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Magnetic monopoles in a gauge Beld theory from vortex strings

Michael Kalb*

Cambridge, Massachusetts 02139
{Received 26 July 1977)

A realization of the antisymmetric tensor and vector potentials, having the open dual vortex string as a
source, is shown to be given by the fields of the 't Hooft-Polyakov model. The non-Abelian gauge
transformations map into Abelian transformations characterized by a Minkoski vector and. scalar. Magnetic
current conservation is assured.

I. INTRODUCTION
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Here q is the charge of the particle, and 7' is a

If the various models for strong interactions
are to be sensible, it should be possible to exhibit
some of their similar behavior and predictions in
certain domains. In this paper we pl. an to show an
interesting connection between two different ap-
proaches to the study of hadronic processes. The
two systems with which we propose to deal are
motivated, by the dual, relativistic string' and an
SO(3) Higgs-type field theory. We shall exploit
an analogy that strings display to charged point
particles, to produce a new gauge field. Then, by
making an anpatE involving unit Higgs fiel.ds and
usual non-Abelian SO(3) gauge potentials, the
string gauge fields will be shown to 1'.ead to 't
Hooft-P olyakov' magnetic monopoles.

The gauge field theory associated with the string
was originally seen in the context of direct inter-
string action. ' lt was intended there, however, to
look at the field in its own right, rather than as
an "adjunct" quantity. The gauge potential which
was introduced is designated by &p„„(x)= —&p, „(x)
(p. , v=0, 1, 2, 3); it is a second-rank antisymmetric
tensor in Minkowski space.

One can build up and study I agrangians involving
this object and its couplings to matter of various
kinds. " It is also possible to motivate j„, and a
definite coupling by discussing relativistic vortices
in a superfluid. ' An overview of the current status
and a coll.ection of calculations for this field will.
be forthcoming in the near future. Here, however,
we will concentrate on Q„, as it relates to the
magnetic-monopole structure of a particular non-
Abelian gauge theory.

g

II. MOTIVATIONS, ANSATZ, AND MONOPOLES

If a charged particle is placed in an electro-
magnetic field, the interaction will. be of the form

Tf
SI —-g d~d~~"'(7, ~)y„,(x(T, ~)) .

(4)

The tangent vector of the point particle has mapped
into the surface tensor of the world sheet:
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where
(

x~ =
sp x/Ts) x~ = sx~/BA. . (5)

%e have introduced the antisymmetric tensor
potential y„„(x) and evaluated it at x„(T,X). The
limits of integration give the (finite in A) domain
of the parametrization, while the coupl. ing con-
stant g indicates the strength of the interaction. -

monotonic variable which parametrizes the tem-
poral flow over the domain (r„rz). The four-vec-
tor x„(T) gives the instantaneous position so that
x& (= rex„/d7') is the velocity or tangent vector to
the world line of the'particle. Finally, A&(x(T))
is the vector potential of the electromagnetic field
evaluated at the point in Minkowski space which
coincides with the particle world line at "time" &.

The gauge invariance of this coupling is ex-
hibited by making the change

6A. ~
= &pA, (2)

where the space-time-dependent variable A is the
arbitrary gauge parameter. Under the transfor-
mation (2), the interaction (1) varies by

5s~ =Aj, (3)

It is usually assumed without loss that the system
evolves from and to the same gauge. Hence, 6sr
vanishes. The interaction plus kinetic terms form
a realistic model action for electrodynamics.

We would like to carry the above arguments over
to the Nambu string. It sweeps out a two-dimen-
sional world sheet whose points in Minkowski
space are given by x„(T,V. The variables T and X

represent an arbitrary parametrization.
Let us generalize the line coupling (1) to the

surface integral
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5Sr =2g
7y

dX x„' A»
(

—2g drx»A» )

0 0

Incidentally, if Sr is to have units of action, g
must be a mass.

There is a gauge invariance associated with the
quantity (4). If we make the change

5$»„=8»A, —&,A»,

with the space-time-dependent four-vector gauge
parameter A „, we obtain the variation

At this point it is a simple matter to define a
field strength for the potential j „,. In electro-
dynamics the charged particles move according
to the Lorentz force law, whose field dependence
is only on the components of F„, (= &P, —&,A»).
This law is therefore gauge invariant. In the
analogous calcul. ation for the string, the gauge-
invariant field strength which appears in the
generalized I orentz force law' is given by

(7) = (e/g) (&, g„, + 8„)p „+&
p q», ), (12)

While the first term is eliminated in a similar
manner to (3), the second integral does not vanish
in general. It is identically zero if periodic
boundary conditions are imposed on thd A, depen-
dence. Doing so, however, means we are dis-
cussing only closed strings.

If the string is open, we can also invoke an ex-
tended form of gauge invariance, Notice that the
second term in (7) is reminiscent of the electro-
rnagnetic coupling considered previously. Simply
replace 2gA„by gA„and view two point particles
of equal and opposite charge. We are therefore
led to modify the interaction by adding another
term:

Sr Sr +e QTdA. 0 ""G~

de& v (g f»» + 8G»~},

with

We have introduced a vector field B»(x), its field
strength G„„, and a unitless constant e, which

couple to the string in the way shown. It is easy
to show that

Ignoring the first term we have added only an end-
point coupling to the interaction.

