic coupling is alzvays
small.

. Thus we have discovered a small parameter in
QCD. This has major consequences. First, the
small size of g'/8n' ensures that we can use
semiclassical techniques to calculate the pro-
perties of hadrons, without having to include
quantum corrections beyond one or two orders.
This reduces QCD to a semiclassical problem,
albeit an extremely difficult one. Second, a small
hadronic coupling has many phenomenological
consequences, and may shed light on some of the

l

unresolved mysteries of hadronic physics, For
example, it is this coupling that determines, in
our approach, the probability of producing a quark-
antiquark pair from the vacuum. The small
magnitude of this probability may explain much
of the success of the naive quark and parton mod-
els- namely that the hadrons fall into SU(6)
multiplets as if they were made of valence quarks
alone, that the hadrons as seen. in deep-inelastic
scattering contain very few quark-antiquark pairs
(for xtO), the success of the free-field theory
Melosh transformation, the rapid approach to
scaling, etc. We emphasize that the small value
of g'(p, p, )/8v' does not mean that the strong inter-
actions are weak since nonperturbative instanton
and meron effects are large.

Until'now we have ignored the problem of gen-
erating thb dynamical symmetry breaking of
chiral symmetry and the U(1) problem. These
problems cannot be separated from the problem
of confinement. As was originally pointed out by
't Hooft" the existence of massless fermions has
dramatic effects on, instantons. Because of the
Adler-Bell- Jackiw anomaly, " the conserved axial
baryon number, Q„ is not invariant under gauge
transformations. This results in the suppression

'

of tunneling between the classically degenerate
vacuums, since they now are eigenstates of Q,
with different eigenvalues. One must still con-
struct the vacuum as a coherent superposition
of the degenerate classical vacuums to satisfy
cluster decomposition; however, the only path
histories that can now contribute have net topologi-
cal number zero —i.e., contain an equal number
of instantons and anti-instantons.

This phenomenon has two. important effects.
First, the U(1) problem is eliminated. The axial
baryon number charge is no longer a symmetry
of the theory constructed about the true vacuum. ""
Second, if we try to replace path integrals by a
partition function for a gas of instantons we will
find strong long-range attractive interactions
between instantons and anti-instantons (w'ith a
logarithmic dependence. on their separation).
Consequently in the presence of massless or very
light fermions, instantons and antiinstantons will
be closely bound in pairs. Such field configurations
differ little from the ordinary vacuum and do not
have much effect on the dynamics. . In short,
massless fermions confine instantons, and unless
the fermions acquire a mass through dynamical
chiral-symmetry breaking, tunneling effects are
negligible.

Now we have suggested that the structure of the
8 vacuum in QCD is such that there is a natural
mechanism for dynamical symmetry breaking, '
namely the effective determinantal interaction for



2722 CALLAN, DASHEN, AND GROSS 17

massless f0rmions in a L9 vacuum. This interaction
can be regarded as the source of the U(1) sym-
metry breaking. Such an interaction, which is of
the form (gP)', if there are but two massless fer-
mions, does not break chiral SU(N). However, it
can provide a mechanism for the dynamical .

breaking of chiral symmetry. Indeed the only
known mechanism for dynamical chiral-symmetry
breaking utilizes such (Pg)' interactions. "' In a,

two-dimensional model with two massless fer-
mions we have shown that this type of interaction,
generated by instantons, leads to the Goldstone
realization of chiral symmetry and gives the
fermion a mass. "

In the case of QCD the problem is of course
much more difficult. To explore the possibility
that the true ground state breaks chiral symmetry
and to construct this state'as well as the quark
"mass" requires controlling the physics over
arbitrarily large scale sizes. However, we have
found it possible, in lieu of this, to demonstrate
that the chirally symmetric vacuum is unstable
under perturbations that would shift the vacuum
expectation value of o =gP. To see the instability
we calculate the propagator of 0 for large mo-
mentum. .For large enough momentum of course,
asymptotic freedom determines this propagator
perturbatively in powers of P(p). As the momen-
turn decreases instanton effects (generated by the
effective determinantal interaction) come into
play. We find that these are very large for a range
of momenta where the instanton gas is still dilute
and the effective coupling is still small. In fact
they are so large as to generate a tachyon pole
in the cr propagator. -This tachyon indicates the
instability of the 9 vacuum under shifts in o. To
be sure we are yet unable to construct the true,

.chirally asymmetric vacuum state. However,
unless the theory is total nonsense, such a ground
state will exist. Our calculation indicates that
dynamical chiral-symmetry breaking does occur
via the mechanism that we have suggested, and

that it occurs at rather short distances (compared
with what we regard as the confinement scale).
This mechanism for chiral-symmetry breaking
will not suffer from the U(1) problem. The deter-
minantal interaction which is attractive in the n

channel and thus will produce, in the true vacuum,
a zero mass pion is repulsive in the g' channel.

The occurenee of spontaneous symmetry break-
ing of chiral symmetry at distances short com-
pared to the confinement scale is crucial to the
success of our program. It ensures that as the
quarks are pulled apart they acquire a mass at
some distance where the dynamics is still man-
ageable. Once this occurs instantons are liberated
and, as.we proceed to larger distances, begin

interacting strongly to produce confinement.
Thus, as a function of distance, there are two
"phase transitions. " At very sho'rt distances the
vacuum can be described by a gas of tightly
bound instanton-anti-instanton pairs, which at
distance p„(the asymptotically free chirally
symmetric phase) undergo a phase transition to
a dilute gas of instantons (the chirally asym-
metric phase) due to chiral symmetry breaking.
At a somewhat larger distance, p„ the instantons
themselves dissociate into meron pairs (the
confining phase).

This paper is structured as follows. In Sec. II
we present a general introduction to instanton
physics. We show that four-dimensional gauge
theories possess an infinity of classical vacuum
states with a finite-energy barrier separating
them, hand discuss how instantons can be used to
construct the amplitude for tunneling between
these states in the semiclassical approximation.
The analog gas model of instantons is constructed
and the methods used to ealeulate in the dilute-
gas approximation are presented. We give a
qualitative picture in real space-time of the ef-
fect of tunneling on the interaction between quarks
and on the structure of the vacuum wave function.
The physical effects produced by massless fer-
mions are discussed including the resolution of
the U(1) problem. Finally we discuss briefly
the problems associated with going beyond the
dilute- gas approximation.

In Sec. III we begin to explore the dynamical
effects of instantons in QCD. We first analyze
the nature of instanton interactions, show' that
these give rise to a nonperturbative coupling-
constant renormalization. We argue that a sharply
defined infrared cutoff on instanton scale size is
produced which we identify with the confinement
radius or hadronic size.

Section IV is devoted to an evaluation of the
instanton contribution to the quark-antiquark
"potential, "which for small separations can re-
liably be evaluated (in the absence of massless
quarks). We find a large effect but one which is
unlikely to produce confinement.

Section V deals with the effects of massless
quarks and a discussion of dynamical chiral-sym- .~'

metry breaking. We argue that the chirally sym-
metric vacuum is unstable, and identify the mode
in which the instability occurs and the mechanism
responsible for generating gdynamicalquarkmass.

Section VI is devoted to a discussion of con-
finement. Here we describe the phase transition
from a gas of instantons to a plasmalike con-
figuration of merons (half-instantons) and argue
that this produces a linear potential between
quark s.
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Finally in Sec. VII we discuss the (many) un-
solved problems in our approach and suggest
various ways of proceeding to solve these problems.

II. INTRODUCTORY INSTANTON PHYSICS

described by the Lagrangian

(2.1)

Our approach to the dynamics of Yang-Mills
theories amounts to nothing more than an ela-
boration of the standard perturbation theory treat-
ment in which the vacuum ',is regardedas associated
with a (typically unique) classical field corre-
sponding to minimum potential energy, and quan-
tum mechanics amounts to including the effects
of Gaussian fluctuations about this classical
vacuum, configuration. In Yang-Mills theories
there is a new kind of vacuum fluctuation which
must be considered. Despite initial appearances,
there is a countable infinity of classical vacuum
states with only a finite barrier separating them.
Consequently there is a finite amplitude for tun-
neling back and forth befggee~ such states. Such
spontaneous vacuum fluctuations are large in am-
plitude and potentially much more important than
the standard Gaussian zero-point fluctuations.
Our first task will be to bring this. multiple vacuum
structure to light and to show that'the tunnelings
are conveniently described by certain Euclidean
classical solutions of the Yang-Mills equations
called instantons. In later sections we will
discuss in detail the consequences for physics of
including this new class of quantum fluctuation.

A. Tunneling

We consider the pure Yang-Mills theory based
on a Lie group G [in practice SU(2) or SU(3)] and

(2.2)

The eqgations of motion derived from the Hamil-
tonian are the usual Yang-Mills equation except
for the analog of Gauss's law

C'(A) = V)A', +f,q
A~)A~( ——0, (2.3)

which is conjugate to A0 in the usual treatment. On
the other hand, [3C, C] =0 so that if the initial con-
figuration satisfies C(A) =0, then so does the time
evolution of that configuration. Thus, Gauss's law
may be regarded as a constraint on the initial p's
and q's selecting physical configurations out of a
larger manifold.

The quantum-mechanical version of this theory
has states ~A;. (x)) (eigenstates of the field operator)
between which matrix elements of the time evol-
ution operator may be computed by the path-inte-
gr al technique

For the purposes we have in mind it is simplest to
eliminate the gauge freedom by setting A., = 0. Then
the dynamical variables are the space components
A;, the canonical momenta are the electric field
components E; =A'. , and the Hamiltonian density is

(A ',.(x) ~e
'""

~A',.(x)) =
a(x
i

(2.4)

The path integral is over all time histories con-
necting the configurations A;.(x) to A;. (x) in time T
and g is the coupling constant. The quantum-mech-
anical version of Gauss's law constraint is that
C'(A), regarded as an operator, should annihilate
physical states: C'(A) ~(1)) =0. The field eigen-
states, ~A;(x)), which are convenient for the path
integral do not satisfy this condition and we must
characterize the states which do.

At this point it is convenient to write the fields
as elements of the Lie algebra of G: 4,.(x)
=A;.(x)T„[T„T,] =if„,T,. Now the theory is in-
variant under time-independent gauge transform-
ation s

where

U iH(%) T

is an arbitrary function of x taking values in the
group G [we have parametrized it by as many func-
tions of position, X,(x), as there are generators].
The above transformation on the fields is imple-
mented by the unitary operator e'~~ where

(2.6)

If the function A.'(x) vanishes at spatial infinity we
may integrate by parts to find that

A( —UqA ]Uq '+ iUqV')U~"', (2 5) Q, = — ) d 'x X'(x)(V.A '. +f A ~ A '. ) . (2.7)
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A.'(x) = 0,
Ixl

which is to say that they are eigenstates with
eigenvalue 1 of the subclass of all gauge trans-
formations characterized by V 0 at spatial infin-
ity. Since a field eigenstate transforms under e'~)t

as

e'o IA;(x)& = IA, (x),&,

A,.(x)~ = U~A,.U~ '+iU~V, U~.
ga(x) g g

(2.9)

it is apparent that the only way to construct a phy-
sical state is to sum over gauge transforms:

where the functional integral is over all X's which
vanish at Ix I- ~ and the integration measure is
locally gauge invariant.

The notation here is a bit clumsy since we have
not identified the variables which actually specify
the physical state. In standard perturbation theory
treatments it wou1. d be convenient to regard the
above state as being parametrized by &,". , thatA, ,
among all the A,. 's summed over to form the phy-
sical state, which satisfies V'A=O. A&' has pre-
cisely the correct degrees of freedom to describe
the massless gluons which are normally thought
to express the physical content of the theory. We
could adopt the same strategy here, defining a
function U(x, f) by

A,.(x, t) = UA I'U"'+ i UV, U ', '

and writing the Ao =0 functional integral in terms
of A',.' and U instead of A,. (and regarding the states
as functions of A,"). Since U turns out to be es-
sentially a cyclic variable (this follows directly
from our ability to impose Gauss's law as a con-
straint, i.e. , an equation which when imposed at
one time remains true for all time) we could think
of eliminating it from the system and writing the'

path integral entirely in terms of the physical vari-
ables, A',.'. This would amount to casting the the-
ory in the Coulomb gauge. The fact that only re-
stricted classes of gauge transformations U (those
which go to a constant at spatial infinity) may be
integrated over makes this a rather tricky enter-

The term in parentheses is just Gauss's law and
annihilates physical states. Thus physical states
are also characterized by

(2 S)

prise and we will not attempt it here.
Although it is not necessary to so limit our at-

tention, we will for convenience now consider phy-
sical vacuum states I&a&. A vacuum gauge field
configuration, corresponding to zero energy den-
sity, must have 8,. = 0 which is possible only if 4,
=ig(x)V, g'.(x) [g(x) takes values in G]. For sim-
plicity of notation let the corresponding state be
written Ig(x)&. Under a gauge transformation e' &,

Ig(x)& IU~g(x)& = Ig(x)&»d Ig(x)&,„„,will be a,

sum over all Ig(x)& obtainable this way. The equiv-
alence relation g(x) =g(x) = U~g(x) [V(x) -0 as
Ix I-~] divides the set of all possible elements of

G into equivalence classes and possible physical
vacuum states are just

Ivac& =
l gc (equivalence class)

Ig(x)& . (2.10)

(2.11)

A typical element [for G =SU(2)] of the m=0 class

This large class of possible vacuums can be cut
down to manageable size, while bringing topolog-
ical notions into the game, by the following dynam-
ical remarks. Consider a transition amplitude
(vac Ie '"r Ivac& between two of these possible vac-
uums. Because the i.nitial and final states may be
simultaneously gauge transformed without affecting
the value of the amplitude, we may without harm
choose the initial vacuum to be in the equivalence
class of g(x) = 1. Clearly, all the states in this
equivalence class are characterized by g(x) -g,
[or A,.(x) -0] as Ix I- ~. We would like to argue
that there will be a finite transition amplitude from
this equivalence class only to other equivalence
classes also characterized by g(x)-go [or A, (x)
-0] as IxI- . For any other typeoffinalequiv-
alence class A, (x)y 0 as IxI-~ and the histories
entering the path integral must have A0
over an infinite spatial volume. Such inifi.nite en-
ergy transitions must in fact have zero amplitude
and we may limit our attention, as far as dynamics
is concerned, to vacuum equivalence classes
characterized by g( x ) -1 as

I
x

I
-~.

If g(x) -1 as Ix I
-, then the domain of g(x ) may

be thought of as three-space with points at infinity
identified. This manifold is topologically equiv-
alent to S3. The vacuum equivalence classes are
now seen to be classes of maps from S, to G which
may be continuously deformed into another: homo-.
topy classes. It is known that the homotopy clas-
ses of G = SU(n) are countable and characterized by
a positive and negative integer-valued topological
invariant (winding number or Pontryagin class)

n=, JI d'x~, ~, tr[g 'V,.g(x)g 'V~g(x)g 'V„g(x)].
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is g(x) =I while a typical element for n= 1 is

X 'T
g(x)=exp iv, , », =g, .

~x +a-

For reference, a g(x } which belongs to no homo-
topy class (and is representative of the vacuums
we threw out with our dynamical argument) is

X'T
g(x}= exp:i{).—, ,(x+a j

with n not an integer multiple of m. For conven-
ience we will now label the surviving vacuum
states by the appropriate winding numbers: ~n&.

It can be shown that multiplying an element of
the n, homotopy class by an-element of the n, class
gives an element of the n, + n, class. Therefore if
we call A the unitary operator which implements
a typical gauge transformation of the n = I class
(g, = exp[i}[x 'r/(x'+a'}'~'], say) we must have R ~n&

= In+I& (R '~n&=~n —1)). Now R=U, with& =2vx/
(x~+a')'~' if we choose R to correspond to g, . Al-
though R is a gauge transformation, since X~QO
as ~@- Gauss's law constraint does not specify
how physical states behave under R. The physical
requirement of gauge invariance is met so long as
the physical states are eigenstates of R: R ~g&

= e'e
~)1)&. No physical principle determines what 8

must be, although since [H, R] =0, neither time
evolution nor local gauge-invariant perturbations
in general will change 8. In short, 8 labels super-
selection sectors of the theory and the Hamiltonian
must be block diagonal in 8. One easily constructs
8 eigenstates from n eigenstates by the rule

(2.12)

and it is apparent that the 8-vacuum states are
nondegenerate. What is not altogether obvious at
this stage, although true, is that the theories
based on the different ~8) states are physically
different from each other, so that this multiplicity
of 8 worlds is a nontrivial property of the theory
and not some gauge artifact. For 8&0, ~8& is not
an eigenstate of parity or time reversal. There-
fore for QCD 8 must be very small and in all like-
lihood is equal to zero. The physical principle
(if any) which determines 8 is unknown.

We have argued that there will be a finite quan-
tum- mechanic al tr ansition amplitude between
states ~n) and ~n'& because the time variation of.

A,. needed to effect the transition can be localized
in space and does not require infinite kinetic en-
ergy at any point. On the other hand, if we look
at the vacuum A, =0, say, it is apparent that the
classical equations of motion will leave the system
in the state 4,. =0 forever. Thus transitions from
~n& to ~n'& & ~n& look like tunneling processes: clas-
sically forbidden but quantum mechanically allowed
barrier penetration. processes.

To bring the tunneling interpretation into clearer
view, it is helpful to pass to the imaginary time
picture, i.e. , to discuss (n' ~e

~r
~n) instead of

(n' ~e '"r
~n&. The reason for this is that we know

from experience with ordinary quantum mechanics
that imaginary time solutions of the classical eq
uations of motion can be used to obtain a WKB (or
small 5) treatment of barrier penetration Prob-
lems. In real time a classically forbidden process
defines no stationary path which dominates the
functional integral arid there is no simple way to
study tunneling.

The new path integral is

n'
. T

{x' [exp{ XX) le) = [' [r)X,) exp ——f dtd x[{&;)e{{{))')-* (2.13)

with the implied boundary condition of first com-
puting the path integral between a, representative
pair (A;,A;) of functions belonging to the homo-
topy classes (n, n') and then integrating over all
representatives in the (n, n') classes. Since the
action is positive-definite, the dominant history is
one of min&num action consistent with the bound-
ary conditions. Such a path satisfies all the Eucli-
dean Yang-Mills equations —except Gauss's law
constraint. Upon varying the end points of the 4,
path history, one will finally pick out the path
which satisfies the constraint as well. This path
is guaranteed to have the absolute minimum action
consistent with the constraint that it describes a

4 2
Aa 2 ~aa~p'

2 2 e )e{x (g p2)2 (2.14)

where q„„is a numerical tensor coupling two
SU(2)'s to O(4) (}I, „=e„„+2 e,},E}„„)and p is an
arbitrary scale parameter (arising from the scale

transition n -n' and satisfies the full set of Eucli-
dean Yang-Mills equations.

