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Unified theories of strong, weak, and electromagnetic interactions, which are based on simple groups,
require large unification energies on the order of 10 to 10' GeV. This paper describes a new type of
semisimple model in which the unification occurs at energies as low as 10' GeV. Most gauge models for a
group C X F.have two coupling constants which cannot be related without destroying renormalizability. In
this work a computer is used to look at millions of different models for various C X F and fermion
representations. The machine picks out those models which are compatible with the existenct„of any
renormalizable coupling-constant relation at the two-loop level. A small number of such theories is found. In
every case the coupling-constant relation is linear and fixes the strengths of the C and F interactions so that
they are inversely proportional to the size of the respective groups. Therefore, a semisimple model, which is
constructed from a small C group and a large F group, will have a natural hierarchy of interaction
strengths. If we embed color SU(3) in C and SU(2) X U(1) in F, this group-theoretical effect can account
for much of the observed difference between strong and weak interactions. Because the remaining difference
can be explained by a relatively small renormalization effect, the unification energy can be small. We exhibit
an SU(3) &(O(11) model of this sort, in which the unification energy is 10 or 10 GeV. The theory is in
agreement with the usual low-energy phenomenology and particle spectra. As the energy approaches the
unification energy from below, many new leptons and O(11) gauge bosons will be produced suddenly. In this
model the great strength of the strong interactions can be attributed to the fact that color. SU(3) is one of
the smallest Lie groups.

I. INTRODUCTION .

Most people believe that the divergences in quan-
tum. field theory indicate that there is a cutoff ener-
gy above which the principles of quantum field
theory are no longer valid. For example, if
"point" particles are really the excitations of
tiny strings, locality will break down as the ener-
gy approaches the inverse of the string length.
New microscopic structures of this kind may be
encountered well below the Planck energy (G '~'
= 10" GeV) at which the quantum corrections to
gravity become important. In this case there is
no way of understanding quantum gravity in terms
of quantum field theory. However, we can still
hope to unify the strong, weak, and electromag-
netic interactions in a cutoff-independent manner,
i.e., in terms of a renormalizable field theory.
All unified theories, which have been constructed

, up to this time, ' are based on some simple group,
in which the "observed" groups [SU(3) and SU(2)
x U(1)] are embedded. Above a unification energy
M all interactions are characterized by the same
strength. Below M all of the observed difference
in strength of strong and weak interactions (n~/n
-50) is attributed to a logarithmic renormalization
effect. Since the renormalization effect must be
large, the unification energy must also be large;
typically I ranges from 10' to 10"Qe7. This
kind of model is speculative since it requires the
extrapolation of quantum field theory into a high-

energy domain where it may not be valid. Such
theories are also suspect since they require two
disparate mass scales: M =10' Geg and M~=10'
GeV. This is at variance with Gildener's' finding
that, if all masses have a common origin in field
theory, their ratio is bounded by a ' ' = j.2.

The purpose of this paper is to construct unified
theories of strong, weak, and electromagnetic
interactions, which are based on semisimple
groups with one coupling constant. Such models
have a natural scale, the ratio of the dimensions
of groups, which serves to explain part of the
difference in the strengths of strong and weak in-
teractions. Consider a gauge theory for the semi-
simple group C x I'. The Lagrangian for such a
group usually contains two independent coupling
constants, c and f. A coupling-constant relation,
c(f), can be imposed only if it is renormalizable,
i.e., only if the constrained coupling constants can
still absorb all divergences. This means that c(f )

must be a trajectory of the Callan-Symanzik func-
tion which is stable under-perturbations; in other
words, c(f) must be a trajectory of the one-loop
J3 function which is also a trajectory of the two-
loop form of P. II C and F are isomorphic and the
fermion representations are chosen. symmetrically,
there is a well-known example of such a coupling-
constant relation: c=f. This relation is renormal-
izable to all orders since the constrained Lagran-
gian is invariant under a discrete exchange sym-
metry which lies outside the gauge group. In the
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present investigation, ' a computer is used to scan
millions of semisimple theories for nonisomorphic
groups and to pick out those groups and represent-
ations which are compatible with the existence of
any renormalizable coupling- constant relation.
The computer finds a handful of isolated models
which admit a renormalizable coupling-constant
relation at the two-loop level. In each case the
relation turns out to be linear and specifies C
and I' interaction strengths which are inversely
proportional to the dimensions of the respective
groups.