Now, from Eqs. (8) and (9), we see that the
joint transformation

5g„, = s»A„—&,A»,

5B» = &»A —(g/e}A»

with

g»„-=(g/e} y»„+O»„.
Both F»„, and p», are invariant under the trans-
formation (11). Also, F „„which is antisym-
metric under index exchange, does not have
sensitivity to whether the string is open or closed.

Another quantity of interest is the dual vector
ofF „,

= 2 &„„,.&"0"= (e/2a)&, „,.s'0'

It is a fortiori( gauge invariant and satisfies

p (i4)

The behavior of F& is reminiscent of the dual of
the electromagnetic field, F»' (= '&»"'F»,). -

We now pause to contemplate these elements and

their significance. It is not yet known whether the
long-range Q„„ is a new fundamental object in

field theory. H,owever, the consideration. of
charged particles, which may be understood as
phenomenological manifestations, leads to the
concept of the el.ectromagnetic fiel.d, a more basic
physical entity. Is it therefore also true that the
phenomenological, composite system represented
by the string leads to a new fundamental field
theory? Or, is the Q», a collective-mode field
excitation already present in some gauge theory~
Up to this point it has not been possible, using
standard methods, to incorporate Q», into an en-
larged color-gauge field theory. ' The usual gen-
eralizations and likely new quantities have not led
to a viable system.

On the other hand, if we look for Q», within the
context of color-gauge theory, we find some
positive results. Say that Q„, is an entity within

an SO(3) Higgs-type field theory. An ansatz is

leaves the interaction invariant even when the
string is open. However, the transformation of the
vector field is singular, since A„must have a
nongradient part in order that 5$», be nontrivial.

(1/d&. .A.e-,i.s, 4.=

where

j),=- y./(y. j.)' ~' (a, b, c = 1,2, 3}

(15)



17 MAGNETIC MONOPOLES IN A GAUGE FIELD THEO8, Y 2715

(16)

Now define

is the unit Higgs field. Also, we give the vector
field in terms of the gauge potential A, „and &f&„

B„=$,A,„,
with

ansatz (15) and (16), the result is

E~ = (e/2g)e „s P~

= (e/g)e'f„,
= —(I/2g) e„,p, i,s"4'.6'it is'4'a (21)

This shows that —(g/4me)F„ is the magnetic cur-
rent density, ' and the magnetic charge appears as

where

= C „„+(g/e) y „„
= @.~.i. —(I/e)~.i.%Pi it». 4.

8me

and

Gaiia Sii+arl SU+ay + eeaba+ /pal

0 q Q, = s
p it), + et, ,A ~ (f&, . with

= lim — d'$ Z;, p",
8me s R

(22)

and

6+p = Sii(+a%a) o'aa pea ~ (19)
Thus

and

A„= (e/g) a,s„y..

The Abelian scalar gauge parameter A is just
the projection of the non-Abelian parameter &,
along the special dir ection in field space given by
that of the Higgs field. The Abelian vector gauge
parameter A„, however, is given by the projection
of the non-Abelian parameter along the Minkowski
gradient of the unit Higgs field. The four direc-
tions in field space given by B„P,are orthogonal
to that given by y„but cannot all be orthogonal
to each other for SO(3). Thus, for this group the
A„are not all independent.

Now recall the dual of the field strength (13).
This quantity is conserved (14). If we put in the

We have therefore the gauge-invariant "electro-
magnetic" field strength of 't Hooft and Polyakov.
The associated Maxwell's equations have mag-
netic four-vector current density as a source for

Explicit static solutions have already been
constructed. ' In addition, the conservation of
magnetic charge is topological in character,
rather than coming about through a Noether-type
symmetry principle. '

It is interesting to see how the gauge symmetry
generated by the transformations

M,„=~o. ,+ em~, &„~o, ,

6%a = e~ aaaitia o'a

map into those of (11), given (15) and (16). The
result is

ii mn (m, n =1,2;i,j,k=1, 2, 3).

The ordered pair $„parametrizes the surface of
the three-sphere S~, while Z;~ is its three-space
surface tensor, In the limit as the radius R-~,
S& is just the sphere in configuration space which
goes into the unit sphere q,$, = 1, in field space,
by a topol. ogical mapping. We have therefore a
situation in which dM/di vanishes, and for our
ansatz M is. the Kronecker index.

m. CONCLUSIOX

W'e have seen that by exploiting the analogy be-
tween charged particles and the electromagnetic
field on the one hand, and strings and the field
Q„„on the other, that some well-known physics
emerges. It is because Q„, has, up to now, only
permitted a trivial non-Abelian treatment that
we were led to consider it as a composite field
entity. This point of view applied to an SO(3)
Higgs model produced an ansatz for Q„, and a
vector field &„(necessary to consider open
strings) which led in turn to an "electromagnetic"
field strength which is gauge invariant and has
magnetic charge as a source. The conserved
magnetic-current density is simply the dual vec-
tor of the field strength E„„associated w ith the
potential Q„,.
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