A rather large class of Euclidean Yang-Mills
solutions are known, by now, "but we need only dis-
cuss the original one of Belavin et al."out of
which, in a sense, all the others are constructed.
In Landau the gauge (8 'A = 0) the particular sol-
ution is [G = SU(2)]
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invariance of the classical theory). The Euclidean
action of this solution is 8''/g' (independent of p)
so that the magnitude of the path integral domin-
ated by this path is exp( —Bm'/g'). Remembering
that g'-g one sees that this amplitude vanishes
like exp( —1/I) a,s I-O, the sort of essential sing-
ularity characteristic of vacuum tunneling in or-
dinary quantum mechanics. Finally, if we pass to
the gauge A0 =0 in order to make contact with the
earlier discussion in this section, we find

A,.(x, = —~) =0,
(2.15)

A((x, =+~) =U ')('&U, U=exp iv-
(x'+ p')"',

indicating that this solution describes the vacuum
tunneling IO)

-
I 1), A more convenient and gauge-

invariant way of identifying the topological class
of a trajectory is

matrix element

&n+1 Iexp( —222) In& =&I Iexp(-ff2') IO&

is expressed as a functional integral as in Eq.
(2.13). For weak coupling, g' =0, one then per-
forms the Euclidean functional integral by a sad-
dle-point approximation. This requires a solution
to the Euclidean equations of motion satisfying the
appropriate boundary conditions —which is just the
Belavin- Polyakov- Schwartz- Tyupkin (BPST) one-
instanton solution, A; (x- x„p), located at an ar-
bitrary point x„with arbitrary scale size p. Ex-
panding the quantum field as A; (x —x„p)+gQ'„(x),
one has

8m'
(()exp(-lep))O) =exp(-, J([pq:)

0

& exp —g d'xZ" A; ', 2.17

rn = —, d~xtr(E, E,„),8m'
(2.16)

where F,„=a~A„—s„A, +i[A, , A„] is the four-di-
mensional field strength tensor and F,„=& &,„~,F„.
In general, tr(F, „F„)may be written as a. total
divergence, and when evaluated in the 40 = 0 gauge
the t= +~ surface contributions are seen to be id-
entical to the vacuum winding numbers defined
earlier. This solution, called the instanton, exists
in a conjugate version, called anti-instanton, de-
scribing tunneling from 0 to —1. Qne simply re-

same solutions describe the basic tunneling event'
in any theory based on SU(n). In the explicit form-
ulas for A, , SU(2) generators are simply replaced
by an SU(2} subset of the SU(n) generators. 'o

There is a slight conceptual complication that
this field-theoretic vacuum tunneling process has
over and above its analog in ordinary quantum
mechanics, namely, the multiplicity of Euclidean
tunneling saddle points. The classi. cal solution
may be centered anywhere in space-time and may
be of any scale size (small scale size p means the
tunneling event has large field strengths but hap-
pens q'bickly; vice versa, for large scale size).

For weak coupling the detailed tunneling ampli-
tude'can be computed by the following device, The

where g" is the second functional derivative of the
Lagrangian evaluated at the instanton solution, and
higher-order terms, proportional to g,' (g, is the
bare coupling), are neglected.

The normalization of the tunneling amplitude
arises from the Gaussian integral around the sad-
dle point. Evaluation of this integral requires cal-
culating the determinant of the operator 2"(A').
By exploiting the conformal invariance of the clas-
sical theory, 't Hooft has computed this deter-
minant explicitly. " The following points are worth
mentioning:

(1) For every symmetry of the original Lagran-
gian there will exist a zero eigenvalue of g"(A').
These zero energy modes can be dealt with by in-
troducing collective coordinates for the degrees of
freedom corresponding to the appropriate sym-
metries, and yield factors of the volume of the
corresponding symmetry groups. In the case of
QCD the SU(2) instanton possesses 4 translational,
1 scale, and 3 group degrees of freedom. [In the
case of an SU(N) instanton, constructed using an
SU(2) subgroup, there are 4N —5 group degrees
of freedom. ] For each degree of freedom a, factor
of I/g will result from the introduction of collec-
tive coordinates. Thus the matrix element will
take the form [for an SU(N) gauge group]

I

() )exp( —H1') (O) = v„(—,) f O'xf —,exp(-, )f [DQ')exp: ——' fO'xO'!(x')Q (2.18)

where V~ is a, numerical constant and Q' refers to the quantum field with the zero-energy modes removed.
(2) Owing to the standard ultraviolet divergences of ordinary perturbation theory, the remaining deter-

minant (which is simply the exponential of the sum of connected vacuum-to-vacuum diagrams in the back-
ground instanton field) will require renormalization. This renormalization is standard since the ultravio-
let divergences do not depend on the smooth background field. The net effect is to replace the bare action,
Bv'/g, ', with the renormalized value, 87)'/g'(I/pp, ), where p, is the renormalization mass and g' is the ef-
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fective coupling constant of the renormalization group, sati. sfying

d,
—=-P(g)=+I.g'+o(g'). (2.19)

%'e thus have

dp 8v' ') '" 8v'
&1lexp(-HT)lo) = vT --

2 I l
exp —, , c[l+o(g'(I/PP, ))],g'1 pp& g'1 pp

' (2.20)
e

where VT is the volume of space-time, and C is a numerical constant. For SU(2), Cs«» = 0.26 (Ref. 21)
whereas for SU(3) we find that Cs«, )

='0.10.
The integ'ration over scale sizes is rendered convergent for p -0 by asymptotic freedom, since [for a

pure SU(V) gauge theory]

8v'/g'(I/p)j ) (—", &)»(I/pp)
p ~ 0

t

(2.21)

However, the integration also extends to arbitrarily large scale sizes, where g (l/PN, ) increases. Thus in
a scale-invariant theory such as QCD one cannot adjust the coupling to be small, and even constructing the

, vacuum requires an understanding of the infrared, perhaps strong-coupling, behavior of the theory.
For the moment we shall ignore this problem, and consider the contribution to the tunneling amplitude

of instantons of sizes p to p+dp, replacing Eq. (2.20) with

8v'
&(leep(-DX))O) DVXexp(-.= g'(1 pp)

' (2.22)

=-&1 lH lo&T

8w'
=TVD exp— (2.23)

One can then read off the tunneling Hamiltonian
which for general n -n+ 1 is

8e'
&ee()D)e) = VD exp{ (2.24)

Taking this as the tunneling Hamiltonian it is
straightforward to compute the energy of a 8 vac-
uum. If E(B)5(B—B') =(B' lH l B& one. finds

2 (2) = X, —2 e ex 6 ('D exp (—
')87&

~

(2.25)

where E, is the energy in the absence of tunneling.
Note that the energy is decreased and proportional
to V as it should be.

This is what one would obtain in a superrenormal-
izable field theory and willbe instructive as to the
physical picture of tunneling. In the following sec-
tion, we shall discuss in great detail the physical
consequences that arise from the existence. of in-
stantons of all sizes in QCD.

The scale size p can be considered as the time
which it takes to tunnel and the coefficient of 7.',
VD exp(-8v'/g') can be interpreted as the inverse
of the mean time between tunnelings. Then for p
«T«(VD) 'exp(8v'/g') we can expand the matrix
element in Eq. (2.22) according to

(I l exp( HT) lo& =(1
l
I HT+ ~ ~ ~

l
0&

It is important to note that there are two steps
involved in constructing the 0 vacuum. First, the
tunneling amplitude (n lH ln+ 1& is determined from
a single instanton and then the tunneling Hamilton-
ian is diagonalized. It is the second step that
brings in multi-instanton effects. This is shown
schematically in r ig. 1 where the single instanton
and anti-instanton (anti-tunneling n -n —1) of Fig.
1(a) are iterated in Fig. 1(b) to produce a B vac-
uum. Observe that the 8 vacuum looks like a gas
of instantons in 4 dimensions. Below we will use
this analogy to develop a more powerful method
for handling instantons.

9. The analog gas

The above method of constructing a tunneling
Hamiltonian gives correct answers for weak coup-
ling but suffers from conceptual difficulties for
larger g where the mean time. between tunnelings
is not so small. In particular, it is totally inad-
equate for QCD.

A systematic approach is based on the long-time,
T »(VD) ' exp(8v2/g'), Euclidean functional inte-
gral exp(-HT),

(

&B'
I exp(-HT) I B& =g exp[i(nB —n'B')]

x&n'
l exp( —HT) ln&, (2.26)

with (n' lexp(-HT) ln) given by Eq. (2.13). A de-
ductive approach to vacuum tunneling would begin
with this functional integral. As T- ~ this be-
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so that the naive vacuum term, n, = n = 0, is equal
to 1. The term with n, =1, n =0 can be eval-
uated by the saddle-point method described above
yielding

8m'
UTl3 exp —-=~ exp i8 .

0

&. a

n The term with n, = 0, n = 1 is the same with 0 re-
placed by —8. The first nontrivial term has n, = 2,
n 0 and could also be computed by a standard
saddle-point technique, since there exist exact
two-instanton solutions" dependi. ng on the right
number of parameters to describe-two independent
tunnelings. The action for these solutions is sim-
ply twice 8m'/g', but the determinant D, has not

yet been calculated for two &nstantons. However,
when the instantons are far apart, as will be the
c@se for small g', D, must reduce to the square
of the determinant for n, =1, n =0, and the dom-

inant contribution to the n, = 2, n = 0 sector is

1 2 16m' 2s8—(VTD)' exp — e"e
2J . 2

0

I jQ. 1. Construction of a 0 vacuum. The single
instanton and anti-instanton shown in (a) causes transi-
tions from n ton+1 or g —1. The 9 vacuum is built

upon successive transitions back and forth between
different n states as in {b). One should imagine inte-
grating over the locations in imaginary time and space
of the instantons and anti-instantons.

comes const && 5(8 —8') exp[-E(8) T]. Let us see how

this comes about in the weak- coupling limit where the
mean time between tunneling is large (but 'small com-
pared to T). One can then classify the configurations,
A', that contribute to (n

~

exp( —HT) ~0) according
to the number of well- separated tunnelings (instan-
tons) n„and antitunnelings (anti-instantons) n,
such that n = n, —n . We choose the normalization

where the 1/2! is necessary to avoid double count-
ing. Since the determinant D, presumably does de-
pend on the instanton separation when they are
close this form is only approximate. There are
corrections to it which are proportional to one
power of the volume UT, which for small coupling
will yield corrections to E(8) which are suppressed
by exp(-8w'/g'). The n, =0, n = 2 contribution is
then obtained in the obvious way (8 -8).

The n, =n = 1 term introduces some new physics.
This time we cannot evaluate the functional inte-
gral by a strict saddle-point method. The mini-
mum action configuration for n, —n =0 is simply
the naive vacuum .4, =0, corresponding to a tun-
neling on top of an antitunneling, or no tunneling
at all. However, we can certainly imagine config-
urations corresponding to a well- separated instan-
ton —anti- instanton pair.

Such a configuration is not an exact solution to
the Euclidean equations of motion but will never-
theless make a nontrivial contribution equal to
(UTD)' exp( 16m'/g'-), when

8m~
VTD exp —,&) 1.

Generalizing to arbitrary n, and n then yields

1 1 8w'
(8~exp(-BT) j8) = P — (TVD)"+'"-exp —,(n.+n )+i8(n. n)—

n„m=0 n, l

I

= exp 2T VD cose exp— (2.27)
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and we recover the previous result

E(8) = (const) —2VD cos8 exp(-Sv'/g').

Although it is valid only for weak coupling, Eq. (2.27) contains some important lessons. Specializing for
simplicity to 8=0, we have

(0 I
exp(-HT) IQ) = g (TVD)"+'~ exp ——,(n.+n )On) nj g g' (2.28)

For large T the dominant term in this series is
the one for which

Sm'
n, =n = Z"VDexp ——, (2.29)

which for large T is exponentially small compared
to the complete sum,

8m'
exp 2 TVD exp

The nature of the long time functional integral
is most easily understood in terms of an analog

and as Z - essentially the entire sum comes
from this term alone. Observe that

(i) the dominant term contains both instantons
and anti-instantons and cannot be computed by a
strict saddle-point method that relies on exact so-
lutions to the Euclidean equations af motion,

(ii) the dominant term is not the one for which
the classical action exp[- (Sv'/g')(n, +n )] is min-
imal.

One conclusion is that although the remarkable
exact multi-instanton solutions'9 may indicate a
new structure or symmetry to the theory, they
are of essentially no relevance when it comes to
constructing the vacuum state. In fact the sum
over all terms with either n, or n equal to zero
yields

2 exp 'TVD exp.Sg

I

gas. The sum in Eq. (2.28) is precisely the grand .

partition function for a classical, four-dimen-
sional perfect gas containing two species of par-
ticles with equal fugacities exp [ —Sm'/g ] and

volume measured in units of D '. T-he energy
(action) for a configuration with n, and n mem-
bers of each species is (n, +n )Sw'/g' while en-
tropy of the configuration is ln[(TVD)"+ ' "-/
n, !n !). The dominant term is the one for which
the free energy (energy minus entropy) is smallest.

More generally, the entropy of a field configur-
ation can be thought of as the log of the volume
in function space occupied by similar configur-
ations. For large coupling the action of a given
field configuration decreases lik'e g ' while its
entropy is generally less sensitive to g. Thus for
moderate o'r strong c'oupling the entropy of a field
configuration can be a more important consider-
ation than its action. This wi11 become increas-
ingly evident in later sections. It also has its
effects at small g. The exact multi-instantori
solutions are in a sense uninteresting because
they have so little entropy.

When g is small the analog gas is extremely
dilute and the physics is the same as the tun-
neling picture discussed above. For larger g
when instantons and anti-instantons are closer
together the language of tunneling is at best pic-
turesque. However, the idea of an interacting gas
where instantons and anti-instantons interfere and
the action for an n„n configuration is not just
(n, +n )SrP/g still makes sense.

C. %ave functions and the functional integral

Consider a gauge where the gauge condition (A'= 0, A'=0, or V A= 0) does not involve time explicitly.
One can then consider the wave function 48[4(x)] of a 8 vacuum as a functional of the independent
components of A at one fixed time. The modulus of 4 is easily related to the Euclidean functional inte-
gral. If the fields at T/2 are fixed to be A(x) then

T
-lim [dA" ] exp ) df d'z —4trS'+ trEP =constxexp[ E(9)T] Ic's[&(x)]-I'.
p~ oo 8m - w{r/2, x) = x{x)

(2 .30)
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Thus by examining a time slice of the Euclidean
functional integral one can determine which field
configurations are important in the vacuum. For
a dilute instanton gas in the gauge A' =0 most time
slices will see only a gauge-rotated-vacuum A
= i 0 ' v 0 consistent with the wave function

l 8)
=+exp(ing) ln) obtained from the tunneling picture.
In the dense gas that occurs in QCD most time

't

slices will intersect one or more instantons ad-
ding a new component to 40. For strong enough
coupling further objects such as merons (Sec.
Vl) will also be present.

D. New quark interactions

Until now we have discussed tunneling in a
pure Yang-Mills theory. .Other fields are easily
incorporated without significant effect on the tun-
neling picture (except for massless fermions as
we shall see below). For example, in the pres-

ence of massive fermions the action will contain
a term T() (ip —m)(l). In constructing the 8 vacuum,
however, this will only slightly affect the nor-
malization of the tunneling amplitudes. One will
still, in the saddle-point approximation, expand
about the multiple-instanton gauge fields; how-
ever, the one-loop quantum fluctuation will now
include those of the fermion fields in the back-
ground instanton field. This will modify the
functional integral by a factor of fdet[ig(A'„)
—m]}"+'"- for well-separated instantons.

It is possible to calculate, using the dilute-gas
approximation, the Green's functions of any num-
ber of gauge-invariant operators. One simply
adds to the Lagrangian density a term Q,.J, (x)
8,.(x), where J,(x) is an external c-number source
coupled to the operator in question, 8,.(x), con-
structed out of the gauge and matter fields. Eu-
clidean Green's functions of (9,. are then defined as

(pip(0, (r, ) 0,( „))I)=(0 00 -)
~1 Xt A( X)tt

f [L)A„]exp[-S(A)+ j~,(x)8,.(x)d'x]
J (DA„] exp[-S(A)] J =0

(2.31)

In performing the saddle-point integrations for the
various multiple-instanton sectors in Eq. (2.31),.
one treats the term P J,.g,. as a. small perturbation
and expands the gauge fields in (9,. about the mul-
tiple-instanton configurations.

Of particular concern to us is the effect of tun-
neling on the quark-antiquark interaction. I et
us first give a physical picture of how tunneling
modifies the interaction of quarks.

A quark-antiquark state constructed in per-
turbation theory would be built on one of the n
states ln) rather than a 9 vacuum. Let lnr)
be such a state where the qq pair is separated by
r. There will be tunneling to other states lmr)
and the true qq state built on a 8 vacuum is l8r)

exp(img) lm r) . Because the tunneling am-
plitude (mr lH lnr) will differ from the vacuum
amplitude(m lH ln) and depend on r, nonperturbative
q —q interactions will appear. In a weak-coupling
approximation the energy E(g, r) of lgr) relative
to the energy of the 0 vacuum is

E(r, 8) = E( )r+2Re[ ex(pi )8((1 rlH0rl)

—(1 lHl 0))], (2.32)

where EU(r) includes the perturbative terms, e.g.
Coulomb interaction, which are diagonal and the
same for each n. For heavy "test quarks" the
state lnr) can be constructed in a gauge-invariant

way to be

lnr& =(f(r) U(r, t))(f(tj) ln&,

where

ri'

U(r, 0) = P axp(i (

A dr}"0

(2.33)

is the ordered exponential integrated along a
straight line from 0 to r. The tunneling just
shifts U(r, 0) by a gauge and for a given instanton
location (and scale size and orientation) (1rlHlOr)
differs from (1 lHl 0) only by a factor
tr[ U, '(r, 0) U, (r, 0)] where the subscripts refer
to the values of U in the initial and final n states.
Because ~e are in the gauge A' =0, we can write

tr(U, '(r, p) U(r, 0)) =rrxp(tfAr„drr), (2 24)

where the ordered line integral of the instanton field
runs around a rectangular Euclidean loop with
corners at (0, 0), (r, 0), (r, T), (t), T). This or-
dered loop integral then has to be integrated over
all instanton locations (and scale sizes and
orientations) to get (1r lHlOr) and then from Eq.
(2.32) E(8, r) can be obtained.

The tunneling calculation outlined above is, for
weak coupling where it is valid, equivalent to the
following dilute-instanton-gas calculation. Let
E(9, r) be defined by
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j[dA" ]tr[ T exp(f $A."dH )] exp(g-Wr 5'+(i8/8v )tr JS']d'x].
,
fd[A" ] exp( J [--,'tr E'+(i9/Bn )trI'P ]d'x)

(2.35)

where the Euclidean time T is assumed to be large
and the ordered exponential runs around the same
Euclidean loop as before. If this ratio of func-
tional integrals is evaluated in exactly the same
(dilute gas) approximation as in Eq. (2.32) except
that in the numerator each multiple instanton-
anti-instanton configuration is multiplied by the
loop integral for that configuration (before in-
tegrating over locations, scale sizes, etc. ) then
the resulting approximation to E(0, r) will be
equivalent to the tunneling calculation.

A deductive derivation of the effect of instantons
on the qq interaction would begin with the func-
tional integral in Eq. (2.34). Wilson has argued
that the average Euclidean loop integral does in
fact yield the interaction energy of a heavy
"test quark" pair'0 (not to be confused with the
potential between real light quarks). Unlike the
tunneling picture the averaged loop integral makes
perfectly good sense mhen the instanton gas is not
dilute but rather dense as in QCD.

For the moment we will refrain from com-
menting on whether or not this nem tunneling
interaction has anything to do with quark con-
finement. It is, however, definitely there and will
turn out to be non-negligible as we shall see in
Sec. IV.

E. Li@t quarks

The Wilson Loop is not directly relevant to the
binding of ordinary light quBrks. The problem
is not just a kinematic one, since, as 't Hooft
has emphasized, instantons do qualitatively new
things mhen light fermions are present. " It is
simplest to discuss the situation in the limit of
massless fermions. As before we mill develop
the physics in a simple tunneling picture and
then pass to the Long-time Euclidean functional
integral.

In a theory with fermions a "classical" state is
specified by giving the boson field configuration
and saying which fermion states are occupied. A
perturbation-theoretic n state is thus og.e for
which the gauge field belongs to class n and all the
negative-energy fermion Levels are occupied.
One can think of tunneling as being an adiabatic
process as far as the fermions are concerned. For
each value of Euclidean time t, the time-indepen-
dent Dirac equation in an instanton field will have
eigenvalues e, (f ) and eigenfunctions 4, (f, x) where
t enters only as a parameter. Since the net ef-
fect of tunneling is just a gauge transformation the
original eigenvalues of e, (0) must be in one-to-

I

one correspondence with the final eigenvalues.
If the correspondence e,(0)-e,(T) is the trivial
one e, (0) = e, (T) then the tunneling can connect
two distinct classical vacuums. For an instanton
and massless fermions, however, this mapping
of the spectrum of the Dirac equation into itself
i.s nontrivial and in particular the highest right-
handed negative-energy state crosses zero and
becomes the lomest right-handed positive-energy
state while the lowest positive-energy left-
handed state becomes the highest negative-energy
left-handed state. Thus if the initial configuration
had all its negative-energy states occupied and all
positive-energy states-empty, then in the final
configuration there will be one right-handed pos-
itive-energy state which is occupied and one left=
handed negative-energy state which is empty.
The tunneling process is then n-m+q~q~ rather
than just n-m. Strictly speaking there are then
no vacuum tunnelings but only virtual tunnelings
n- m+ qq —n.