It is not known if these models are renormaliz-
able at the three-loop level. This issue can be
resolved by computing the three-loop divergences
(i.e. , by computing the three-loop P function).
However, this requires an elaborate calculation
and has not been done. Qf course, renormalizabil-
ity will be proved to all orders if we can find a
global symmetry of the constrained Lagrangian.
There is some reason to believe that such a sym-
metry exists. For spin-0-spin--, ' Lagrangians
almost all coupling-constant relations, which are
renormalizable at the one- and two-loop levels,
are associated with global invariance of the La-
grangian under symmetry or supersymmetry
transf ormations. 4 Therefore these coupling-
constant relations are almost always found to
be renormalizable to all orders. This suggests
an important connection between renormalizabil-
ity and symmetry: a coupling-constant relation
is renormalizable if and only if it is globally sym-
metric. ' Perhaps the coupling-constant relations,
described in this paper, are invariant under some
type of symmetry transformation on the space of
all boson and fermion fields.

Semisimple models with one coupling constant
can be used to construct unified field theories with

a low unification mass M. Consider a semisimple
model of bosons and fermions in which the dimen-
sion of C is much smaller than the dimension of
E, D(C)«D(F). For energies above M, the
strength of the C interactions will exceed the
strength of the E interactions by a factor D(F)/
D(C). Below M the symmetry is dynamically
broken' from CxE to SU(3) xSU(2) x U(1). The
strong interactions are described by an SU(3)
subgroup' of C, and weak-electromagnetic in-
teractions are associated with an SU(2) x U(1)
subgroup' of I'. Therefore, at an energy just
below M, the strong-interaction strength will
be greater than the weak-interaction strength by
the factor D(E)/D(C). This accounts for some of
the observed difference between the two interac-
tions. At the much lower energies, which are ex-
plored at current particle accelerators, the strong-
interaction strength is even greater due to a re-

normalization effect. This renormalization effect
can be small since it need explain only part of the
difference between strong and weak interactions;
therefore the unification mass JtJ/I can be low. As
is evident from the following formula, the value
of M is dramatically (exponentially) reduced by the
fact that the difference between strong and weak
interactions persists at the unification energyI= 10"«"&'«~~" &' Gev.

Here g(M)'/gs(M)', the asymptotic ratio of weak
and strong coupling constants, is a-small "group-
theoretical" number which is approximately scaled
by D(C)/D(F).

These ideas are illustrated in an SU(3) x O(11)
model. The unificatiori energy M is 10' to 104

GeV. At energies below M there is the usual
particle spectrum of the "known" quarks and lep-
tons. The fine-structure constant and Weinberg
angle are nearly independent of energy and have
the usual values (sin'8 =0.39). The strength of
the strong interaction decreases by a factor of 3
as the energy rises from 3 GeV to M. As the en-
ergy approaches M many new O(ll) bosons and
many new leptons appear. Above M the full unified
group, SU(3) x O(ll), is observed; the strength of
the SU(3) interactions exceeds the strength of the
O(ll) interactions by a factor D(E)/D(C) =—", .
In this type of model it can be said that the strong
interactions are strong because they are described
by one of the smallest Lie groups, SU(3).

This paper is organized in the following manner:
Section II contains the form of the two-loop P func-
tion for semisimple gauge theories. In Sec. III
the P function is used to find the necessary condi-
tions for the renormalizability of coupling-constant
relations. A computerized search for renormaliz-
able coupling-constant relations. is described in
Sec. IV. Semisimple models of strong, weak, and
electromagnetic interactions are discussed in Sec.
V. Conclusions are outlined in Sec. VI. The last
section also contains a discussion of the following
speculation: Semisimple gauge models with one
coupling constant may be the low-energy approxi-
mation of spontaneously compactified Einstein-
Yang-Mills theories in 4+ n dimensions.