The above picture is easy to demonstrate ex-
plicitly in two-dimensional models (the reader
can easily work it out, for the two-dimensional
Abelian model discussed in Ref. 18) and is known
to follow directly from the topology of the in-
stanton field in four dimensions. "

A canonical picture of the suppression of tun-
neling in the presence of massLess fermions can
also be given. As is well known' in QCD the
axial baryon riumber current contains an anomaly,
and is not conserved (n labels color, i labels
flavor):

Jj = Q pa;rpwstng

p
1

p 8+ pv pv

(2.36)

32m'

(2.37)

Q, is now conserved'but not gauge invariant. It is
easy to see that Q, is gauge invariant under gauge
transformations that vanish at infinity, but not
under gauge transformations that change the
topological class of A.„.

The above current is the gauge-invariant regulated
current (defined, say, by a point-separation
technique). One can define a gauge-variant cur-
rent which is conserved:
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If we consider A, = 0 gauge we find that the uni-
tary operator A which implements a gauge trans-
formation of the n = I class (R ~n & = ~n+ I&) has the
following effect on Q, :

R Q~R ~ = Q5 —2N, (2.38)

Such a solution will be normalizable if e, crosses
zero and e, is positive for t-+~ and negative foi.
t- -~. Thus the shift in a right-handed state
from negative to positive energy in an instanton
field can be expected to produce a normalizable
solution to the time-dependent Dir'ac equation.

The existence of normalizable solutions to the
ma, ssless Dirac equation in fields with nonzero
topological quantum number Q has been demon-
strated by a number of authors. ' This has a
dra, matic effect on the functional integral. The
fermion determinant then vanishes identically for
any configuration containing an unequal number of
instantons and anti-instantons, in agreement with
the above argument that only virtual tunnelings
are allowed. In the analog gas picture a virtual
tunneling is a closely correlated instanton-anti-
instanton pair. %e have in fact shown in a pre-

where N is the number of flavors. If the vacuum
states of different topology ~n& are defined by

In&
=R" 10& with Q, I0& =0, then Q, (n) =2Nn(0&.

However, Q, is conserved, [Q„H] =0, so that
(n(exp(-I1T) ~m& -5„„,namely tunneling is sup-
pressed in the absence of non-chiral-invariant
sources.

However, virtual tunneling does occur and again
the true vacuum will be the coherent superposition
of the n vacuums. Indeed it is only in such a
state that one recovers cluster decomposition
of operators of chirality =2N. '4 However, unlike
the case of massive fermions, physical quantities
will have no dependence on 8: The vacuum energy
will be independent of 9, and BE(9)/B 9 =( 9 ~trE„„
E„„~9)=0. Finally axial baryon number conser-
vation is violated. The operator exp(inQ, ) (for
o. x z/N) is ill defined, and takes one out of the
Hilbert space constructed about a 8 vacuum.
Alternatively the gauge-invariant current, J„,
has a hard divergence, TrI „„E&„,which has
nonvanishing matrix elements (( 9 gg trEE ~9& 40
in the case of one flavor) thus vitiating Goldstone's
theorem.

I et us now proceed to examine the effects of
massless fermions on the long-time Euclidean
functional integral after making the following ob-
servation. In an adiabatic approximation the
solutions to the time-dependent Dirac equation in
an instanton field will be

vious paper that in the presence of several mass-
less fermions a sufficiently dilute instanton gas
.is actually a "molecular" gas composed of in-
stantons and anti-instantons permanently bound
into "diatomic molecules, "'4 by the exchange of
massless fermions. This exchange gives rise to
a logarithmic attractive interaction proportional
to the number of flavors, of the form 6Nln R,
where A is the distance between the instanton and
the anti-instanton. In QCD it is probable that for
strong enough coupling there is a phase transition
at which point the "molecules" disassociate, lib-
erating free instantons and anti-instantons. This
would lead to a spontaneous breakdown of chiral
symmetry and will be discussed in Sec. V. In any
case the quasitunneling vac -fermions and anti-
fermions (which crosses to fermions - fermions)
leads to qualitatively new nonperturbative interac-
tions among massless fermions.

F. Beyond the dilutegas approximation

The analog model developed above of a perfect
gas of instantons and anti-instantons is only a
valid approximation for very small coupling (or
small h). As the nonlinear coupling g increases
one must improve this approximation. In order
to see the effects which emerge when g increases
let us consider the contribution to the functional
integral of the n+ = n- = 1 sector. This sector hhs
net topological quantum number equal to zero,
i.e., the same as the naive vacuum sector n+ =n-
= 0, and strictly speaking the only saddle point
(solution of the classical field equations) is the
naive, vacuum configuration. However, a super-
position of widely separated instanton and anti-
instanton configurations is very close to a saddle
point.

One way of including such approximate saddle
points in a systematic fashion is to introduce con-
straints into the functional integral. Thus we write
(schematically)

I [DA~] ada;C;(A„, a;)ada;C, (A„,a, )e

(2.39)

where f davC, (A„,a ) =1, the a,' (a, ) are "col-
lective coordinates" for the individual instanton
(anti-instanton) corresponding to the relevant
translational, scale, and group degrees of freedom,
and the C; are functions of the field thy, t, for given
a&, fix these degrees of freedom. Interchanging
orders of integration one now expands, for fixed
a;, about a true saddle point of the constrained
functional integral. For values of a; corresponding
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to well-separated instanton configurations the
saddle-point configuration will be approximately
given by the superposition of the instanton and
anti-instanton solution, and the action will be
simply -16m'/g', independent of the a, . This is
what yields, upon integration over a,', the term
proportional to the square of the volume of space-
time (VT)' reproducing, with the correct nor-
malization, the perfect ggs approximation.

Moreover, one can now imagine improving on
this approximation, taking into account that the
action at the saddle point does depend on a,' when
the instantons are at a finite separation. We can
interpret

16m'
S(a, ) = + 5S(a,', a, ) (2.40)

as consisting of, in the analog gas model, a term
corresponding to the chemical potential (87t'/g' a
piece) for the instanton and anti-instanton and an
interaction energy, 5S(a&, a, ). A similar procedure
can be carried out in the multiple instanton-anii-
instanton sectors. The result of performing the
saddle-point integrations will be to replace the
functional integral by the partition function of a
gas of interacting instantons and anti-instantoris.
Since the Lagrangian is a nonlinear functional of
the fields there will in general be multibody
interactions.

The nature of these interactions for well separated
configurations is easily understood. In general
instantons will attract anti-instantons and repel
instantons, since in the fj.rst case one reduces
the action by bringing the configurations together
and in the latter the action is a minimum for in-
finite separation. In special theories, such as
@CD, instantons will have no interaction with
instantons, but an attractive instanton-anti-
instanton interaction will always exist. The in-
teraction energy will also depend on the group
orientation and scale size. The interaction will
vanish for infinite separation, exponentially in
non-scale-invariant superrenormalizable theories,
and according to a power law in scale-invariant
theories such as QCD.

Since for weak coupling we have shown that
the density of instantons is proportional to exp
(-8v'/g ) one can perform a virial expansion
of the partition function. To first approximation
we have the perfect gas described above, where
6S has been neglected. Including the effects of the
interactions will yield corrections proportional
to the density of instantons. Thus one might hope
to set up a systematic virial expansion of the
analog gas in powers of exp(-. 8v'/g ). There are,
however, severe technj. cal and conceptual problems
in attempting to do this. The first problem is that

(2.41)

so that a configuration consisting of n, instantons
and n anti-instantons has action = (n++n )g The.
8 vacuum to 8 vacuum amplitude is then given by

(8 l
e -H T

l g) Q e s (a ')H 9(a r - o&) (2.42)

This is simply the partition function for a one-
dimensional system of infinite-component clas-
sical spins with nearest-neighbor interactions.
For 8=0 the Hamiltonian is simplyH =Z~lo& -o'~, J,
and the temperature is kT = 1/g .

of double counting. A mell-separated instanton-
anti-instapton pair clearly gives an important
contribution to the functional integral. However,
it is clearly nonsense to consider both the ordinary
vacuum field configuration as well as an instanton-
anti-instanton pair close together with equal weight.
The second problem is how to systematically. sum
the quantum fluctv. ations about a given field con-
figuration when tunneling exists. We now know
that in the presence of tunneling the ordinary
perturbati. on theory is not Borel-summable. '4

Thus the perturbation theory about the ordinary
vacuum will yield, an asymptotic power series
Z„C~ which we do not know precisely how to define
when g 0.

These problems are interrelated. The lack of
Borel summability arises from the existence of
real instantons, and the ambiguity in dealing with
overlapping instantons is related to whether such
configurations have been included as fluctuations
in other sectors. At the moment we lack the so-
lution to both of these problems and do not have a
systematic formalism for dealing with tunneling
for large coupling.

To illustrate the nature. of the dilute-gas ap-
proximation as mell as the double-counting prob-
lem, it is instructive to consider for following
model, in which all quantum fluctuations have been
suppressed. Consider replacing the field vari-

ablest~~

(x, ) by discrete spinso; =o(t, ) on a
discrete (Euclidean) time lattice. At each discrete
time the field will be constrained to be in ope of
an infinity of possible ln) states, cr, = -~, . . .,
-1,0, +1,2, . .. . Thus a Euclidean field configura-
tion. is represented by a lattice of spins that take
integer values: (o „a„.. .,o r), where T = total
time. A static ln) vacuum state is represented by
theo, =n, i=1, . . . , T configuration (n, n, . . . , n).
Obviously an instanton that effects ln) - ~n+ 1) at
time t=i, is represented by (v, =v,t- ' ' ' ='v~ =n;
o &„=~ ~ ~ =v r =n+ 1). The topological guantumnum-
berisclearlyP Q'g. Q'j Weshallchoosetheaction
to be
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For this system

E(8) =—lim (-ln(8 [e "
~
8) )T T-

can easily be evaluated [by the change of variable
x; = (v, -(x;„)]:

2 2S1 —2cosoe '/ +e '/
E(8) = ln 2ygi

(I "'l)=Q
n+, n -0

Tn++n-e-(n++n )/t e$9(n+-n:, )
2

= exp(2T cos8e '~'
) . (2.44)

The correction to this, which gives the first term
in Eq. (2.43) can be calculated by taking into
account the double-counting interactions of the
gas. Thus in the two-instanton sector, a con-
figuration consisting of two instantons on top of

-2/g2 2)eeach other contributes an amount Te ' ~ e",
not 2Te '~' e"e as given by Eq. (2.44). Also, an
instanton-anti-instanton cannot sit on top of

2/g 2
each other and one must subtract a term Te '
from Eq. (2.44). Thus to order e '~' we have, .

including the above two corrections,

(8~e
" ~8)= 1+2T cos8e '~ +2(2T cos8) e

+ T cos20e ' ' —Te ' '
= exp(T[2cos8e '~ —Sin'8e '

+O(e '' )]], (2.45)

= —2cos8e '"+2 sin'8e '~ '+0(e '' ).
(2.43)

Alternatively one can replace the spin variables
with instanton and anti-instanton variables. Every
configuration of spins corresponds to a configura-
tion of instantons and anti-instantons (which are
simply domain walls in the one-dimensional lat-
tice). Thus the configuration {o,=cr, =. . .=g~

~a+]. Oa+2 ' .=gb = 1) g~, j
=

~ ~ ~ =ac
o„,=. . .=o„=2) corresponds to an instanton at
t = a, an anti-instanton at t = b, and two instantons
at t=c. We can then rewrite Eq. (2.42) as the
partition function for a lattice gas of instantons and
anti-instantons with a chemical potential equal
to 1/g'. The instantons and anti-instantons may
be placed anywhere without affecting the action
(energy) except that we cannot allow an instanton
to sit on top of an anti-instanton. Thus, in effect,
the only interaction is an infinite repulsive core
between instanton and anti-instanton; instantons
do not interact among themselves.

The perfect-gas approximation ignores the double-
counting interaction, yielding

in agreement with Eq. (2.43).
In a continuum theory, such as QCD, there will

of course be additional corrections due to long-
range interactions between instantons and anti-
instantons, as well as to the quantum fluctuations
about the saddle points. Fortunately the dominant
corrections to the perfect gas in QCD arise from
the long-range interactions which can be evaluated
in the dilute-gas approximation. Furthermore,
as we shall see below, instantons never get too
dense nor does the coupling constant get large
enough to seriously invalidate the dilute-gas
approximation. Thus we shall be able to proceed
to include effects of instanton interaction even
though we lack a systematic procedure for dealing
with the problems of double counting and quantum
fluctuations which would arise for large densities
and couplings.

Finally let us note that, when the coupling in-
creases, other field configurations in addition to
instantons might become important. That in-
stantons determine the vacuum structure for ar-
bitrarily small coupling is due to the fact that
although the "energy" necessary to create an
instanton in the analog gas is (1/g')S„, the "en-
tropy" is even larger [S- lnV (V = volume of space
time)] and the "free energy" E=Se -g'InV is
dominated by the entropy term. The "temperature"
corresponding to a phase transition from an n,
vacuum is roughly given by

-g'=S~/InV . - 0.

On the other hand, one might consider other field
configurations whose action is in some sense in-
finite. If such field configurations occupy a volume
in function space which is. large enough they might
be important at some finite g'. Of particular
importance are configurations consisting of pairs
of configurations (molecules) whose action depends
logarithmically on the separation of the pair. The
free energy of such a pair, separated by A, will
behave as E- C lnR -g lnR. For small g' the pair
will be close together, while for large g' the en-
tropy term will dominate and the pair will sep-
arate. We might then expect a phase transition
at a finite temperature (=g') from a gas of tightly
bound molecules to a gas of dissociated molecules.
Such phase transitions are well known in one- and
twq-dimensional systems with logarithmic in-
teractions. "

In QCD there are two important cases of such
molecular field configurations. First, there are
instanfons themselves in the presence of massless
fermions. The fermions effectively bind instantons
to anti-instantons with an attractive logarithmic
potential, thus suppressing tunneling. The phase
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transition which is responsible for chiral-sym-
metry breaking, from a gas of instanton-anti-
instanton molecules to a dilute gas of instantons,
is discussed in Sec. V. The second case concerns
merons. As we shall see, instantons themselves
can be regarded as tightly bound pairs of merons,
which are localized lumps of one-half topological
charge, with independent entropy of position and
logarithmic interactions. The phase transition in
which instantons dissociate into merons and
which may be responsible for confinement is
discussed in Sec. VI.

III. INSTANTON INTERACTIONS

In this section we will study some simple fea-
tures of the instanton gas in QCD. As explained in
the Introduction, this theory has no free paramet-
ers and we cannot vary the relative importance of
instantons by varying some convenient coupling
constant. However, by asking questions which em-
phasize different distance scales one may accom-
plish much the same effect. At short distances the
effective coupling becomes small and the density
of instantons is very low. .Our strategy will be to
start at the small scales and work our way out-
ward. Inevitably, we reach a scale where the in-
stantons are close enough that their interactions
become significant. This produces new pheno-
mena which we will discuss in this section. We
will find that large new effects begin to appear at
scales where the density of instantons is reason-
ably low and quantitative calculations are possible.
Still larger scales where confinement presumably
becomes manifest will be probed in Sec. VI.

In order to focus on pure QCD effects, we will
discuss an unrealistic theory with no light fermions
(the properties of light (Iuarks will be studied in
Sec. V). We will also treat SU(2) and SU(3) in par-
allel since they differ in their behavior in instruc-
tive ways. Let us begin with the role of the BPST
instanton in the SU(2) vacuum. As shown by 't
Hooft its contribution to the functional integral is,
to one-loop order,

&~ IH le+ &) = f )("f '—'. (6 66)("',)
'

additive constant in 8v'/g'.

8@2 8g2
= ——+ —" ln -+C.g'(p) g.' ' pp

(3.2)

dp 8v
( iH~m+()N„t„=f6 z —,(0.26)

p g p

2

xexp —, . (3.4)g'(p-
A modest extension of 't Booft's calculation of the
SU(2) instanton determinant allows us to conclude
that, for SU(3),

For simplicity, we shall adopt the coupling-con-
stant definition which sets C = 0. This is not the
same definition as the dimensional regularization
definition of g [which amounts in the SU(2) case to

. setting C =-6.9] but does not appear particularly
unnatural —indeed, for the values of g we shall be
interested in, it makes two-loop contributions to
anomalous dimensions of low- lying twist-two op-
erators rather smaller'than does the dimensional
regularization definition. This is quite important
since we shall claim that interesting strong-inter-
action effects occur at sufficiently small coupling
constant that we may neglect higher-loop effects-
but the same physics may correspond to large or
small g depending on what definition of g has been
adopted. In what follows we shall replace p. and g,
by. p, so that

8n' 22 l 22 1 8m22 ln . 22 ln (3.3)g'(p) ' Pp ' pp g.' '

Eventually we will see that p, can be related to the
hadron scale size [we expect this one-loop expres-
sion for g(p) to be useful as long as Pp is small].
To be consistent with the requirements of the re-
normalization group we must also assume that the
determinantal factor of (8v'/g, ')~ is actually [8v'/
g'(p)]'. To be more precise about this it would be
necessary to do a two-loop calculation of the in-
stanton determinant, a worthy exercise which has
-not yet been carried out. In summary, our ex-
pression for the one-instanton contribution to the
vacuum functional in the pure SU(2) gauge theory
is

xexp —,+ —, in@,p
8w' (n (H ~n+ I)»(» =

Jt
d'z

t —,(0.10)P' ' g' P)

(3.1)
where p, is a renormalization mass introduced by
the Pauli-Villars procedure. It of course makes
sense to express this in terms of a running coup-
ling constant, g(p), but this is ambiguous until
some precise definition of g has bet:n adopted. To.
one-loop order, however, the ambiguity is just an

8m2x exp —, ', (3.5)
g (p-

where this time 8m'/g'(p) = 111n(1/pj's. The 12
powers of g ' arise from the zero modes: one
dilatation, four translations, and seven gauge
modes (the X, generator does not induce a change
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2 p Xv

x2+p2 @P, v / (3.6)

Since A now falls as x at infinity it makes sense
to construct multi-instanton configurations by su-
perposition:

A; = Q R,(,"A,",)(x —z„p,.) . (3.7)

In this expression 4,"' is the basic instanton or
anti-instanton solution of Eq. (3.6) {for anti-instan-
ton q -)I) and R,„ is a, matrix from the adjoint re-
presentation of the group representing the group
orientation degree of freedom. This is a solution
of the Yarig-Mills equations only in the limit of in-
finite separation, but should be a decent approxi-
mation to the dominant configuration so long as the
pseudoparticles do not overlap significantly. In
this case the functional determinant should just be
the product of the individual instanton determin-
ants, and we know what weight to give these con-
figurations wheri we integrate over z, ,p, ,R,'~". In
what follows, we shall in first approximation neg-
lect interactions, taking the action of N pseudopar-
ticles to be V8v'/g'. After exploring the conse-
quences of this assumption, we will turn to a com-
putati. on and discussion of the effects of instanton-
anti- instanton inte| actions.

The dilute gas arguments of Sec. II then imply
that the dominarit contribution to the functional in-
tegral comes from- configuratioris where the space-
time density of pseudoparticles of scale size be-
tween p and p+dp is [for SU(2)]

in the instanton field and does not induce a zero
mode).

Next we construct the analog gas. To be system-
atic, we should invent a set of constraints such
that solving the Yang-Mills equations under them
yields the desired multi- instenton- anti-instariton
configurations, evaluate. the furictional iritegral
about the. saddle point, and then integrate out the
constraints. Since we do not know a good way to
do this we resort to a crude procedure which
should be adequate in the limit of low pseudopar-
ticle density. First, we convert the standard in-
stanton to singular gauge by inversion:

p I

f(p) =v'
~ D(p')

0 p
(3.8)

(this is the sum of equal contributions from instan-
tons and anti-instantons). In the asymptotic free-
dom regime (small p) we may reexpress f as an
integral over x= 8n'/g' by using the [SU(2)] re-
lation

dx
d Inl/p p,

The result is
0

f(x) = f dxn(x),

(3.10)

(3.11)

~44 .26 .l5

I.O-

where now D(x) =0.26x e ". Figure 2 displays f as
a function of x as well as (p(U, ). It is clearly a very
rapidly varying function: f increases from 0.01 to
1 as p increases by only a factor of 2, from 0.15'. '
to 0.35p '. We shall find that when f is less than
one, but not vanishingly small (greater than 0.1,
say) instantons cause significant modifications of
vacuum properties, in spite of the smallness of
the effective coupling in this region (x-10). When

f is greater than 1, however, the instanton gas
picture must break down. and some new vacuum
physics must take over. Everything that we will
find strongly suggests that this transition is as-
sociated with confinement, or at least with the phy-
sics which sets the scale size of hadrons, and we
w'ill provisionally make that identification. Since
the rise in f is so rapid as a function of x or p one
gets a rather sharp definition of the hadronic cou-
pling constant and scale size: x, -8, p, jU. -0.3.
Thus, through the equation f(x(p, (((, )) 1, one real-
izes dimensional transmutation, eliminates p. in
favor of the hadron scale size, and identifies the
hadronic coupling constant as a pure number. By
most usual measures x- 8 corresponds to a rather
small coupling constant and measurements which

dp dp 87)' 4
—,/(p) = —,(0.26), e-s~ /P((()

g'(p) (3.8)

To check the consistency of the dilute-gas approxi-
mation we may compute the fraction, f(p), of
space-time occupied by pseudo-particles of scale
size less than p. Iff(p) is less than unity we will
have a dilute gas at scale size p. %e take the
volume" of an instanton of scale size p to be that

of a sphere of radius p[())'/2)p'] and find

6.. lO l4

FIG. 2. The fraction f of space-time occupied by in-
gtantons smaller than agiven scale size p in an SU{2) {no
quarks) gauge theory. We plot f as a function of p and
x{p).
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for the pseudoparticles to influence each other.
To study this problem, we imagine imposing on
the system from the outside a sneak slowly varying
external field, F;"„'. In the no-instanton vacuum
the action of such a configuration is just

f 5- (3.14)

l2 l6 20

PIG. 3. The fraction f of space-time occupied by in-
stantons smaller than a given scale size p in an SU(3)
(no quarks) gauge theory. We plot f as a function of p
and x(p).

probe distances smaller than the hadron scale will
see even smaller coupling. This picture of what
happens in SU(2) rendu'ires some modification be-
cause it will turn out that at x &11, the instantons
ionize into a new kind of pseudoparticle, dubbed
meron, which is very directly related to the dy-
namics of confinement. This would lead us to re-
vise our estimate of the critical values of p and x
slightly to x, -1.1, p, -0.2p. '. We will amplify this
remark in Sec. VI.

The situation for SU(3) is significantly different.
Now

d In(1/p p, )

and we have [in contrast to Eq. (3.11)]

(3.12)

(3.13)

This function, plotted in Fig. 3; attains the critical
value at a much larger value of x and grows much
more rapidly with p than the SU(2) case. The same
kind of argument as before would lead us to be-
lieve that the hadron coupling constant and scale
size are given by x, -16, p, -0.25'. '. Again, the
analysis of various effects arising from merons
or instanton interactions will cause us to revi. se
these numbers slightly, but the basic point re-
mains: The dilute instanton gas picture reveals
how and where dimensional transmutation occurs
and shows, most importantly, that the coupling
constant at the hadron scale size is a smaE/ num-
ber which gets smaller as the group gets larger.
The value provisionally associated with SU(3), e
-0.4, is not far from numbers which have been ex-
tracted from optimistic studies of scaling in elec-
tr oproduction.

We now would like to discuss various effects
which arise within the dilute-gas picture when the
density, while still small, becomes large enough

In fact A'"' must be regarded as a perturbation on

[A,], the multiple-instanton configuration which
dominates the dilute gas vacuum. The interaction
of the external field with the instantons must be
included in 5S and„as we shall see, the net effect
for a weak external field is just a coupling-con-
stant renormalization.

First, we examine the problem of a single in-
stanton in a weak, slowly varying F;"„'. Thus, A,
=[A ]'+M, where [A, ]' is the standard single in-
stanton of scale size p and 64, approaches the po-
tential of a weak constant F,'"„' at distances large
compared to the instanton scale size. In fact we
will divide space into two regions by a sphere of
radius R, many times p, such that inside, in re-
tion I, [A„]' is larger than 6A, and outside, in re-
tion II, 5A„ is larger than [A„]'. For ~x~ compar-
able to R we may choose 5A, =-&F,"„'x„, the I.an-
dau gauge potential of a weak constant F,„.

Inside R we could find 5A, explicitly as the so-
lution of the linearized equations of motion in the
instanton background field subject to the condition
of reguLarity at the origin and linear growth at
large x. On the other hand, if we define

S,= 4 t d'x(E;„)',
"Ixl& R

then

S,([A]o+ M) —S~([A ]')

(3.15)

&&~ I& R

d4x(DO 5A'„)E'0„+O(5A') . (3.16)

+ O(5A'). (3.17)

Now A is the instanton field in singular gauge so
that

2

(3.18)

where M „=g„„—2x„x„. Also, on the surface lxl
=R. we may set 6A„= -&F;"„tx". The angular aver-
ages may then be carried out explicitly to evaluate

Upon integrating by parts and using the equation
of motion for the instanton background field, D'F', „
=0, we can express the interaction energy as a.

surface term,
i

S,(A'+ 5A) —S, (A') = JI dOx„5A;(E,'„)'
lxl =R
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the O(5A) surface term, with the result

S~(Ao+ M) S~(Ao) p21 "*'r]r'
2

+ O(5A'). (3.19)

ticle, and then weights this effective single-par-
ticle action with the appropriate pseudoparticle
density and integrates over scale size and location
to get the full effective action. For weak external
fields, one finds from Eq. (3.20) that

The O(6A') piece can also be seen to reduce to a
surface term and turns out to give the integral of
z~(F;*„')' over the region ~x

~

&R. A similar analysis
of region II, with A' now regarded as the perturb-
ing field and A'"' as the background field, yields
an identical surface term to Eq. (3.19), assuming
only that A'"' is a solution by itself of the Yang-
Mills equations and that it goes to zero at infinity.

The net result of all this is that an instanton in
a weak, slowly varying background field may be
assigned an interaction energy

2
ext

int p ~a@i aV V ~ (3.20)

where E'"' is the value of background field at the
instanton position. Note that if E~"t is self-dual,
S,„t vanishes because q„„is an anti-self-dual ten-
sor. If E"t is itself taken to be an anti-instanton
field of scale size p and centered a distance R
from the instanton, one finds

32$ p p
int + 2 R4 +ah~au v~bg v' R& v' (3.21)

where R is the unit vector pointing from the instan-
ton to the anti-instanton and R,„ is the matrix de-
scribing the relati:ve group orientation of the two
pseudoparticles. The maximum value of -S„t
(obtained by varying R,~) is 96m'g 'p'p 'R ', inde-
pendent of A, . This agrees with For ster 's calcu-
lation of the action of a pair constrained only as to
location, but not as to orientation. '4 Since, in gen-
eral, S,„t depends on instanton group orientation
and falls with separation like R 4, instantons look
like objects carrying a coLox magnetic dipoLe mo-
ment proportional to p'q, „. [Recall that a magnetic
dipole moment is really an antisymmetric tensor

f(j'x" —j" )x. ] This interpretation leads us to
expect that the dilute instanton gas will behave like
a dilute gas of spins with its response to an exter-
nal field described by a susceptibility. This effect
will, among other things, lead to a "classical cou-
pling-constant renormalization" of a rather inter-
esting nature which we will now study.

In the low density limit we may use a virial ex-
pansion to find the effect of the medium on an ex-
ternal field; Given the interaction, Eq. (3.20), of
a single pseudoparticle with the external field,
one first computes

~2 4(E.„P.„-Bm m p
2 g' &(n)

+ O(E,„,'), (3.22)

r'(p) &(n)
' (3.23)

l

Since K&1, the instantons cause the vacuum to be-
have like a paramagnetic medium and increase the
interaction energy between fixed external sources.
In fact, one easily sees from our discussion of the
integrated density, f(p), that the integral in Eq.
(3.20) will be large even in the dilute gas region
where f is less than one. If K is large enough, it
may even be energetically favorable in the pres-
ence of external sources (quarks) to form a flux
tube (or bag) in which the flux is expelled from the
region of normal vacuum (K large) and confined to
a region of abnormal vacuum (K= 1) where no in-
stantons are present. Expelling the instantons
costs vacuum energy which is made up for by the
lowered interaction energy between the quarks. In
this picture, the confinement or hadron scale will
have directly to do with where K begins to depart
significantly from one. This will be different
from our earlier criterion based on integrated den-
sity, but not dramatically so.

If we focus our attention on the instantons them-
selves, the above effects can be interpreted as a
coupling-constant renormalization. Evidently, the
action of an instanton of scale size p is decreased
by the presence within it of smaller scale instan-
tons. Very crudely

8m2 8g'
g'( ) pa'(p)

where n refers to the SU(n) gauge group, &(n) is
3 (8) for n=2 (3), and E,„=~e, „~,F~,. The appear-
ance of E -E simply reflects the fact that the in-
stanton interacts only with the anti-self-dual part
of E,„,. The analog of Eq. (3.22) for an anti-instan-
ton simply replaces (F —E)' by (E+E)'. Since in-
stantons and. anti-instantons occur with equal prob-
ability, the net effect of the medium is proportion-
al to [(E+E)'+ (F —E)']/4 =F'. In other words,
the effect of the medium is to renormalize the or-
iginal external field action density by a multipli-
cative constant E ', where

S,f, =(e ~rot 1),
averaging over group orientation of the pseudopar-

' dp' 4v' 8v'
&(n) g'(p') (3.24)
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FIG. 4. The dependence of the effective coupling x
= 8x /g as a function of distance pp, taking the classi-
cal renormalization effects into account for SU(3) (no

quarks). The dashed line represents the value of x using
asymptotic freedom alone.

x(p) x(p)=—~ x'(p)&„(x(p)),p' &n (3.25)

where x(p) is taken to be the perturbative asymp-
totic freedom effective coupling. Differentiation
with respect to lrp gives a renormalization-group
equation for x,

Ch 4n'

Cln(l/pg) " &(n)
(3.26)

(where C,,= —",, C~= 11), which we may integrate
numerically. The results for SU(3) are displayed
in Fig. 4 and for SU(2) in Fig. 5. In both cases the
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FIG. 5. The dependence of the effective coupling x
=8m /g as a function of distance pp, taking the classi-
cal renormalization effects into account for SU(2) {no
quarks). The dashed line represents the value of x using
asymptotic freedom alone.

where g(p) is, at this stage, the standard asymp-
totic freedom running coupling constant and g(p) is
the running coupling constant including the "clas-
sical",renormalization effects of the medium. As
expected, the medium amplifies the ordinary per-
turbative asymptotic freedom effects and causes
the effective coupling to increase more rapidly
with scale size. One could regard Eq. (3.24) as
a self-consistent equation for the effective coupling
by replacing x = 8m'/g '(p) under the integral by x
= 8~'/g '( p):

new effects turn on very sharply at scale sizes
where our earlier estimates indicated that the in-
tegrated pseudoparticle density was rather small,
say 10/p. As soon as they are at all significant,
the new effects are dominant.

A further point is that since x increases more
rapidly with p than required by asymptotic free-
dom, the integrated density functions Eqs. (3.9) and

(3.1l) should be modified. Taking account of Eq.
(3.25) we have

(3.27)

Now f (x) is less than f(x) and, more importantly,
always less than one for interesting values of x
(x & 10): One easily sees that f (x) &x&(n)/4. There-
fore, the coupling-constant renormalization effects
appear to reduce instanton densities to a manage-
able level and change our definition of the critical
scale size (where a transition from vacuum physics
to confinement physics occurs) to that scale
( 0.1p ') where the effective coupling begins to in-
crease very rapidly. Therefore we must modify
the picture we extracted from the behavior of the
noninteracting instanton gas at the beginning of the
section. There we said that the onset of new phy-
sics is associated with the passage off(x) through
1, identifying in that way a critical coupling and
scale size. Once the effects of interactions are
included, the density no longer rises dramatically,
but there is still a well-defined scale size and

coupling constant at which the renormalized coup-
ling constant (and vacuum susceptibility) begin to
rise rapidly. We now identify this transition as
setting the hadron scale and find new critical coup-
lings and scale sizes for SV(2) and SU(3) which do

not, in fact, differ markedly from the original es-
timates.

These considerations are probably too crude to
be taken very seriously since the rapid rise in
D(x)x' means that most of the renormalization ef-
fect on an instanton of a given scale size is com-
ing from instantons of nearly the same size. It
probably should be renormalized by instantons of,
say, half its size, or smaller, which would delay
the onset of sizable renormalization effects to
smaller x and integrated densities more nearly
equal to one. At the moment we do not know how
to translate this notion into manageable mathemat-
ics, but do not believe that it would materially
change the qualitative conclusions we have reached.
The most important of these qualitative effects,
let us repeat, is the identification of a well-de-
fined scale size and coupling constant (and a small
coupling as well) at which there is a, transition be-
tween asymptotic freedom behavior and confining
behavior. This provides, me believe, the basic
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The Fourier transform of the singular gauge in-
stanton field is easily seen to be

(3.29)

where p is the scale size, I' has the property

E(x)-—g x', x -0
(3.30)

explanation for the apparent. smallness of the Yang-
Mills coupling on the scale of ordinary hadron
sizes.

An alternate method of computing the classical"
coupling- constant renormalization is to compute
the gauge field propagator D'~ (x- y). We now know

that the effects of vacuum tunneling may not be
negligible and we must include the non-Gaussian
fluctuations associated with tunneling. The sim-
plest way to do this is to write 4, as a sum over
instanton and anti-instanton fields (in singular
gauge) and perform the average by integrating over
instanton scale sizes, locations, and group orien-
tations with the appropriate density function D(p)
[D(p) summarizes the effects of Gaussian fluctu-
ations about vacuum tunneling]. In the product
A;(x)At(y), cross terms between different instan-
tons vanish when we perform the independent
group orientation averages and we are left with a
sum over instantons of the correlation function
(A'„A„') for a, single instanton.

It is best to evaluate the propagator in. momentum
space (momentum q) and we have (A„"' is the one-
instanton field)

P

d y e'~'~ d xe'~'"
Ji

d4zA~&0~(x z)Aa~o~(y z)

Dan (q) (2~)4f, u v
—qgqv~q5

'~ dp 1 D(p)
p i'( p)

(3.32)

This is just a numerical multiple of the free prop-
agator, and the result of adding the two effects to-
gether is to produce a finite wave-function renor-
malization

(3.33)

Since the effect of Z on g is g'-g'Z this classical
wave- function renormalization increases thy ef-
fective coupling. Our previous result was

(3.34)

IV. QUARK POTENTIAL

We now turn to the effect of vacuum tunneling on
the interaction energy of infinitely massive test
particles. As discussed in Sec. II the energy of a
quark-antiquark pair separated by a distance R
should be given by the Wilson loop in the form

As long as the renormalization effect is small,
the two results are identical. The previous calcu-
lation is in fact the more accurate. It was a self-
consistent field type of .calculation which takes in-
to account instanton- anti-instanton correlations
induced by the long-range B ' interactions. Equa-
tion (3.27) does not take these correlations into ac-
count.

Finally, it is worth emphasizing that the instan-
ton gas is a paramagnetic medium. It is magnetic
rather than electric because a Euclidean gauge
theory corresponds to static magnetism. It is
paramagnetic because the coupling is renormalized
upward.

and g(p) is the coupling appropriate to scale size
p. e ~'~'~ = tr exp i dh'A (4.1)

To construct the tunneling contribution to the
propagator we must form 4.,4„", average over
group orientations (q„„-R„q„„,and average
over R), sum over instantons and anti-instantons,
and integrate over scale size. The result is

(3.31)

, The factor —', arises from group averaging if the
group is SU(2). For SU(3) replace 3 by —,'.

If there is an upper cutoff p, on p and qp, &1,
then this result is simplified to

where f is taken about the obvious rectangle of
length T and width R, P is the symbol for path or-
dering, and the expectation is taken over gauge
fields A with the usual Yang-Mills action as weight.
This is of course the famous loop integral one. uses
as a confinement test, but in this form it is being
used to pick out the potential energy of static spin-
less sources at separatiori R. This, or some vari-
ant of it, is directly relevant to the spectrum of
charmonium. Our interest in it, at this stage, is
mainly as an indication of how the instanton mod-
ifications to vacuum structure have a large and
qualitatively important effect on physics.

Our expectation is that E(R) can be computed
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05
the figure) which have an effect on the loop. Since
the instanton fields fall rapidly at infinity the in-
stantons may be considered in isolation in their
local effect on the loop.

Thus the entire loop integral may be written, in
this approximation, as

Loop tr(U-"U" U"U' 'U' ' U' 'U' ')
. I 2 n n n-& 2 ],

(4.2)

where the U, 's are ordered line integrals,

Xp

FIG. 6. The contribution of a given instanton-anti-
instanton configuration on the quark loop.

reliably in the small R limit since fluctuations in
A on a scale large compared to R will cancel out
between quark and antiquark. By taking R small
enough we can then arrange the loop integral to
be sensitive only to the low-density, small-scale-
size part of the instanton gas, where calculations
can be done reliably.

If this calculation is done in the naive perturb-
ation theory vacuum one will of course find

Pexp i dx'A"'

U( )U(-) tr(U(+)U(-))1

n
r (4.3)

[where n is the n of SU(n)]. But then if the averag-
ing is done in reverse order, from n down to 1,
the entire loop integral collapses to a product of
traces,

(4 4)

associated with individual instantons. For U"
(U' ') the integr'al is taken over the increasing (de-
creasing) time portion of the loop. Since instantons
are widely separated and their A. 's fall rapidly, we
assume that we can truly extend the upper and low-
er limits on the line integra, ls to infinity.

This expression simplifies when we average over
the gauge orientation degree of freedom of the in-
stantons. To average we replace U,"' by g, U,". g,'
a6d independently integrate each g,. over the prop-
erly normalized group measure. We immediately
see that under this sort of averaging,

E(R) = ———
3R 4m

The effect is entirely due to one-gluon exchange
with a coupling constant varying according to asy-
mptotic freedom. Note that this energy is explic-
itly O(g'). But even at small distances the vacuum
has nontrivial structure due to vacuum tunneling.
The associated vector potentials are O(l) and can
have a, large effect on E(R) even though the density
of small-scale instantons is low.

The computation of this loop integral is in gen-
eral a rather difficult business, but it simplifies
considerably in the dilute-gas approximation. The
situation is as illustrated in Fig. 6. In our by now
familiar approximation the gauge field is taken to
be the sum of the individual. instanton gauge fields.
Individual instantons ire in singular gauge, so that
only those that are within their scale size of one
or both quarks will influence the loop integral.
Since the loop is long in the time direction there
is a time-ordered series of instaritons (labeled in

So, in the dilute-gas approximation, each instan-
ton contributes a term

5&,.= ln —[tr (U„". U„'. ')]
1

(4.5)

to the action. We label U by the position, x, , of
the instanton to recall that U depends on the re-
maining free parameters of the instanton. Of
course, U depends on the sjatia/ position (and scale
size) of the instanton because the quark loop has
been chosen to be invariant under time translatiori.
6S,. of course vanishes when x,. is far from the
loop.

Since the instantons are now decoupled, the sum
over multiple-instanton contributions to the loop
integral simply exponentiates the single-instanton
contribution and we .have

E(R) = d'x =. D(p) —tr(U„'U, —1), (4.dp 1.
p' n

where D(p) is the instanton density function [Eq.
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(3.5)] and the formula is strictly correct only so
long as E is small (density is low). Note that if
R =0 (the quark and antiquark are at the same
place) the paths used to evaluate V and U are
identical, but traversed in opposite senses so that
O'U =1. Hence E(0) =0 as it should. One can
easily convince oneself that the first term in an
expansion of E(R) in powers of R is O(R') so that
the first-order effect of vacuum tunneling on near-
by quarks ls to pl ovlde a harmonic-osclQator po-
tential.