II. CALLAN-SYMANZIK FUNCTION

FOR SEMISIMPLE GROUPS

Let C and I' be compact simple groups with di-
mensions D(C) and D(E) and with totally antisym-
metric structur e constants gab, and g~, normal-
ized so that

C C
g adeg bge ab &
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Denote the corresponding gauge and ghost fields
by 4„,A~„and &„~~. Take the fermion fields
to be left-handed and denote them by g (all indices
suppressed). Any fermion representation (possib-
ly reducible) will be generated by Hermitian ma-
trices C„E~which are normalized so that

[c., c,]=fg,c„c„
[F,, F, ]=fg „„E„, (2)

[C„E~]=0.

The corresponding Lagrangian for the semisimple
group C ~E is'

+T))(id —csg,c, —fsA, E~)~
y,

where

c= 2Tc —&&y

Vp= 2TF -11,
Bcc= 5Tc —17+3Qcc,

BCF= 8QCF&

FC QFC &

BFF= 5TF —17+ 3QFF,

Tc5„=Tr(C,C,),

TF53(= Tr(FaF, ),

Qcc&,3
= Tr(C, C3C,C,),

QC F&,3 = Tr(C, C3 F~ F~),

Q 5, = Tr(E E,C,C,),

QFF5)) = »(Fa Fr E E ).

(7)

+ su~) s (c) +fag ))msu(d) (d) Am

1 ~ 1
(sA,)' —,(()A.~)'+ mass terms

2{x~c '
2Q~p,

Note that the fermion fields can be taken to be left-
handed without loss of generality since any terms
with right-handed spinors can be written in a left-
handed form for the corresponding complex-con-
jugate representation.

Following 't Hooft, ' we define the renormaliza-
tion mass p, and the renormalized coupling con-
stants c and f by

a, c,
'

c =p, ""''c+ '4 +Oui

(4)
&«, )q, f+ ~F(c,f)

d —4 ((d-4) ]
The Callan-Symanzik functions for these coupling
constants are given by"

, ( Bac sac
P =3ia -C -fsc Bf

, ( SaF ()aF
(5)

PF= 3
~

&F —C -fsc sf
The one-loop and two-loop contributions to these
functions have the form

This form of the P function can be derived in the
fol, lpwing way: Caswell~' and Jones'3 have calcul-
ated the two-loop P function for a, simple group.
For a semisimple group the calculation is the
same except for the diagrams in Fig. 1, in which
the gauge bosons of one group (say, E) affect the
wave-function rqnormalization of the gauge bosons
of the other group (say, C). The important part
of the group-theoretical weight of these diagrams
ls

Tr[C,C3(c'C,C, +f'E„E„)]= (c'Qcc +f'Qc F)5,3 (8).
For a simple group (say, C) and a single irreduc-
ible fermion representation this weight reduces to
c.'Qcc, which is the same as the term g'C, (R)T(R)
in Caswell's E(l. (5). Conversely, to obtain the
semisimple P function of Eqs. (8) and (7) from the
simple p function of Caswell's E(l. (5), it suffices
to replace the term g'C, (R)T(R) in the latter by
the group-theoretical weight in Eq. (8).

C
P{1)c 48&2 c t

f3
f (1)F 48&3 F&

Q
3

~(3)c 384&4 ( ccc + cFf )&

p(3)F= 884~4 (BFCC +BFFf ),

(5)

Flo. 1. Fermion-loop diagrams in which gauge bos-
ons of one group {say, 5') affect the Callan-Symanzik
function of the other group {C).
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The fermion representation is the sum of irre-
ducible blocks, labeled by the index.Vand gener-
ated by the Hermitian matrices C,",F~ [normal-
ized as in Eq. (2) j. Each block is the product of
an irreducible representation of C with generators
C," and dimension Dc and an irreducible represen-
tation of I'" with generators I"~N and dimension B~~.

In other words

TABLE I. D(G) is the dimension of group Q. D& and
7.'& are the dimension and trace of the fundamental rep-
resentation.

SV(~)

(C") ~ .~, = (C, ) „,&

where n, e' run from 1 to Dc and X, X' run from 1
to DN

Let Tc be the trace of an irreducible represen-
tation of C,

SO(n)

sp(n)

, n(n- j.)

&n(n+ i) &=even~4 1
n+2

TNg rP (CFCF) (10) E6

Then the eigenvalue of the quadratic Casimir in-
variant of that representation is

D(C) TgIc
c

E 248

The following formulas express the T's and Q's
of Eq. (7) in terms of these invariants:

Qcc = 2 Tcfc DF QCF= + Tc DFfF
N N

QFc= 2 Dcfc TF" QFF= Z Dc TFfF".