The strength of this potential is easy to evaluate.
U is supposed to be evaluated using the singular
gauge form of A,' ' "". Qn the other hand,
tr(U" U' ') is identically the ordered loop integral
for a'. single instanton and is gauge invariant. It
is therefore legal to use the nonsingular gauge
form of A,'""~'"in evaluating the trace (a.more
handy gauge for computing). An easy calculation
gives

U'= exp[+imT x/(x'+ p')'~'], (4. I)

3x' (x'+ p')"'
+ O(R'), (4.6)

where R is the quark-antiquark separation. The
sign corresponds to attraction.

Doing the three-dimensional x integration and
summing over instanton and anti-instanton contri-
butions gives our final dilute-gas expression for
the quark- antiquark potential:

"~c dp 1 1
E(R) = (33.8)R' ——, D„(p), —

p p3 ~ n (4.9)

where B„is the instanton density function approp-
riate to SU(n). Now the upper limit on the p inte-
gration is surely determined by the confinement
scale of the theory. We have argued that this
scale corresponds to Bv'/g'(p, ) -10 and we will
provisionallyadopt p, asthe upper cutoff in the in-
tegral for E(R). However, since p 'D(p) is a, rea-
sonably rapidly decreasing function of p [for both
SU(2) and SU(3) J for p &p„ it is apparent that the
integral is.dominated by the scale sizes near the
upper cutoff, and the precise way in which the cut-
off is imposed by the physics of confinement be-
comes important. Nevertheless, our crude eval-
uation should be good for order-of-magnitude
purposes.

where x is the three-vector from the instanton cen-
ter to the quark (antiquark) position and p is the
instanton scale size. Simple algebra then shows
that

~2 4
dxtr(U +U 1) = R

L3 (x+9)

If we define a hadronic mass scale by g„-I/p,
we can express the unphysical p, in terms of p. „
and evaluate E in terms of physical quantities.
For purposes of comparison we consider two
cases: (a) SU(2) no flavors and (b) SU(3) three
flavors. The results are (a) E(R) =0.46 g„(p,p)',
(b) E(R) =14.5g„(p, „R)'. Most of the contribution
to the integration over scale sizes comes from the
range between p, and p, /2. The corresponding
range in x= Bv'/g' is from 10 to -15, with the in-
tegral falling reasonably slowly over this range.

What are the salient features of this result?
First, the SU(3) potential is much larger than the
SU(2) potential. This is largely due to the fact
that for SU(2) the cutoff x, = 10 is well within the
dilute gas regime (integrated instanton volume = 1
at x= 6.5) while for SU(3) x,=10 is just about at the
limit of the dilute gas regime. Had we-extended the
SU(2) integral to smaller x we would have gotten
a much larger result. What is most interesting is
the size of.our result —the potential energy is of
typical strong-interaction magnitude for [at least
in the SU(3) case] R's small compared to hadronic
size. Further, sizable contributions to this energy
come from instantons whose effective coupling
constant and density are very small. Once again,
the dilute in. st;anton gas produces large effects,
just through the vacuum tunneling corrections to
the vacuum, even when the coupling constant is
small enough that perturbation theory about the
naive vacuum would appear to be accurate. Al-
though we will not pursue the rriatter here, it
would appear that this in.teraction is of phenomeno-
logical interest, although when E becomes large,
one must do the calculation a bit better.

In this calculation we have ignored a key feature
of realistic gauge theories: light quarks. If all
quarks had masses larger than p.„~, say, then the
calculation we have done would be correct. How-
ever, we know that massless quarks suppress
vacuum tunrie1ing entirely and that light quarks
(on the scale of p ') reduce the amplitude for tunnel-
ing on a scale p. Since- there are at leasf. two fla-
vors of quark, whose masses are light compared to
p,„~we must expect E(R) to be considerably re-
duced. A further, and:potentially crucial, com-
plication is that if the bare masses of the two light
quarks are zero (or nearly zero) and receive their
physical mass by spontaneous symmetry break-
down, then one will expect the effective quark mass
to have a scale dependence (at short distances
symmetry breaking goes away). We will see
shortly that dynamical symmetry breaking occurs
at a scale size not too far-from p„ the confine-
ment scale. Lesson: Instanton effects are so
large that the suppression of their effects by light
quarks is cruci. al to even qualitative understanding
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of the dynamics.
Finally, we consider briefly the question whether

instantons by themselves can confine quarks. To
study this we redo the loop ca,lculation, taking R

'

to infinity. Everything goes through as before ex-
cept that in Eq. (4.6) we may take U = -1 (or U'
= -1) since a single instanton will overlap only the
quark or the antiquark. Indeed, the net effect is
just a renormalization of the quark mass which
turns out to be

'w u4E = 64m duu' cos' —
2&y/2

- r'cdp 1
x I —, D„(p)-p2 ~ tf

cdp 1= 111 —,—D„(p) .p' n
(4.10)

This of course shows no sign of diverging, no
matter what the upper cutoff on p. The next term
in the large-R expansion of E(R) is proportional
to B ' and should be interpreted as a coupling-con-
stant renormalization. An easy calculation shows
that

(4.11}

a result which coincides with Eq. (3.24) as long
as the total coupling. constant is small. Once again
we see that the effect of instantons is to increase
the coupling.

V. MA, SSLESSPERMITS AND CHIRAL-SYMMETRY
BREAKING

As was realized at the very beginning of the
study of the physics of instantons, massless ferm-
ions play a very special role, converting the pure
vacuum tunneling of the nonfermion theory into
combined vacuum tunneling plus emission of one
chiral quark-antiquark pair for each flavor of
fermion. (In this discussion a fermion is for all
practical purposes massless if its mass is small
compared to the inverse scale size of the instant;-
on. ) This is what underlies the solution of the U(1)
problem. In a suitable approximation ( to be ex-
plained below) an instanton of size p provides a
nonlocal effective interaction between quarks of
the gerieral form

(5 1)

where N is the number of massless flavors (the
color index as well as the pormalization have been
suppressed). This vertex is invariant under SU(N)
x SU(N) flavor transformations but not under axial
U(1), unlike the original Lagrangian of QCD. Since

D (m) = det[$„]„,= m p, (5.2)

where p is the scale size of the instanton. Thus
the contribution of an instanton is severely sup-
pressed unless its, size is larger than 1/m. When
mp is large the fermion determinant, after re-
moving the contribution to the charge renor'maliza-
tion, approaches unity (this is simply a conse-
quence of the decoupling theorem for heavy fer-
mions).

In QCD we believe that at least two of the quarks
have very small (bare) mass parameters. Thus in
the absence of'dynamical mass generation for
these quarks instantons of sizes less than 1/m„,
would be totally suppressed. However, if by vir-
tue of the dynamical symmetry breaking of chiral
SU(N) the quarks acquire a dynamical mass then
instantons of smaller size could be important.

In the above discussion the "quark mass" does
not refer to the position of a pole in the quark
propagator, but rather to the, in general, momen-
tum-dependent piece of the propagator which corn-
mutes with y, . Thus we might define a quark mass
to be m(P}=TrS '(p). In general this will consist

the effective interaction is nonlocal, it includes a
short-distance cutoff making it renormalizable.
Its numerical magnitude may be estimated in the
context of the dilute-gas approximation in much the
same way as we evaluated the static quark-anti-
quark potential. It will turn out that it is of stand-
ard strong-interaction magnitude and can be ex-
pected to provide a large mass to any would-be
g' Goldstone boson.

Thiseffectiveinteraction, however, doesnotdi-
eectly break chiral symmetry. Thus in the absence
of dynamical symmetry breaking tunneling is sup-
pressed and the evaluation of Green's functions of
chirally invariant operators (i.e. , that commute with

Q,}will only receive contributions from sectors with
/get topological quantum number zero. In effect in-
)tantons and anti-instantons will be bound together,

d have little effect on such Green's functions.
o be more specific, consider the one-instan-

on contribution in the presence of a light quark,
/hose mass is m. The normalization of the
tunneling amplitude is determined by the zero-
point fluctuations about the classical solution. The
additional term that arises due to the fermions is
simply the determinant of the operator 0„=—(i8
+m -gk, ,). As 't Hooft discovered, "the Dirac
equation 8„4= E4' possesses a zero energy nor-
malizable solution, 4,(x), when m=0, resulting
in D(0) = det[5„]

~ „,= 0. This is simply the mani-
festation, in the path-integral formulation, of the
suppression of tunneling. For a light fermion the .

lowest eigenvalue no longer vanishes, but is pro-
portional to m. Thus
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of a true mass term m, (p, g) and a dynamical mass
term mn(p, g). For weak coupling m, (g)-m, (m,
is the renormalized mass parameter in the La-
grangian) and m~(g) -exp(- I/g2). The momentum
dependence of m, (p) is calculable from the re-
normalization group for large p: m, (p/p, )
-m, (ln(p/p, )) (a is determined by the anomalous
dimension of @@). On the other hand, mD(p) will
behave as mD(p)-(p'/p') (G depends on the
mechanism for dynamical mass generation). In
Eq. (5.2) the mass parameter must be evaluated
at momenta of order 1/p, i.e. ,

lOP—

(&(~)+(y)) = +.(2 ~&, p)@.(y -~&, p), (5.3)

where 4'2(x, p) is the normalized zero energy mode
of the massless fermion in the instanton field":

psi2 2 i] 2

2( y P)
(

2 2)3/2 ~2 (5.4)

Upon integrating over instanton position and size
this yields an effective mass term which is mo-
mentum dependent:

m(p)= 32m2 ~ D(p) e22'—. —"dp 1

p p
(5.5)

In effect this mass is generated by considering the
fermion propagating in the background instanton
field in the dilute gas approximation and only in-
cluding the modification of the propagator due to
the zero-energy mode.

Since one must integrate over all scale sizes,
p, in Eq. (5.5) m(p) cannot be reliably calculated
for all p. If p is large enough the integral over
scale sizes will be effectively cut off at p-1/2P
and thus insensitive to the infrared behavior. As
discussed above the instantons interact strongly
when p- p, -0.2p. '. Thus we can trust the dilute-
gas approximation to calculate m(p) only for p
& 2.5p. In the case of SU(3) we find from Eq. (5.5)

Thus at very short distances, where only small
instantons are relevant, we will see the bare mass
which will suppress tunneling. If, however, dy-
namical symmetry breaking occurs, a dynamical
mass will turn on and restore the tunneling at
distances d, such that dm(1/dp) =1. For our pro-
gram to succeed it is necessary that d ~ p, .

To illustrate the above picture let us consider
the case of a single massless quark (1 flavor).
Here the original flavor symmetry of the Lagran-
gian is U(1) x U(1), and this is broken down to
U(l) by the transition to the 8 vacuum. The quark
acquires a mass directly by virtue of the nonvan-
ishing 0-vacuum expectation value of 44. In the
presence of an instanton of given size p at xr

5p JOp,

FIG. 7. The p dependence of m(p), in units of the re-
normalization scale parameter, in the case of one
fl, avor. The gauge group is SU(3).

that m(p} becomes substantial for p 2 20p, (see
Fig. 7) . In fact m (20 Ij}= 0.8 p, , m (15p}= 2.3 g,
m(10 p, ) = 8 p, and m(5 p} = 33 p. . Thus the quark
mass "turns on" at very short distances (compared
to 0.2p, ') where our calculation is reliable. This
means that instantons will undergo a pPase tran-
sition —and be liberated once their scale size is
roughly»p, '. This transition is certainly in the
dilute-gas region and occurs well before the
screening effects become substantial.

Unfortunately, it is much more difficult to cal-
culate the quark mass when there are two or more
massless quar3ks, since chiral symmetry is not
!completely broken by the 8 vacuum and additional dy-
namical symmetrybreaking is required. %e have

Isuggested that the source of such dynamical symme-
try breaking mightbe the effective determinantal in-
teraction between left-handed and right-handed
quarks. " Indeed given such an interaction one
might attempt to solve self-consistent integral
equations for the quark propagator in a chirally
asymmetric vacuum. The simplest of such equa-
tions (in the case of two massless quarks) is
shown in Fig. 8 where the left-hand side is the
quark mass operator, the internal line on the
right-hand side is the full fermion propagator in-
cluding the mass operator, and the vertex is the
instanton-generated effective fermion interaction.

FIQ. 8. Graphical expression of the integral equation
for the quark mass in the case of trvo flavors.
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The resulting equation is

(5.6)

OQ
q

~~%+X ~
p+q

0 ' ~ + 0

where V(p;p, q) is the effective vertex generated
by an instanton of size p.

In an analogous two-dimensional model we were
able to show that such an equation did indeed gen-
erate a quark' mass, "and by exploiting the cor-
respondence between the gas of instantons and the
two-dimensional Coulomb gas w'e were able to
verify this result. There we were able to proceed
with confidence by adjusting the coupling constant
to be arbitrarily small and relying on the infrared
instability of the two-dimensional theory to gen-
erate the mass. In QCD we have no such adjust-
able parameters. Furthermore, Eq. (5.6) is not
infrared unstable, namely the right-hand side does
not tend to diverge as m.„-0. Thus the existence
of a self-consistent solution depends on the mag-
nitude and structure of V(p, q).

The evaluation of V(p, q), however, requires
controlling instantons of arbitrary size, and thus
in general will be sensitive to the nature of the
cutoff on instanton sizes. Since V(p,j,q) behaves
as exp[-2p(p+q)J one could contemplate using
Eq. (5.6) to determine the form of mz(p) for large
p within the framework of the dilute gas approxi-
mation, but to actually prove the existence of a
self-consistently generated quark mass requires
detailed knowledge of V(p, p, q) for arbitrarily
large p. Caldi" has investigated Eq. (5.6) using
the dilute gas approximation and approximating
the kernel by the contributi. on of an instanton of
a given size. He concludes that the interaction
is strong enough to generate a quark mass.

In lieu of attempting to construct the quark
propagator in the true chirally asymmetric ground
state we shall investigate the stability of the
chirally symmetric 8 vacuum, using as a probe
an appropriately chosen Green's function which
can be reliably. calculated for large momentum,
Such a quantitiy is the o =Z„&4'„,I'. ,P &

propa-
gator (c( = color, i = flavor),

FIG. 9. The structure of the diagrams that produce
a tachyon in the 0 channel. The+ (-) blobs refer to
the effective determinantal four-fermion interaction
induced by instantons (anti-instantons).

'The instability of the vacuum will be signaled by
the divergence of the o propagator at positive-
(Euclidean) momentum squared. This corre-
sponds to a tachyon in the o channel, leads to the
breakdown of cluster decomposition in the 8 vacu-
um, and implies that the chirally symmetric state
about which the theory has been'expanded is not
the state of lowest energy. It strongly suggests
that the true vacuum is one with a nonvanishing
expectation value of o.

Now for large enough P, D,(P) can be reliably
calculated, with the corrections to its free-field
structure being generated by ordinary perturba-
tion theory plus the effects of instantons in the
dilute-gas approximation. In particular, we focus
on the effective four-fermion interaction induced
by vacuum tunneling, which leads to diagrams
such as those displayed in Fig. 9. Large external
momentum (compared to the inverse confinement
scale) provides a scale size cutoff, restricting
us to a regird. e where the effective coupling is
weak and the instanton density is low. As p is de-
creased we shaj. l find that the instapton interaction
increases in magnitude and becomes large enough
(for p = 6.5(L() to generate a tachyon pole in a re-
gion where the calculation is still reli.able. This
we argue demonstrates that, as. in the case of one
massless quark, the instantons are the source of
chiral-symmetry breaking and that this occurs -at

a distance short compared to the confinement
scale.

%e may proceed to a description of the calcula-.
tion itself. The key ingredient is the instanton
four-fermion vertex computed by 't Ijooft, "

'!

('8(4 ((EU)@)()(+)'k (!)I)! l(*)
(

8) = (I! () ()
' ) ~)'6 (2I! ~II llI 'll )( 2

'

. ( .
2

+
k4

x 4,(nr)%', (x)4,(y )e,(g ), (5.V)

where ze, . . . are the locations of the fermion
sources (we take the instanton to be centered at
the origin), a, . . . are flavor indices, c(, .. . are
color indices, i, . . . are Dirae indices, and

j./2 ps/2
O(+) &a (&2+ ~2}si2

is the normalized zero-energy eigenfunction (p
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is the instanton scale size). As explained by
't Hooft, this simple form is achieved by aver-
aging over the gauge orientation of the instanton. "
For anti-instantons, replace (1 —y, ) by (1+y, ).

To compute the 0 propagator we must chain
these vertices together as in Fig. 9. In order not to
overcount fermion propagators, we must put an
inverse massless propagator between each pair
of fermion lines which is joined together (I' is an
improper vertex). The resulting y, structure re-
quires instantons to alternate mith anti-instantons
in the chain.

The explicit flavor and y, structure of the ver-
tices allows one to say something about the corre-
sponding structure of the "a"propagator. The
U(2)SU(2) relatives of o =Z%',.4', are q=ZV, y, 4', ,
m'=Z@, 7', &4'&, and n', =F4', 7'„y,4',. , and the same
graphical series as in Fig. 9, with appropriate
modifications of the terminating vertices, defines
their propagators. An I= 1 projection gives an
extra minus for each instanton relative to the I= 0
projection and for z, propagators there is an extra
minus sign for terms having an even number of
instanton vertices. The net result of this is that
if the o propagator is written A" =Q,". ,A, , where

A,. is the contribution from a chain of i instantons,
then the q propagator is written A' '=Z,",(-)'A, .
The general propagator has the symbolic form
A "(o'+P)+A' '(q'+ 7,'). In other words, the o'

and 7 propagators are identical, as required by
SU(2)SSU(2) invariance, while the o and q propa-
gators are not the same, as mould have been re-
quired by U(2)SU(2) invariance. The breaking of
chiral U(1) comes precisely from terms with in-
.stanton number not equal to zero, as expected.
This is just another manifestation of the breaking
of chiral U(1) by vacuum tunneling.

The signal for vacuum instability will be a singu-

larity in either A" or A' ' at some positive
(Euclidean) P'. Whether it occurs in A" or A' ' is
not significant because the underlying theory is
massless and we may freely interchange our de-
finition of g and 0. Because these functions are
constructed as a geometric series, they obey an
integral equation with a kernel built out of the
instanton vertex. The kernel has an eigenvalue
spectrum (depending on the momentum, p, flowing
through the propagator) and the geometric series
will first diverge when the largest eigenvalue of
the kernel passes through 1. Our calculation will
be trustworthy if this catastrophe happens for suf-
ficient;ly large p'.

In computing the bubble chain there are three
types of integration to do: over the location of
each instanton, over the loop momentum in each
fermion loop joining two instantons, and over in-
stanton scale sizes. The first simply establishes
momentum conservation at each vertex; the sec-
ond would be the usual trivial fermion-loop in-
tegral but for the structure the vertex possesses
through the fermion zero energy eigenfunctions-
it is is any event an explicit momentum-space in-
tegral which we will display; the third is what
makes the problem nontrivial —if instantons came
in one scale size there mould be no integral equa-
tion to study, just an explicit geometrical series
in an explicit bubble function. We of course must
supply the scale-size-dependent inst nton density
function for each scale-size integration, and we
will see that the external momentum provides the
desired large scale-size cutoff.

With this preamble we are ready to write down
the kernel of our integral equation. The kernel
acts on the scale-size variable, p, and has the
external momentum, p, as a-parameter. Its ex-
plicit form is

1/2 Df Ib 1/2~ 2 1/2 2 0 1/2 2 ' d4
(5 8)

p5 pl5 2 P 2 ' P (2p)~ e'V -e)' '

where D( p) is the appropriate scale-size density
function and D( p) appears with a square root since
each instanton belongs to two loops. 'The d'q in-
tegration is the fermion-loop integration. The fac-
torsofm p' ' e "",ande "~ ' arisefromthe Four-
ier transforms of the zero-energy fermion wave
functions in the instanton vertices. The exponen-
tial factors provide the large scale-size cutoff
mentioned before. The eigenvalue equation is
just

Because of the srna/l scale-size cutoff built into

D(p), it is reasonably easy to see thatbec, ause of
the exponentials, for large p the eigenvalues are
all small. Our problem is to find when, as we re-
duce p, the largest eigenvalue first crosses 1.

The momentum-space integration can be partial-
ly performed yielding

22,.b»(p)]"'4 'D(p')P
(p+ p')'

dp'&, (p, p')+(p') . (5.9) where

x F((p+ p')P), (5.10)



TO%ARD A THEORY OF THE STRONG INTERACTIONS

l(P) f=ll e "l'
1

(y2 1)1/2[3y2 4 1)(y2 I)1/2]

~b+ (y'- I)"'l
1, p-0
-(3P/2)'/2e ' P - ~. (5.11)

Now we will be interested in E(P) for values of
P=I, and we find that for these values E is ap-
proximately given by (to= 5%)

E((p+p')P)=e '~"" for O~P(p+p')&2. (5.12)

This again makes (as in the case of one massless

quark) the large scale cutoff induced by the ex-
ternal momentum very explicit.

The only place where the nature of the gauge
group enters is in determining D(p). If we study
SU(2) color with two light flavors then for small
scale sizes

S~& 4 8m~
D(p) = 0.26, exp-

g'(p z'(p

and

so that

l35112
K (p p') = (0.26)(322')6'p, ' ln —ln e 2'~~'.

P ~ SU(2) (p+ p')' p p p p'

In the case of SU(3) color and two massless flavors

(5.13)

so that

l)45 1 1 3

K (p p') = 0.1(322')(a2)' p,
' ln —ln e 2'""' .P ~ SU(3) (P+P ) PP PP

(5.14)

To find the maximum eigenvalue of E~ we will attempt to maximize its expectation valu= in a normalized
wave function 4'(p). It is convenient to rescale P by p and define x = pp and Q(x) = v'p4' (p) so that p is
normalized with respect to the variable x. The. expectation of K is then, foranSU(2) gauge group,

= 106421 —"
P P 0 (x+x')'

d+d I + L + +I +I (5.15)

where J dx )t)2=1. The salient feature of this ex-
pression is that the explicit p dependence out front
is very rapid while the kernel L~ is rather slowly
varying with P. Evidently the critical value of P
will be -6.9p, : For P large compared to this„ the
factor of (6.9p, /p)5 will drive the maximum eigen-
value to zero, and vice versa for p small corn-
pared to 6.9j,. The kernel L~ is rather well be-
haved and a numerical exploration of this region
reveals that the maximum eigenvalue crosses
1 at P/p. = 5.5 and the corresponding eigenfunction
is reasonably well approximated by P(x}=8(x
-0.75}8(1.75-x}. Thus the instability arises
from instantons whose scale sizes range from
0.14' ' to 0.32@, ' and the corresponding couplings
range from 82'2/g2= 12.0 to Sw2/g2= 6.9.

If the gauge group is SU(3) instead of SU(2) the
analog of Eq. (5.15) is

x dxdx'p( )xI(2xx')p( 'x). (5.16)

Analysis of this equation shows that the maximum
eigenvalue crosses 1 atP = 9.2p, with the corres-
ponding eigenfunction being approximated by Q(x)
= Q(x —1.25) 8(2.25 -x). Therefore the instantons
responsible for the instability range in scale size
from 0.14 p. to 0.26 p, . The corresponding coupling
constants range from 8)72/g2 =19 to 13. In this
range the dilute-gas approximation we have em-
ployed is reliable.

We therefore conclude that the chirally sym-
metric 8 vacuum is unstable, that in the true
vacuum o will have a nonvanishing vacuum expec-
tation value, and that the quark will possess a'
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dynamical mass. Furthermore, the instability
arises at rather short distances, so that we might
expect the quark mass. to turn on rapidly at rather
large momenta, leading to the liberation of the
tightly bound instanton-anti-instanton pairs.
Clearly additional investigation is required to
gain a quantitative control over this phase transi-
tion. However, to a first approximation we would
imagine that the net effect in calculating Green's
functions of chirally invariant operators is that
instantons of sizes less than p„=0.25', or x„
-15 are suppressed and instantons of larger sizes
are not.

If one goes back now to reevaluate the interaction
between instantons as discussed in Sec. III one will
find that the screening effects are diminished,
since until we get to x=x„ there are no free in-
stantons. Similarly, in the presence of massless
fermions, merons will be liberated at a slightly
larger scale size, or larger x. Also, the instant-
on corrections to the quark-antiquark potential
will be postponed to distances greater than p„.

Note that because massless fermions suppress
the effects of instantons at scale sizes less than
p„our calculation of the o propagator is highly
reliable. We need not worry about the effect of
instanton interactions in probing for chiral-sym-
metry breaking, since until one gets to the dis-
tance at which the symmetry breaking occurs
these interactions are small.

VI. A MECHANISM FOR CONFINEMENT

A. Introduction

We have seen how instantons can make the cou-
. pling g grow dramatically with distance leading
to a strong q-q interaction. However, this does
not necessarily imply strict confinement in the
sense that isolated quarks do not exist. It may
be that confinement can only be demonstrated by
actually solving the theory, but one would hope .

that such an important property arises from a
simple qualitative mechanism which can be seen
at an elementary level. This section is devoted
to the discussion of an effect of this kind. It is
based on a new kind of field configuration in
Euclidean space-time. To motivate the introduc-
tion of these configurations it is useful to review
some work of Polyakov on (2+ 1)-dimensional
models. "

Polyakov studied the Georgi-Glashow model
in. 2+ 1 dimensions. This model contains a triplet
of heavy Higgs scalars, heavy charged vector
bosons W+ and 8', and a massless photon. In
Euclidean space-time the classical equations of
motion for this model are identical to the static
equations of motion for the Georgi-Glashow model

in 3+1 dimensions. These equations possess a
well- known instantonlike configuration: the Poly-
akov- 't Hoof t monopole. Polyakov shows that
these instantonlike monopoles confine charged
particles in the (2+1)-dimensional theory. We
will paraphrase his arguments below, but fi.rst
it is important to understand that there is an es-
sential difference between the monopole in 2+ 1
dimensions and the instanton in @CD. For both
the monopole and the instanton the vector poten-
tial A ~ falls like r ' at large distances. However,
in the case of the monopole F'" falls with its
dimensional power, r ', while for the @CD in-
sta, nton F'" falls as r and depends on an ar-
bitrary scale size. This difference is fundamental.
Because of the slow falloff of F"", the monopole
cannot be interpreted as a vacuum tunneling event.
(In fact, it can be shown topologically that n states
and 0 vacuums as defined in Sec. II do not exist
in odd numbers of dimensions. ) Conversely,
Polyakov's confinement mechanism cannot be
straightforwardly applied to instantons in @CD.

The chemical potential of a monopole or anti-
monopole in Polyakov's theory is -e 't~ (g is
the dimensionless coupling constant). Thus. by
taking g small the monopole-antimonopole gas can
be made as dilute as one likes. Because of the
long- range (magnetic) Coulomb interaction between
monopoles, the gas does not become noninteracting
even in the limit of zero density. However, for
sufficiently small density the parameters of the

gas are such that the Deybe theory applies. The
~Euclidean functional integral then describes a
Deybe plasma of monopoles and antimonopoles.

To see why charged particles are confined in

this model consider the Wilson loop

e s'"'r= (exp(i fA dx))

averaged over the vacuum ensemble of monopoles
and antimonopoles. The character of this average
can be seen as follows. The quantity E(R)T is
precisely the free energy of a steady electric
current loop in. a plasma of magnetic monopoles.
(The i appears in the statistical mechanics for-
mula because upon pa, ssing to imaginary time the
interaction J A" x"dt remains real. ) By Am-
pere's law the current loop has to make a mag-
netic field, but a magnetic field cannot penetrate
into a plasma of magnetic monopoles for the same
reason that a static electric field cannot penetrate
into an ordinary conductor. As shown in Fig. 10,
this conflict will be resolved by the formation of
p, dipole sheet across the loop. The thickness of
the layer will be essentially the Deybe length and .

when the size of the loop is large compared to
the Deybe length the free energy will be propor-
tional to the area. This leads to an energy e(R)
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FIG. 10. (a) The Wilson loop with its dipole sheet.
(b) A cross section of the sheet. The + (-) signs are
monopoles (antimonopoles) and the directed arrows are
the magnetic field.

E

-R (but the reader should remember that this
linear potential holds only for distances greater
than the Deybe length -e'~" ). Also for very
large separations the interaction will not be just
a static linear potential. It is relatively easy to
stretch or bend a large dipole sheet. This will
introduce new degrees of freedom and lead to a
string-l. ike interaction between charged particles.

The dipole sheet contains a magnetic field H~
= &~„.E" normal to the sheet. Taking a time slice
through the sheet one then finds an electric field
E' =E" lying in the sheet, which means that
at a fixed time charged particles are connected
by electric flux tubes; see Fig. 11. Thus in a
fixed time picture the vacuum would appear to be
a magnetic superconductor which expels electric
flux. One can in fact verify from Polyakov's
dispersion relation for II that the vacuum does in
fact expel a static transverse electrical field.
There are therefore two ways to look at Polyakov's
model, either as an ordinary magnetic conductor
in space-time or as a magnetic superconductor at
a fixed time.

As far as confinement is concerned, the im-
portant property of the monopole is that E""goes
like r ', implying A- r ' with the r ' term not
a pure gauge. Objects with E'"-r ', say, would
correspond to permanent magnetic dipoles. A
vacuum filled with them would act like a para-
magnetic medium (analogous to the dilute in-

stanton gas in QCD) which just genormalizes the
logarithmic Coulomb interaction. Still shorter
range objects (r "with n &3) affect the Wilson
loop only when they are very close to it, and
produce only a mass renormalization. A non. —

trivial A. going like r ' has the property that for
a loop of (space-time) radius p the integral gA ~ dx

, will be of order unity as long as the source of
the field (e.g. monopole) lies within p of the loop.
In a plasma there are order p' such monopoles
and if there were no correlations between mono-
poles the Wilson loop averaged over configurations
would behave like exp[—(const) p'] corresponding,
since p' should be interpreted as R'T, to a quad-
ratic potential. However, the long-range cor-
relations that exist in a plasma reduce the po-
tential down to linear.

Evidently, if we want to 'find an analog of Poly-
akov's mechanism in QCD we need to look for
configurations where A goes like r ' an.d is not
a pure gauge. This requires that E~"-r ' and
there is an immediate problem: The action of
such a configuration will be -g ' ln(R'), where
R' is the volume of space-time. It would appear
that such configurations cannot strictly exist in
an infinite volume, but one has to remember
that the entropy of position of such an object
(assuming that in some sense it can be considered
as localized) is proportional to R' and that the
probability that it will appear somewhere is

~4 -ln(R )/gB e

This vanishes as R - ~ if g is small, indicating
that in. the infinite volume limit such objects make
no finite contribution to the functional integral.
On the other hand, for larger g,

R4 "&ri (R4)/g2R e

as R- ~ and isolated configurations of this kind
can contribute. This phenomenon is familiar in
two-dimensional statistical mechanics and

we'll

be discussed in the QCD context below. For di-
mensions greater than four, E'" going like r '
implies an action which grows like a power of
R and cannot be overcome by entropy. Thus d= 4
is the critical dimension for confinement by Poly-
akov's mechanism.

There is a classical solution to the Euclidean
Yang-Mills equations, due fo De Alfaro, Fubini,
and Furlan, "in which A„behaves like r ' and
E~" is nontrivial. It is

x"
A;(x) =q, „„

FIG. 11. The sheet at a fixed time showing that the
confined Euclidean magnetic field is an electric flux
tube in Minkowski language.

This solution is singular at the origin as well as
at infinity. However, since confinement is strictly
a long-range problem, we may freely smear the
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field at short distances (details of the smearing
will be given below). One then finds that the inR
term in the action is multiplied by 3m /g2 and

R4e-3~ ~+» &

one time) is, up to a time-independent gauge
rotation,

x'x'
zya

4 ~

Ix I

(6.3)

ceases to vanish for large H when g'/8m' &—,', .
It appears therefore that g'/8&' = —,', is the critical
coupling for the appearance of these, objects as
significant contributors to the functional integral.
Later we will see what this means in terms of
the running coupling of Eq. (3.3).

A configuration such as that in Eq. (6.2) will
affect a Wilson loop of radius p whenever it is
centered within p of the loop. In an uncorrelated
gas of such objects the loop integral would then
behave like exp(-,'const && p 4) corresponding to an
R' qq potential. However, as will be explicitly
demonstrated below, there are logarithmic in-
teractions between any two of these objects, and
strong plasmalike correlations. Our guess, and
this is purely conjectural, is that these correlations
will produce some analog of Polyakov's dipole
sheet and reduce the R' potential to a linear one.

Assuming for the moment that some sense can
be made out of these rather peculiar objects, it
is amusing to ask what their physical interpreta-
tion would be. Consider the wave function of the
vacuum as discussed in Sec. II: In the gauge
A, = 0 we take it to be a function of the A; at a
fixed time. Taking a time slice of the configuration
in Eq. (5.2) at f = 0 one finds that the magnetic field
H'„= ~

&""Ii," (which depends only on the A~ at

By a gauge transformation which rotates x' into,
say, the third axis H,'becomes

x'0
H'= —5,

lxI
(6.4)

which is just the field of an Abelian magnetic
monopole. In particular, except for a lack of
smoothing at the origin it is the monopole of the
Georgi-Glashow model. Thus when the coupling
is large enough so that the configurations in Eq.
(6.2) appear in the Euclidean functional integ-
ral, the wave function of the vacuum will contain
(color) magnetic monopoles (strictly speaking,
well-separated monopole-antimonopole pairs;
see below); A time slice of the configuration in

Eq. (8.2) for f &0 (f &0) is not quite a monopole
but is rather a configuration building up toward
(decaying away from) a monopole. Mandelstam
has argued that the presence of such objects in
the vacuum wave function will lead to a magnetic
superconducting state in which {color) electric
flux is expelled. " Thus we may very well have
electric flux tubes between quarks and in general
a picture which is qualitatively almost identical
to that of the (2+ 1)-dimensional model.
. As was pointed out by Pe.Alfaro et al. ,

28 the
solution in Eq. (6.2) has a half unit of topological

TABLE I. Confinement as a function of dimension. The question marks indicate either
unknown or conjectured. , e

Dimension d

Space-time
configuration

Naive qq
potential

Interaction
between

configurations

qq potential
including
correlations

Vacuum in
space-time

Fixed time
configuration

Vacuum
wave function

vort;ex

linear

short
range

linear

monopole

quadratic

Coulomb
(g i)

linear

magnetic
conductor

vortex

magnetic
s uperconductor

meron

cubic

logarithmic

linear (~)

color magnetic
conductor (~)

monopole

color magnetic
superconductor (~)

no
confinement
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charge Q located at the origin. , For this reason
we have named these objects merons (from the
Greek root Itjqpoa part). " Oddly enough, half-
integral topological charge seems to be closely
related to confinement in the Schwinger model.
Following a suggestion of Rothe and Swi.eca,"
Nielsen and Schroer" have pointed out that certain
functional integrals which show confinement in the
Schwinger model are dominated by the vortex
configuration A '= &""x"/ Ix ~' which has two-
dimensional Abelian topological charge of —,

' and
which they call.ed a c instanton. The r ' field
of these vortices is a pure gauge and the inter-
actions are short ran. ge. In fact confinement is
essentially kinematic in bvo-dimensional gauge

'

theories (the Coulomb potential is linear), and
we are not sure how much ty make of this. It is
nonetheless amusing to note that a time slice
through the origin of the (2+ I)-dimensional mo-
nopole produces the vortex in the same way that
a time slice through a mero'n yields a monopole.
Thus the superconducting vacuum in Polyakov's
model has vortices in its wave function.

Note that the confining objects, merons, mo-
nopoles, and vortices all come from the con-
figuration in Eq. (6.2) taken in 4, 3, and 2 dimen-
sions (in 3 and 2 dimensions it can be reduced
to an Abelian configuration). The physics as a
function of dimension is summarized in Table I,
where it has been optimistically assumed that
merons will confine for d= 4.

There are clearly sufficient indications that
merons are important to warrant-a serious study
of them. What follows should be considered only

,
as a first step in this direction.

I

B. Meron kinematics

As mentioned earlier, the meron is characterized
by having one half unit of topological charge con-
centrated at the origin and another half unit at
infinity. The logarithmic singularity of the action
integral comes precisely from this delta function
concentration of topological charge. We will
eliminate the singularities by replacing the mer-
on by a different configuration in which the top-
ological. charge is spread out around the origin
and infinity:

, q.„„x„, x&r Ix +r

(6.5)

2
x'+R'

Between the inner and outer spheres (whose radii

are arbitrary) the field is identical to the meron
field. At the inner (outer) radius it joins smoothly
onto a standard instanton field whose scale size
is chosen such that the net topological charge
inside (outside) that radius is one-half unit. This
field satisfies the equations of motion everywhere
except on. the two spheres. In fact, it is the so-
lution of the equations of motion under the con-
straint that there be one-half unit of topological
charge both in the inner and outer. spheres. None
of our qualitative arguments depended on the
pointlike distribution of topological charge —all
that mattered'was the existence of a region where
A„ fell like Ijx and was not pure gauge. Con-
sequently, this smeared configuration should
be just as interesting from the point of view of
confinement.

The action. of the new configuration is readily
calculated to be

8w' 3~'
mero II 2 + 2 ln

g g r (6.6)

where the constant term comes from the two half-
instantons and the ln term comes from the pure
meron region in between. Furthermore, if
we let R -r, this configuration becomes the
standard instanton and we recognize the meron
as the extreme limit of a class of deformations
away from the instanton. In a sense that we will
eventually make precise, the instanton may be.
regarded as a bound pair of merons, and there
are inescapable circumstances where this new
degree of freedom plays an important role in
the statistical mechanics of the iristanton.

To make this notion clearer it is helpful to
invert the configuration about some point a, in
the region between r and R [x,-a, +p'(x-a) J'
(x —a)', witb p an arbitrary scale factor]. Be-
cause of conformal invariance, this produces an
equally good solution of the equations of motion.
The geometry before and after inversion is de-
scribed in Fig. 12. Since topological charge is
a conformal invariant, after inversion we have
two spherical regions of net topological charge
one-half surrounded by an infinite region of zero
topological charge density.

This new configuration is shown in Fig. 13.
Regions I' and III' (the inversions of regions I
and III) are again circles whose centers and radii
are to be inferred from the coordinates displayed.
Since the inversion of an instanton is again an
instanton, the field in regions I' and III' is an in-
stanton. The center coordinates x, , x», . and scale

', sizes r', R' of these instantons are indicated on
Fig. 13 and it is worth noting that x,, and x„,, are
off center. Region II' is the inversion of.the meron.
Explicitly, this field is
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2
i3 e Pr

2+~2 j g2+~ 2
I IPR2

2+R 2 ~ 02+R2

lMxi

p2p p p
R-a R+0 r+a 4-f

I

FIG. 13. Detailed specification of the configuration of
Fig. 12(b). p is the scale parameter of the inversion.
The crosses mark the centers of the instanton configur-
ations filling out I' and HI'. r' and R' are their scale
sizes.

(b)
FIG. 12. (a} Concentric sphere geometry for a

smeared meron. Region II is the region of zero topolo-
gical charge. The point a is the center about, which we
invert to obtain (b). (b) Inversion of (a) containing two
localized regions, I' and III', of nonzero topological
charge.

tion may be thought of as describing various stages
in a sequence of deformations of the ins tanton,
leading from the instanton at one extreme to two
widely separated smeared merons at the other.
In a sense the meron is to be regarded as a con-
stituent of the instanton. This is closely related
to the fact that the instanton behaves like a color
magnetic dipole —the merons are the configura-
tions into which the dipole can split. We shall
see that excitation of the meron pair degree of
freedom makes a significant change in such quan-

(x —x,, ) (x —xggzg )

(x xg ) (x xnp)

or just the sum of two merons. The corresponding
F „falls at infinity as x, leading of course to
a convergent action integral. So the inverted con-
figuration is a smeared version of two merons
at positions x,, and x,», .