(12)

It is now easy to compute the two-loop Callan-
Symanzik functions for a wide variety of semi-
simple groups and fermion representations. " For
the fundamental representation of any compact
simple group G (G= C or E) the values of TG and

D~ are listed in Table I." For. the adjoint repre-
sentation of G, T~=1 and D~=D(G), which is also
given in Table I. For G = SU(n) the dimension and
trace of the completely summetric Kh-rank ten-
sor representation are

(x+1)(~+2) . (r+n —1)
G (n —1)!

(n+ 2)(n+ 3) (n+ ~)
2n(r —1)!

ling-constant relation itself.
Any coupling-constant relation is a line in coup-

ling-constant space c(t),)(t) where t is the single
remaining coupling constant in the constrained
Lagrangian. Because we want the theory to be per-
turbative, c(t) and/(t) are assumed to be analytic
functions; in every other way they are unspecified.
Since the constrained theory is renormalizable, in
each order of perturbation theory it must be pos-
sible to absorb all divergences into wave-function
rehormalization and into a single bare coupling
constant t~. In other words, there must be a func-
tion A(t) such that the divergences can be absorbed
by16

(14)

Therefore the divergences in the Lagrangian must
have the form

III. RENORMALIZABILITY OF COUPLING&ONSTANT

RELATIONS

Consider a gauge theory for the group C && E and
some fermion representations. In this section we
assume the existence of an unspecified renormal-
izable coupling-constant relation and derive the
necessary conditions which must be satisfied by
C x I', the fermion representations, and the coup-

A(t) dc(t) (( 1
d-4 dt (id-4 )'

d 4 dt i d —4
A. (t) df(t) ! 1 21

Since these divergences must also have the form of
Eq. (4), it is necessary that



SEMISIMPLE UNIFIED GAUGE THEORIES OF STB,PNG, . . . 2699

A(t) = ac [c(t),f(t) ],

A(t) =a [c(t),f(t)].df(t)

These equations must be satisfied order by order
in perturbation theory; therefore at the two-loop
level we have

A, (t) d =a„, [c(t),f(t)],

A, (t) =a„& [c(t),f(t)],df (t)

A2(t} d
= a(2)c[c(t) f(t}1

A.,(t) =a(, )~[c(t),f(t)],df (t}

at the one- and two-loop levels, are stable to all
orders because they are associated with an inter-
nal symmetry or supersymmetry of the constrained
Lagrangian. ' As shown in Sec. IV, most semisim-
ple gauge models do not have any stable trajectory
and, therefore, cannot admit any higher symme-
tries. It is hoped that the small number of semi-
simple theories, which do have stable coupling-
constant relations, are invariant under some set
of transformations (possibly discrete) of the gauge
and spinor fields.

Equation (8) can be used to rewrite Eq. (18) as

dc
A (t) —=c'V,

dt

where the perturbative expansions of A(t) and

ac (G= C or E) are

A(t) =A&, )(t)+A(, )(t),

ag = a())g+ a(2)g.

Equation (5) implies that the one- and two-loop
parts of Pc=P(, )c+P&,&c are given by P(, )&,

= -a(, )&,

and P&»c= -2a&»c. Therefore Eqs. (17) can be
cast into the form

A, (t) =f'(B~—c'+ B~~f'),

where A, and A., are proportional to X, and Z, . It
is a matter of algebra to show that models which
admit solutions to the above equations must satis-
fy one of the following sets of conditions on the P
function coefficients:

Case 1:

&)(t) = P () )c[c(t),f(t)],

X,(t) « -P&, &,[c(t),f(t)],df (t)

(18)

~c ~0 Vz~e

BccB~r—Bc/zc «
Vc Vz~O

B~~Vc' -BccV~'+ Vc V~(B~c —Bc~)= 0.