It is very revealing to consider a sequence of
such configurations obtained by holding e fixed
and increasing 8 from x to infinity. For def-
initeness, choose p=a = v'Rr. With these choices,
for large A the configuration is as shown in Fig.
14(a): two half instantons of scale size r and
separation utile =d between the centers of the in-
stanton configurations. The action is

8m 2 67t' dS=, +, ln —.

On the other hand, in the limit R x, regions I'
and III' grow without limit in radius and move
toward each other while the centers of the in-
stanton configurations move toward each other.
In the limit the configuration is just an instanton
of scale size x split in half through the center
[Fig. 14(b)].

In other words, the smoothed meron configura-

|~)
FIG. 14. (a) Large-R limit of meron pair configura-

tion. The crosses mark the center of instanton config-
urations of scale size r filling out regions I' and III'.
|b) Limit of meron configuration as B r. The crosses
mark the centers of instanton configurations of scale
size r filling out I' and III'. The crosses approach each
other and region G' vanishes as R
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d
Q =-1——lnpd7

(6.9)

the equations of motion become

(6.10)

The meron is the solution Q =0, but this equation
also has periodic solutions which would corres-
pond to nested merons. Our belief is that such
configurations are special cases of the more gen-
eral n-meron configuration in which each meron
has its own position and scale-size coordinate and
will be included once we learn how to deal with
the merori "gas."

It is also clear for this ansatz that the only
solutions with localizable topological charge are

tities as vacuum susceptibility. More importantly,
there is a phase transition which sets the merons
free, which, we believe, leads to quark confine-
ment.

In what follows, we shall elaborate on the prop-
erties of the individual meron pair configuration,
first showing that it makes a sensible contribution
to the functional integral (and has a well-defined
entropy) and then evaluating its effect on some
interesting physical quantities. In fact, of course,
a single meron or meron pair makes a negligible
contribution to the vacuum functional. ~hat really
counts is a multimeron configuration in which
the mean density of merons is chosen to maximize
the free energy. In the instanton case it was
obvious that a reasonable multi-instanton con-
figuration could be constructed just by super-
position. Precisely because of the slow asym-
ptotic falloff of the meron field, it is not obvious
how to superpose an arbitrary number of merons
and we do not yet have a sensible representation
of the sort of configuration which will dominate
the functional integral. It would be very helpful
to find the N-meron pair generalization of Eq.
(6.7), the singular one-meron-pair solution of
the Yang-Mills equations, which one could convert
to a useful "meron gas" configuration by smearing
out the singularities in the way just described for
the two-meron configuration. %e expect that the
problem of making function-theoretic sense of
the;smearing is basically the same in the 2Ã as
in the two-meron case.

%e should mention that the spherically sym-
metric ansatz

(6.8)

leads to other infinite-action solutions than the
meron. If we define

merons or instantons. In fact, for a spherically
symmetric configuration, the requirement of
localizability of charge for a configuration cen-
tered at the origin,

requires that

This eliminates all but the meron and instanton
solutions. Configurations with other localizable
fractions of topological charge will not satisfy
the equations of motion anywhere. To obtain these
as true saddle points one would have to introduce
an infinite number of constraints and one would
not obtain for superpositions of such configurations
as independent entropy of position for each one.

C. Meron functional determinant

In our qualitative discussion of smeared merons
we assumed that they contribute to the functional
integral in the same way as instantons, with a
chemical potential determined by the action and
an entropy determined in an obvious way by the
'scale size. The only way to be sure of this is to
evaluate the Gaussian functional integral about
our chosen smeared meron configuration. This
is an extremely interesting exercise,

,
'because-

the meron. is not, strictly speaking, a solution of
the equations of motion and all intuition about
Yang-Mills theories so far concerns integrations
about strict solutions. One may worry that some
catastrophe causes the meron functional integral
to be undefined.

In fact the situation is not, strictly speaking,
much different from that which obtains in the
dilute instanton gas. The instanton-anti-instanton
configuration is not a solution of the equations
of motion either, and we have always argued that
it was simply necessary to impose some con-
straint which picks out the instanton-anti-instanton
configuration to the functional integral and then
integrate over parameters in the constraints which
correspond to the coordinates of the instanton
and anti-instanton. (Also, when massless fermions
are present the instantons and anti-instantons
interact via a long-range logarithmic interaction
in precise analogy with a meron pair. ) In fact
we never carried out this program in detail since
it is obvious what the answer is. For the meron,
the answer is not obvious and we must carefully
evaluate the functional integral.

In so doing we will answer some obvious ques)ious. ,

First, why are there half-units of topological
charge~ The answer is because that is the con-



2754 CALLAN, DASHEN, AND GROSS

figuration which you can specify with a finite num-
ber of constraints. Second, why is the smearing
defined by spherical regions and not some other
more complicated shape? When one evaluates
the functional integral, one in effect integrates
over small deformations about the sphere. The
convergence of the int. egration over small fluctu-
ations indicates that spheres are a, locally optimal
choice for the smearing constraint. We see no
evidence for another nonspherical family of con-
straints which should be included. At the moment
we have no rigorous argument, but only a strong
feeling that nothing has been missed.

We will now set up the problem of evaluating
the functional integral about the two-meron can-
figuration shown in Fig. 13. In order not to over-
burden the reader, we will present here only the
outline of the calculation as well as the essential
features of the results, reserving the details for
a future publication. The two-meron configuration
is not general enough to tell us directly about con-
finement, of course, but should suffice to reassure
us that the meron makes as well defined a con-
tribution to the functional integral as does the
instanton. In fact we shall see the discussion of
the meron is not optional: Whenever instantons
are quantitatively important, merons are more
so.

There are several issues to clarify. In the clas-
sical action of this configuration,

4r' 3~' R 4n'S=, , ln —+

the three terms arise from the inner instanton,
meron, and outer instanton regions, respectively.
The renormalization procedure has to turn each

g, into an appropriate value of the renormalized
effective coupling constant. Roughly, one wants
the instanton coupling to be renormalized at its
scale size and the meron itself to be renormalized
at something like the separation of the two mer-
ons. This poses the question of how the renor-
malization and regularization scheme works in
detail. On top of this, we must show how to im-
pose and integrate over the constraints. needed
to pick out the meron configuration.

Let us first tackle the renormalization question
by computing the functional determinant of a
scalar field of isospin t in meron field background.
In this a.nd what follows, our notation conforms
to ' t Hooft's treatment of the functional deter-
minant of the instanton. " We wish to compute

(6.11)

d' 3d 4
A(P) = d'xQ —,———+ —,L'

cfp p dp p

+40 T ~ L, +p'v'T', 6.

where p'=x' and 0 is given by'
2

0&p(y'
p +X

1
v(p) =( —,, ~&p&R (6.13)

2
y

R~P(p'+R' '

To fully exploit the conformal invariance of tgis
system it is best to use a dimensionless field
variable Q = pQ. This is unconventional and we
will normalize our answer by computing D „,„/
D. „~„,which is unambiguous, and taking
D. „,„~„ from~' t Hooft. It is now appropriate
to pass to new variables t =. 1np and A=solid
angle so that the action integral becomes

1
A'(x) =X'&&( —,, x& p&R (6.15)

4R'
(R' x')"

The virtues of such a choice in the instanton region
have been explained by

' t Hooft. For us, it suf-
fices to note that the mass term for the P reg-
ulator is A'(x) x', which is a constant in the mer-
on region (x & p &R).. Therefore, even with reg-
ulators, the meron action is still a sum of har-
monic oscillators.

The partial-wave decomposition into simul-
taneous eigenstates of I.,' and (I, + T)'=7' com-
pletely separates the problem. If

i = Zl'(~l) e,.(p),
(6.16)

g (Q) = dQ dt [Q,'+ Q'+ 4L'Q'
wig

+«p'0T L, 4+(o'p')4T'41
(6.14)

The ivirtue of this form of the action is that in
the meron region op'= I and the a.ction is a sum
of harmonic oscillators. We will regulate this
determinant by adding other scalar regulator
fields with space-dependent ma. ss terms A'(x)
proportional to the local ma, gnitude of E„„,

4y2
(~2. x2)2 9 p
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then

A. (y) = Q df(j„'+ M„2y„'),
J'

~ L,

where

M&& =1+4K +40'x

~ (cx')' T '+x'A'(x')

(6.17)

(6.18)

F«'(0 „0,) =
I

. „~~
& exp[ —p, ~~(&,'+ p, ') coth p T

:.

,
slnh p, ggT

+ 2 p»p, p,cschiI, T],
(6.28)

where T=t, —t, = In(R/r). In the limit of large
meron separation (R/x ~) the variables Q, and

Q, de couple,

and is independent of x in the meron region. For
the moment let us concentrate on a particular
partial wave and evaluate the functional integral
except for the integration over Q, =&]&»(r), Q,

(B), the values on the boundaries between
regions I and II, II and III, respectively. The
regions I, II, and III correspond to inner in-
stanton, meron, and outer instanton, respectively.
Thus

ZI. d ld 2+I & l +II a~ 2 +II

(6.19)

where F~ (Q, Q') is the JL partial-wave functional
integral over the restricted region I with Q» set
equal to Q, at the end points of region I (simila. rly
for regions II a,nd III).

Because we are computing a Gaussian functional
integral, it must-be true that

F (0 g ) =F (0 0) e

(y P) F (P . P) 8 fthm»g42 /2

(6.20)

I r ' Ir..r....= f4'r" (o, AIr"rrr(O, OI,

(6.21)

we have

[
-1/21 I( )F»I(0 0)

3 instanton (6.22)

This will be important when we compare Dm„on
instanton

The function F„~(Q„p,)'can be computed ex-
plicity since the action function in region II i.s
that of a harmonic oscillator of frequency,

Since regions I and III are instanton regions, which

may be transformed into one another by an in-
version, we also have m, =m», -m and F,(0, 0)
=F»,(0, 0). Therefore, if we imagine treating
the instanton functional determinant in a similar
way, writing

2 R
F// (0 g 4'2) 9 Jz, exp —ps/ »—

x "~ exp —"~~ ln—
( p, + lÃ)g/ 2

{6.26)-

or

[D» ] 2%Pl Jg
[DJL ]|nstanton { + i )o5'

xexp —"'~ ln —. 6.26
2 r

To compute the full determinant we divide by
the vacuum contribution in the same partial wave
and then take the product over all partial waves.
Under these operations the factor multiplying the
exponential can be shown to give a convergent
result, a pure number of order one which we have
yet to calculate and will denote by c. Thus

-l/ 2
meron

1 vac R= c exp —— (p» —Iu~'~) ln—,(6.2'I)

and the divergence is entirely' contained in Z(p, »
—p, z'z). The vacuum eigenvalues are of course
obtained by setting T =0 in Eq. (6.18).

Regulation of this divergence is carried out in
the conventional manner described by ' t Hooft. "
If D '/'(X) is the determinant calculated with reg-
ulator mass A, , then the divergences of the partial-
wave sum are eliminated by forming

z
where e&

—+I, i runs from 1 to {in this case) 4 and

Pe,.~,.=o,

x exp[- p.»(g, '+ P,')) . (6.24)

The P, and Q, integrations may be done explicitly
to yield

[D„-'"]...„=F,"(0,0)F,",,(0, 0)

p,~'= &+4L'+4 T ~ L,, + T'+x'.
Consequently it is easy to show that Pep,. =o,

i

(6.29)
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and

e& ink, ; =-ink, . (6.30)

Sr2 R 3m2 R
2 ln — 2 + —' l~+0.52 ln —.

go & go
(6.31)

The coefficient of ink is consistent with the con-
tribution of an I= 1 scalar to the one-loop re-
normalization of the coupling.

To complete the renormalization procedure we
must add a counterterm which absorbs the diver-
gence in the effective coupling constant and com-
pensates for the space-time dependence of the
regulator mass. We make use of 't Hooft's ar-
gument that the counterterm must be local and,
therefore, locally identical to the fixed-mass
counterterm. Thus the counterterm appropriate
to defining the renormalized coupling constant
at fixed mass p, is

Ag =-, tr(E')-, ln
967t 2 '

p,
2 (6.32)

Now A'(x) is proportional to X2, and it is easy to
verify that the ink terms cancel between the
counterterm and the regulated determinant. What
is more interesting is how the resulting finite
quantity depends on p, .

In the first instance we are tempted to use

4s~ 2

~2 2 2

A'(x) = Z ' x( —,, 2 &x &R (6.33)

4Z2
L. (R 2 x')'

The parameter X plays the role of a large cutoff
parameter and can only be eliminated by supplying
a counterterm for coupling-constant renormali-
zation.

Evidently the eigenvalue sum in Eq. (6.27) serves
to renormalize the, coefficient sv2/g, 2 of in(R/2')
in the classical action. Since it is precisely the
ln(R/r) term which determines how rapidly the
meron determinant falls with increasing separation
and therefore how important meron effects are
relative to instantons, this eigenvalue sum is what
we are mainly interested in. The meron mass
matrix may be diagonalized explicitly and the reg-
ulated sum computed by a combination of num-
erical and analytic methods. The result, for t=1,
1S

accurate) to bring the two-meron configuration
into spherical form and A2 is not conformally
invariant —it transforms like a density of dimen-
sion 2. Thus, if the inversion taking us from the
spherical configuration to the two-meron con-
figuration is carried out around x =a with scale
parameter p, then the proper counterterm is
obtained by setting

4X2
0 &x

(x —a)', ( 1
A (x)= A. &k — r& x&R

p4 ) ~21

4R2

(6.34)

Let us choose a2=R~ =p' so that, as explained
earlier, the two-meron configuration consists,
at least for large R/x, of two half instantons of
radius x separated by a distance d =A ~. In what
follows, except when explicitly noted, we take the
special case of equal-size merons.

Let us first consider the total action, including
the counterterm, coming from the region 0&x&x.
Since a»2', we may neglect the factor (x —a)4/p4
in A'(x). Then the counterterm action is

pr 4&2
AA —— 2Jl dx

(

"X2 4Z'
x ln

~2 (2
2 x2)2

1 4m 2 X2ln, , +constBm' 3 p, 'x' (6.35)

This combines with the classical action and de-
terminant associated with this region to give

[A],„„„„=4s,+ lsS s)+sssst

(e.se)
The contents of the parentheses are (up to a con-
stant) just 1/g'(p2'), where g is the effective cou-
pling constant including only the renormalization-
group effects of a scalar field. At any event, the
chemical potential of a meron core will, as ex-
pected, be determined by thp effective coupling at
the core size.

What about the region &«&~~ This time, since
R» a, we replace (x —a}'/p' by x'/p', and we find
(remember that a2 =Rr)

] t' 4R2 2

This is wrong if we are describing the renor-
malization of the two-meron configuration of Fig.

The reason is that we must carry out a con-
formal transformation (inversion, to be more

A2 g~ 4R2xln--" g R22-2 (R2+x2)'

]. 4g A,ln, +const
8g2 3 p2y'2 (6.3V).
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Once again, the renormalization scale for the
meron core is seen to be &, which is the physical
size of the core.

Finally, we must go through the same procedure
for the region outside the cores, in the meron re-
gion itself. Now we have

(x —a}4
xnan

p. x (6.26)

If we keep only the pieces which grow with in-
creasing ~,

bA = 8 ink' —in(y2Cr) ln —, (6.S9)

where d =v'« is the separation distance of the
meron pair. Combining this counterterm with the
classical action and the regulated determinant as-
sociated with the meron region we have

377

[Aj „,„=2, +8 ingmCh+0. 52 ln —, (6.40)

which is to be interpreted as saying that the meron
action has the effective coupling constant evaluated
at scale size )('C& . This is perhaps a bit mor@
complicated than one might like, but not physically
unreasonable.

So far we have shown that the determinant serves
to identify the effective coupling at which the ac-
tion of the various components of the smeared
meron pair should be evaluated. The computation
was carried out for a scalar field, but similar re-
sults would have been obtained for higher-spin
fields. The details would have been different since
the partial-wave decomposition is not so trivial,
but these differences are necessary to produce the
different renormalization-group behavior of
higher-spin fields. The essential aspects of this
question will be explained as we discuss the deter-
minant of the gauge fields themselves.

The contribution of the gauge field itself to the
functional integral must now be studied, and it is
here that the issue of constraints arises since we
are attempting to integrate about a gauge field
configuration which is not a soluti. on of the equa-
tions of motion. We want to specify location and
scale size for two meron cores, which is a total
of 2(4+1}=10constraints. Nine of them are as-
sociated with zero modes arising from the sym-
metries of translation (4 parameters), inversion
(4 parameters: arbitrary location of inversion
point), and scale invariance. The tenth is the one
constraint variable on which the action depends
(R/& in the spherical configuration).

We propose to pick out the desired two-meron

solution by constraining a small number of partial-
wave amplitudes on two spheres, each sphere de-
fined by center coordinates, p& and a radius, &.
This is a convenient set of parameters from the
point of view of conformal invariance: Under in-
version, spheres transform into spheres and,
furthermore, the obvious volume element, C'«&/
~, for integrating over constraint parameters is
invariant under inversion. Since the whole scheme
will be inversion invariant, we are then free to
identify a useful choice of constraints in the spher-
ically symmetric configuration.

Consider first the inner instanton core of the
configuration. We want to guarantee that. it has
scale size & and is centered at &. Define

dQApg, ~„x-a „- 1-e6'
g AC@

(6.41)

I„= dQA~ q, p„
t' yOp

1he integrals are taken over a sphere of radius x cen-
tered ata„and & is a small parameter whose sig-
nificance will shortly emerge. It is easy to show
thatro andX, vanish if A„ is taken to be the Landau
gauge instanton field of scale size (1 +e)& centered
at a„. Io can be.thought of as fixing scale size while
I„ fixes location. The reason for the factor of
(1 —e) in the definition of fo is that if & =0, Io =0
(as well as f„=0}for the meron field A'„=g,»&, /&'.
The constraint, by itself, would then not distin-
guish between the smeared meron and the original
singular meron (although a requirement of finite
action would).

The Jacobian associated with integrating over &„
and ~ about the configuration which satisfies the
constraints is easy to compute, and we may estab-
lish the identityf,. (6r )'(—', $5() (())„r5(rl„(A))

(6.42)

The factors of 6))' and 1/g come from the Zacobian.
The factor of 1/g arises because the field about
which we integrate is 0 (1/g}. To pick out a meron
pair, we need two such constraints: one for the
inner core and one for the outer core. After in-
version, the integration d'added'a'«' can be inter-
preted as an integration over location and scale
size of two meron cores and looks very much like
the integration we are used to in the dilute instan-
ton gas. All the expected dimensional factors and
nearly all the powers of p are now present.

We now must evaluate the constrained vector-
meson functional integral. We set the problem up
in the same way as we set up the scalar field func-
tional integral: We work in the spherical configu-
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ration, use a dimensionless field variable && =&A.„,
and use a logarithmic radial coordinate t =ln&.
Then the action function is

dt[a&, a& „+a&a& +4a&I.2a& +4ox2a&T ~ L,a„

+(gx')2a T'a yA (x)x'a a„

+2a„r,x2f'„„a„]. (6.43}

f'„„ is the background field tensor and satisfies
)

4y'2g2
x f2v 2 2 2 1a)))r r

x&r
(x +t'

~aviv ~apv&XXgp Xp Xg'get gp& &&X&R

4+2g2 8&x
2 R2)2 ~a))u r

(x +R (6.44)

3 8m'

Slnd " 4 g2(pd) (6.45)

In this expression C„ is a constant [found to have
the value 2.89 for SU(2) and 6.55 for SU(3)] and g„
is the same Pauli-Villars definition of the coupling
constant adopted in Sec. III:

The quantities & and A have the same definition as
before. The main difference with the scalar case
is the presence of the spin coupling term involving

f„„.The presence of this term complicates the .

analysis somewhat since now the partial-wave re-
duction does not completely diagonalize the action.
In fact, since f„„"'"is neither self-dual nor anti-
self-dual, as a general. rule four partial waves are
coupled. On the other hand, in the meron region
the action is still a sum of harmonic oscillators.

Virtually all of the analysis of the scalar field
determinant carries through here. The only dif-
ference is that since partial waves are coupled,
the quantities ~ and p, are 4&4 matrices instead
of numbers. The algebra of combining the deter-
minants of the several regions and dividing out
the instanton determinant goes through with the
understanding that functions of p and ~, now ma-
trices, must be interpreted by taking the deter-
minant. The constraints affect only a few I =g and
l =1 partial waves and therefore have no effect on
the divergences or their renormalization.

To analyze the renormalization of the ln(R/&)
term in the action w'e must once again compute the
regulated sum of meron eigenvalues. Despite the
more complicated meron mass matrix (compared
to the scalar case), the eigenvalues may still be
found explicitly and the regulated sum computed.
The result is to replace the classical action,
(62' /g22} 1n(d/r), by a renormalized action,
S (d, 2, p), which grows with d and has the simple
property tha, t33

8m 8m
II/f ~22 lng 2(oaf) 2 (6.46)

\

(6.4V)
8'
2(~) 2 ll+ 11ln+

I

The essential feature of the determinant
[exp (-S )] is the power of d with which it de-
creases: If it falls too rapidly, the merons never
get far enough apart to be effective as separate en-
tities. In the next section we will see that the cri-
tical condition is just

/

dS =8, (6.46)

or
13.6, SU(2)

8m~

g'(X)
17.2, SU(3).

(6.49)

Thus there is a critical coupling and separation at
which meron dominated vacuum physics will set in.
By comparison with the arguments of Sec. III we
see that for SU(2) merons come in at a scale where
instanton (and presumably also meron} density is
low, while in SU(3) merons come in at larger, but
still small densities.

The dependence of S on the core radii is also
simple. Taking two cores of independent radii &

and &' and keeping d fixed, it can be shown that

3 8@2

))nr 8 );„'(2r) ') '

8 3 ov2

) r' )) g.'(2 ') ") '

(6.5O)

Thus the derivatives of S with respect to lnd, 1n&,
or ln&' are the same as those of the bare acti.on
with go replaced by an appropriate coupling renor-
malized at d, r, or ~'.

Finally, we should comment on an instability
which is present in the lowest partial wave. Since
the meron pair action increases without limit as
we increase the separation, there i.s a point where,
as we increase the separation, it becomes ener-
getically favorable to create a meron-antimeron
pair out of the vacuum and convert the original'
two-meron configuration into a configuration con-
sisting of an instanton and an anti-instanton. This
is reflected in the occurrence of a negative s-wave
eigenvalue as we increase R/2". The calculation we
have described is strictly valid in the region
1 ~ R/«exp(v/2@2 ) where there are no negative
eigenvatues at. all. In fact, meron pairs do not
occur in isolation and we expect the density of
pairs of a given scale size to be comparable to the
density of instantons of comparable scale size. In
SU(3) at least, when the meron effective coupling



is large enough for the meron degree of freedom
to be significant, the meron density is comparable
to one.' Then a merona is never far. enough from a
neighbor for the above-mentioned instabilit;y to be .

relevant. The converse of the existence of this
instability is .that when'an instariton and anti-in-
stanton get too close. to each other, it will be ener-
getically favorable for them to convert to a meron-
antimeron. pair . .The qritical separation is related
to.the stability requirement 1-8/r- exp(n'/202)
and corresponds to a density of a few percent.
That is, when'the integrated instanton density ex-
ceeds a few percent, neighboring instanton-anti-
instanton pairs will collapse to meron-antimeron
configurations, Consequently, it may be that
merons dominate all the semiclassical vacuum
fluctuations —not just at the confinement scale.
This point will be investigated further.

To summarize, the contribution of a meron pair
to the functional integral may be written as

Q4g dr d'g'dr'IC

4n'2 4n'2
xexP . —,-S (d r r'), (6 Sl)

g (rp, ) g'(r'p"

where d =[@-&'[, the meron separation, and
C is a number containing some powers of go

'
from the, constraints, At the one-loop level C.
is independent of r, r', and d (assuming of course
that d»r, r') and we-have isolated the complete
dependence on the interesting parameters. Each
core has a chemical potential 4m'/g'(r} and an en- .

tropy of posi, ti.'on measured in units of the core
size. The integration over core sizes is conver-
gent at & =0 by asymptotic freedom. To go to large
& we would have to determine the way in which the
factors of go"' in C depend on &, &' and d. Unlike
the case of an instanton the renormali. zation group
dyes not suffice here and a two-loop calculation or
some further physical insight is-needed.

- - D. The dyriamical effects of merons

In the examples reviewed it the beginning of this
section confinement was achieved by re'ducing the
Euclidean functional integral to. the partition func- '

tion of a plasma and using our understanding of
plasma dynamics (more specifically, charge
screening) to establish the confining behavior of
the quark-. antiquark potential. Turning to four-
dimensional gauge theories, we found a class of
field configurations (merons) which have the essen-
tial properties of the lower dimensional plasma
pseudoparticles (most importantlyA&-r ' for large
r) and conjectured that a plasma of such pseudo-
particles would account for confinement in realistic
gauge theories, .The merons, of course, are

rather strange objects and the preceding lengthy
discussion was aimed at convincing the reader that
they make a perfectly serisible contribution to the
functional integral and have entropy of position,
etc., just as do the instantons,

There are sign. ificant differences, of course.
Most importantly, the meron cannot be discussed
in isolation, even when we smear its core, be-
cause of the logarithmic divergence of its action
at infinity. This can be understood, by the way,
in vacuum tunneling language: The meron can
readily:be shown to describe the transition between
an + vacuum and an "&+~"vacuum, and the gen-
eral argument of Sec. II shows that such an event
cannot have finite action. Pairs of merons have
finite action, but this action grows logarithmically
as they are pu1led apart.

Two-dimensional experience, summarized in our
paper on the effects of massless fermions on two-
dimensional instantons, "has shown that a logarith-
mic potential between pseudoparticles, though
growing without limit, does not prevent the pas-
sage to a pseudoparticle plasma phase: Entropy
can beat energy provided the t'emperature (coupling
constant) is high enough (the essential elements of
this mechanism work in four dimensions as Mell
as two}. Our study of the meron determinant
showed that the coupling constant that goes with
the logarithmic interaction energy depends on

meron separation and scale size and, because of
asymptotic freedom, increases (decreases) as
these quantities increase (decrease). We will
shortly discuss ways of estimating the critical
coupling constant at which the merons are "liber-
ated" and will find that it is gratifyingly small.
The general picture then is that smhll merons are
closely bound in pairs and not much different in

their effect on vacuum quantities from instantons,
while sufficiently large scale-size merons are
not, in spite of their divergent action when con-
sidered separately. One might therefore expect
many of the vacuum fluctuation effects associated
with "half vacuum tunneling" to survive, at least
in a qualitative fashion.

There are some technical problems which stand
in the way of a q'uantitative study of these ques-
tions. Most serious is our lack of a suitable trial
function to describe the meron plasma. We know
what a meron Pair looks like when it is recogniz-
ably a deformation of an instanton and can of
course describe a sufficiently dilute gas of such
pairs. In a pair, the group orientation of the indi-
vidual merons is rigidly locked together, while
that is presumably not the case in the more gen-
eral configuration appropriate to the plasma phase.
At the moment, the best we can do is to ex@mine
how the meron degree of freedom affects vacuum
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dg ~ -g~ e"tg prneron pair (6.53)

where the integral is taken over a large sphere of
radius &. One easily finds that

@2+2
IIP PP (e.54)

properties on the other side of the "phase transi-
tion" where we have a gas of meron pairs and look
for singular behavior signaling the onset of a tran-
sition. The idea is the following: We have already
seen that instantons in the Yang-Mills vacuum lead
to a paramagnetic susceptibility which increases
with increasing scale size. This susceptibility
arises from the response of the instanton color
dipole to the applied field.'

The two-meron config-
uration can be regarded as a deformation of an
instanton and could arise in response to an applied
field. We will now include these deformations in
our calculation of the susceptibility and will find
that it is enhanced. More to the point, we will
find that at some scale size the susceptibility be-
gins to diverge, signaling an imminent phase
transition. This occurs, classically, at the rather
small coupling g'/8v' =~», which is in fact the value
of the coupling at which the free energy of an iso-
lated meron vanishes.

We proceed as in the computation of the instanton
gas susceptibility. To evaluate the interaction of
a meron pair with a weak constant external field,
I"&"„t, we only need to know the meron pair field at
large distances. Let the separation between the
merons be &„and let x (large compared to &) be
the position at which E&„"'" is evaluated. In the
gauge described earlier in this section it is easy
to see that (for»&&)

2

Jiaa(x) -
a Mp ~i (X)Ma„i (X)F~t„~(4),

(6.52)
A A

6 pu
= aa'( 1a'pa + p+X. la'Xa

A A

+ qai ~gh gh„),

where M„„(x)= (g„„—2x„x„/x') is the conformal in-
version matrix and C„ is a group matrix describ-
ing the group orientation of the meron pair. Since
the meron pair is basically a deformatipn of an
instanton it is perhaps not surprising that &» falls
as & 4 just as does the field of an instanton. What
plays the role of scale size is the separation, &,
of the meron pair so that for fixed &, the field
(and the interaction with an external field) grows
like &2 with increasing separation. Unlike the
instanton case, the field is neither self-dual nor
anti-self-dual.

By the arguments of Sec. III the interaction en-
ergy of the pair with a weak external field is

As before, (~S) =0 when we average over gauge
orientations. The effective interaction for E'„"„'is
thus a~S' averaged over gauge orientations and
meron coordinates while weighted with the appro-
priate meron pair density functions. For the pur-
poses of this crude analysis we shall ignore the
integration over meron scale sizes and imagine
them to be held fixed at some optimal value. This
does not affect the qualitative point we want to
make. The meron pair has two position coordi-
nates which we must integrate over. Nothing, ex-
cept possibly &„'"„', depends on the center-of-mass
position coordinate and we leave that until last.
For the moment we only concern ourselves with
the integral over &, the meron pair separation co-
ordinate. It must be integrated d'~ with the appro-
priate meron pair weight function. This weight
contains the logarithmically growing meron pair
interaction energy, which cuts off the & integra-
tion and makes the meron pair picture sensible.

The result of all this is an effective interaction

n 2

X g4& Z-s~(~)&4

where n =3 (8) if the gauge group is SU(2) [SU(3)],
C is the normalization factor of the meron coordi-
nate integration arising from the meron determi-
nant, and g(b) is the effective coupling that goes
with the logarithmic interaction energy [symbols
have the meaning of Eq. (6.51)]. This is the same
sort of expression which led us to conclude that
the instanton gas behaves like a medium with mag-
netic susceptibility. In the case at hand

+4 -SX=+ d'aC — —e 'm+'
n g (b.) 4 (6.56)

This expression is superficially like the instanton
contribution to the susceptibility, with the scale-
size parameter replaced by &. The integral be-
gins to diverge when (&/sin&)S =8.

Thus when & crosses the threshold defined by
en /g (6) =»a+C„ the integration over 4 begins to
diverge with larger contributions coming from
larger separations. This is a familiar enough situ-
ation in mean field theory calculations and typically
signals the onset of a new phase in which the con-
stituents described by the parameter & are liber-
ated. The new feature is that the "temperature, "
or effective coupling constant, cannot be affected
from the outside but has its own internal dynamics.

The critical effective coupling is rather small
giving us a reasonable hope that quantum correc-
tions wi11 not substantially modify this qualitative
picture. It is also not too much different from the
effective coupling at which the instantons them-
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selves begin to have large effects on coupling re-
normalization, etc. In fact, the meron degree of
freedom places a natural cutoff on instanton scale
sizes themselves: Beyond sv'/p =~+C„, the in-
stantons do not really exist, but dissociate into
merons. Since the meron plasma should provide
the ultimate confining potential, this is another
piece of evidence that the confinement scale size
is defined by sv'/g -12 [for SU(2)] or 17 [for SU(3)].

To lend some weight to our conjecture that the
meron plasma confines we will now look at the .

effect of the meron pair degree of freedom on the
static quark-antiquark potential. In contrast to
the instanton case, we will find a crossover to a
potential which rises with distance at essentially
the critical coupling of the preceding paragraph.
We have discussed most of the mechanics of such
a calculation in Sec. IV. Everything said there
(apart from the specific choice of instanton field)
is valid here so long as we are dealing with a di-
lute gas of meron pairs. We use Eq. (4.6}for the

contribution of a specific configuration to the
energy

I

(6.5s)

[tr (U(+)U(-) I}]tr (1) (6.57)

where U ' are the loop integrals taken over the
quark (anti-quark) trajectories. Then, holding the
time coordinate of one meron fixed, we must in-
tegrate over the remaining seven meron position
coordinates, including the proper weight function,
to compute Z (once more, we neglect the meron
scale-size intdgrals, which do not affect the
growth rate of the potential).

The meron pair field is taken to be

(x -x&))„(x-x&»)
'"" (x-x~)}' (x-x'2)}'

with &~ and & ') denoting the four-vector locations
of the two merons. The two legs of the quark loop
have fixed spatial coordinates & and the integral
for U has the form

(6.59)

(6.60)

where

R g«)
(9) =e p

so that, in particular, M, (m/2) =iT (R-x&'))./g-x&')~.
Now if x~') is far from both the quark and antiquark lines, so that (&~ )-x+'))/p~+) -x~')~- (R~ ) —x~'))/

—x ' [, the M, matrices drop out when we form tr(U' U~ ). Then

(6.61)

2 ' (x -x~)}2+(R-x~))2 +(x -x '"}3+(R-x"')'
where ~=~' for U~ and U is U~ with &=&0 . The path-ordering instruction, I', is not superfluous
and it does not seem possible to evaluate this integral analytically except in special cases.

There is some simpIification if g-x~')~» p-x~)~. In that case we can show that

t)L) (2)
7T J g XP Xf1 7T g g, g XgtjL) (2)

U Mm —-2 tan ~ (2)~ M, 2 Mm 4
+g tan ~ ~,)]

'(6.62)

6Z is proportional to tr(U U -1)which vanishes,
according to the above result, whenever g~') -R~)~,

-x~
~
become large compared to &=g' -R )~.

Roughly speaking we get a contribution of order 1
to tr(U )U~ —1)whenever meron 1 is within a
sphere of radius -& centered about the mean posi-
tion of the quark-antiquark pair and meron 2 is
outside that sphere. The quark-antiquark interac-
tion energy is obtained by integrating over meron
positions. and scale sizes with the weight function
obtained from the meron determinant. We will
not worry about the scale-size integration (which
would be important if we wanted the value of the

/

potential and not just its & dependence) and discuss
the integration over position only. The determi-
nant gives a factor of exp[-S„(&)], where & is the
four-dimensional distance between the merons.
Roughly speaking, given the geometry of the in-
tegrations and the fact that P is relatively slowly
varying, this should behave roughly like

. We have seven position coordinates
to integrate over (the time coordinate of meron 1
is held fixed in this calculation}. The & ' ren-
ders the integral convergent and the geometry of
the integral is such that the seven dimensional co-
ordinate integrals must behave ~like r'. In sum-
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mary (and very approximately)

7 6'ii /Z2y)+3Cff/4
0 (6.68)

VII. CONCLUSIONS

In this paper we have initiated a systematic ex-
ploration of the relevant degrees of freedom and

the dynamics of quantum chromodynamics. We
have discovered that to a large extent the dynami-
cal properties of QCD are a consequence of the
structure of the vacuum arising from the tunneling
between degenerate, classically stable vacuums,
and that the relevant degrees of freedom can be
taken to be the Euclidean path histories that can be
used to calculate the tunneling amplitudes in the
semiclassical approximation. We have seen that
the nonperturbative structure of the vacuum that
arises due to this tunneling explains the major
features of QCD, i.e., the dimensional transmuta-
tion which determines the size of the hadrons and
the strong-interaction coupling constant, the
source of dynamical chiral™symmetry breaking,
and the mechanism responsible for confinement.

Let us summarize the picture of QCD that has
emerged from our investigation. The general
structure of the 8 vacuum as a superposition of +
vacuums and the solution of the V(1) problem, fol-
low from general considerations. The detailed

This gives an alternate estimate of the critical
coupling. The quark-antiquark potential starts to
increase with separation, signaling the onset of
confinement, when 6v'/g'(&) =7+3C„/4 or 8&'/g'(&)
=~3 +C„. This is close enough to the value that
emerges from the susceptibility calculation to re-
assure us that the underlying physics is the same.
To see the actual phase transition at ~3+C„re-
quires a different calculation. Cutting off the in-
tegration over & so that 8v'/g„'(~}- C„-~~ and
taking & very large yields, as we saw for instan-
tons at the end of Sec. IV, a (finite) mass renor-
malization for each quark and a renormalized Cou-
lomb interaction. The coefficient of & ' (static
coupling) blows up when 8m'/g„'(&} approaches
—'2+C„, as it should because this is where the mag-
netic susceptibility diverges.

Once we have complete control over the meron
determinant we must redo this calculation with a
view to establishing the detailed & dependence and
numerical magnitude of the potential in the precon-
finement region where such a computation can be
trusted. Once we have a handle on the meron
plasma we must also verify that the onset of a
growing potential is indeed followed ultimately by
a linearly rising potential. This is a harder task,
but the indication of confinement seen here is sug-
gestive and encouraging to say the least.

dynamics of QCD, however, depend crucially on
the scale of phenomena under investigation. At
very short distance asymptotic freedom guaran-
tees that the effective coupling is small enough so
that the theory is essentially free. The density of
instantons of small size vanishes rapidly and at
short distances the "dilute-gas approximation"
applies. Since the up and down quark masses are
very light, tunneling is suppressed at short dis-
tances or, alternatively, instantons of small size
are tightly bound to anti-instantons. We have
shown that at distances, p~, corresponding to cou-
plings of order g /8&'-~» chiral-symmetry break-
ing occurs via a Nambu- Jona-I. asinio-type mech-
anism generated by the effective determinantal in-
teractions provided by instantons. At this distance
therefore the quark dynamical mass will become
substantial and tunneling will be restored. Alter-
natively, instantons of size greater than p„will
exist in isolation. At this distance scale the in-
stanton gas is dilute and can be treated by mean
field theory techniques. Their dynamical effects
are large and significant. For example, we have
seen how they substantially modify the Coulomb
potential between massive quarks. They are cer-
tainly much greater in importance than. the stan-
dard perturbative corrections. Physically the
reason that such tunneling effects are so large for
small coupling is the existence of many distinct
tunneling paths (degrees of freedom for instantons).
The interactions in the dilute instanton gas, which
behaves as a paramagnetic medium of magnetic
dipoles, cause a renormalization of the effective
coupling resulting in a rapid increase in its value
at a sharply defined distance p~-0.2p, '. At this
distance, where the effective coupling is of order
g'/8&' ~» instantons dissociate into merons. The
latter configurations are such as to provide a
mechanism for confinement of quarks. In the con-
finement phase we conjecture that the vacuum is
dominated by configurations that can be described
as a plasma of merons, leading to a picture. of
electric confinement in ordinary space similar to
that in a magnetic superconductor. We associate
p& with the confinement scale or the size of a had-
ron and g /8v'-~» with the hadronic coupling con-
stant, thereby concluding that in QCD the coupling
is always relatively small and that many aspects
of the strong interactions can be treated by semi-
classical methods.

Much work remains to be done. The quantitative
details of the chiral phase transition require fur-
ther investigation. A formalism for generating
systematic improvements of the dilute-gas approx-
imation should be developed. Most important we
must gain control over the meron configurations
and the confinement phase where our understanding
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is still at a qualitative and conjectural stage.
Finally we must proceed with the construction of
hadronic states, and the calculation of their
masses, eouplings, and scattering amplitudes.
This is a difficult problem in a theory such as
@CD where it is not even clear what is the best
way to begin the attack. Perhaps the most rea-
sonable strategy is to construct a phenomenologi-
cal model of hadrons which would play a role sim-
ilar to that of the Landau-Ginzburg theory in
superconductivity. Given our picture of confine-
ment as described above, the most likely candi-
date for such a model is a string model, This
would be a string of confined electric flux joining
massive quarks. The size of the string would be
given by the Debye length of the meron plasma.

The dynamics of the string as well as the ampli-
tude for the breaking of the string could be deter-
mined by Euclidean functional techniques. Such a
model would be useful for calculating hadronic
masses, as well as offering the possibility of con-
structing a model of hadrons that-could be used in
Minkowski space to calculate scattering amplitudes.
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