(20)

&2(t) d =&(2)F[c(t»«t)]

where X,(t) = -A, (t) and X,(t) = -2A, (t}. These are
necessary conditions which must be satisfied by
any renormalizable coupling-constant relation at
the two-loop level. Since X,(t) can be absorbed by
a redefinition of the parameter t, the first two
lines of Eq. (18) say that c(t),f(t) is a trajectory of
the one-loop P function. The sum of the first- and
second-order parts of Eq. (18) implies that the
same functions describe a trajectory of the two-
loop form of the P function. In other words, renor-
malizability requires that coupling-constant rela-
tions describe a trajectory of the P function which
is stable under perturbation. Note that this con-
dition is independent of the gauge-fixing param-
eters and the mass terms.

'

This stability requirement is a kind of gener-
alized symmetry condition. For scalar-spinor
models almost all trajectories, which are stable '

This turns out to be the only case of interest. Any
model which satisfies these conditions admits a
renormaI. izable linear coupling-constant relation":

c V~
f' Vc

'

Solutions of this type are found in Sec. IV and used
to construct unified field theories in Sec. V.

Case Z:

~c= Vz=o (21)

In models of this kind p&»c = 0= p&»z, in other
words, there are no one-loop divergences to be
absorbed. Therefore any two-loop trajectory
(linear or nonlinear) is a possible coupling-con-
stant relation. There are a .number of models of
this type, but they are not interesting from a prac-
tical point of view since they do not pick out a
specific coupling-constant relation at the two-
loop level.
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Case 3:

O N H H + O O
Vc~«VF~

BccBFF—BCFBFC = o

VcBcF+ VFBcc = 0.

(22)

O O O O O O O O
This sort of theory can have a coupling-constant
relation which is a one-loop trajectory along which
there are no two-loop divergences. No examples
of this phenomenon have been found.

Case 4:

Vc &0& VF,

CC FF CF FC

and one of the following sets of conditions:

Vc

BCF

Vc

Bcc BFc '

or

(23)

(23a)

.CO CC

II

V

XXXO~OaO

or

Bcc= 0 = BFc ~

VC VF

BcF BFF '

BcF=o= BFF~

Vc

Bcc BFc
'

(23b)

(23c)

O R O O O O O O

Solutions of this type can also admit nonlinear
coupling-constant relations, but none have been
discovered.

IV. SEMISIMPLE GAUGE MODELS WITH ONE COUPLING

CONSTANT

Equations (20) -(23) represent necessary condi-
'

tions to be satisfied by any group C && I'" and fermi-
on representation, which are compatible with the

. existence of a renormalizable coupling-constant
relation. A computer is used to scan the groups
and representations in Table II and to pick out
those which satisfy any set of necessary condi-
tions. C and F must be chosen from the list (Table
I) of all compact simple Lie groups. The search
is focused on groups for which D(C) «D(F). As
mentioned before, this type of theory is expected
to provide a natural explanation of the relative
strengths of strong and weak interactions. The
ease in which C (or F) is SU(2) is included for
completeness even though it is not of practical
interest. The most intensive search is conducted
for models in which C is the smallest possible
group, namely, SU(3). We also consider the pos-
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sibility that C is G„SU(4), or SU(5). In this
case the symmetry is supposed to be broken dy-
namically down to SU(3)." Even larger choices
for C can be envisioned, but they will be associ-
ated with en6rmous E groups.

The fermion representation is a sum of irreduc-
ible blocks, each of which is the product of irre-
ducible representations of C and E, Singlet, fund-
amental, and adjoint representations of both C and
F are considered. We also allow the completely
symmetric tensor representation of C when C is
SU(n)." For a given group C x F the fermion rep-
resentation is typically allowed to contain up to
eight different types of irreducible blocks; each
type of block may occur up to four or five times
in the overall representation. Table II gives the
exact range of theories which have beeri examined.
Approximately 100 semisimple groups have been
considered; the, fermion representation of each
group has been allowed to have about 5'-4 && 10'
different forms. Therefore over forty million
models have been tested for a renormalizable
coupling-constant relation.

The necessary conditions, Eqs. (20)-(23), are
constraints on the invariants of the group and
fermion representations. Since these invariants
are'characterized by integers, there are very few

. solutions of these equations. It turns out that all
solutions are of types 1 and 2. Models of type 1
are listed in Table III, along with the correspond-
ing linear renormalizable coupling-constant rela-
tion. Almost all solutions have coupling constants.
which are related by c=f. This means that the
ratio of strengths of C and E interactions is of
order D(F)/D(C). To see this, note that the in-
teraction strength of C gauge bosons is character-
ized by

~
cgc„~'/4v, where gc„ is a typical value

of the C structure constants. For a fixed index a,
-ig,~, is a Hermitian matrix whose magnitude is
characterized by the average of its D(C) eigenval-
ues. Equation (1) shows that the sum of the
squares of these eigenvalues is unity; therefore
a typical squared eigenvalue has the magnitude
1/D(C). Thus the strength of the C interactions
is of order" (c'/4v) [1/D(C)]. Similarly, the F
interaction strength is characterized by (f'/4v)
x [1/D(F)]=(c'/4v)[1/D(F)]. Therefore these
models have a natural hierarchy of interactions
which differ in strength by D(F)/D(C). By embed-
ding SU(3) in a small C and SU(2) x U(1) in a large
E, this hierarchy can be used to account for the
relative strength of strong and weak interactions.

The models of Table III have not been checked
for anomalies. However, anomalies are no threat
to the theories with c =f. Equation (20) shows
that the fermion representations in this type of
solution can always be doubled (or multiplied by

any integer). '" Since these representations can be
divided evenly between right-handed and left-
handed fermions, "anomalies can always be re-
moved in this way. The few models with c wf do
not have this property; the number of fermion
representations of each type is completely fixed
by renormalizability and cannot be multiplied by
an integer.

V, UNIFIED THEORIES OF STRONG, WEAK,
AND ELECTROMAGNETIC INTERACTIONS

A. General procedure

I

The general method of constructing unified models
is discussed in this subsection. Particular attention
is focused on the renormalization-group formulas"
which show that the unification mass M is very sensi-
tive to the ratio D(C)/D(F).

Consider any semisimple model with a renormal-
izable coupling-constant relation (see Table III),
which is based on the group C x E and a fermion
representation with generators C„F~. For sim-
plicity, suppose that the coupling-constant relation
is c=f. The first step in the construction of a un-
ified theory is to choose an SU(3) subgroup of C,
generated by C, (a = 1, . . . , 8), and an SU(2) x U(l)
subgroup of F, generated by F(k= 1, 2, )3and

F,. These groups are associated with the strong-
and weak-electromagnetic interactions which are
observed at low energy. The next step is to choose
a U(1) subgroup [labeled U(1)o] of SU(2) x U(l),
which will describe electromagnetism. The full
symmetry group C x E is.assumed to be broken
dynamically according to the following hierarchy:

C x F SU(3) x SU(2) x U(1) SU(3) x U(1)o.

SU(3) x U(1)o is unbroken, and the corresponding
massless gauge bosons are the gluons of quantum
chromodynamics (QCD) and the photon. The
breaking of SU(2) x U(1) down to U(1) +is character-
ized by the mass, 34~ -50 GeV, of the weak-interac-
tion bosons. The breaking of C x F down to SU(3)
x SU(2) x U(1) is associated with the unification mass
Pl, which is also the approximate mass of all other
gauge bosons. At energies greater thanM the S ma-
trix is described by the full theory of Eq. (3). It was
pointed out in Sec. IV that the. ratio of strengths of
the C and F interactions is of order D(F)/D(C).
At an energy F-&M the S matrix is described ap-
proximately (up to terms of order 8/M) by an
"effective" Lagrangian" for the group SU(3) x SU(2)
x U(1). This Lagrangian is obtained from Eq. (3)
by removing all bosons and fermions with masses
of order M and greater; therefore, it has the form
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——,'(8 „B„—B„B„)'+ij)(iP —hsd L,C, —hag»E» h-sBF, ) ~

+ghost, gauge-fixing, and mass terms, (24)

hs =h=h'=c. (25)

The quantities hs, h, h' are related to the usual
coupling constants of QCD and the Weinberg-
Salam modeP (g„g,g') by three group-theoreti-
cal numbers, X„X„X,. X, is defined by the em-
bedding of SU(3) in C:

CXb gabe faba I (26)

where a, b, c=1, . . . , 8 and the f„,are the usual
SU(3) structure constants with the normalization

fadefbde ab '

An argument of the kind given in Sec. IV shows
that a typical embedding choice implies

X '- -'D(C).

(27)

(28)

It is convenient to define SU(3) generators of the
fermion representation which are normalized ac-
cording to

where a, b, c are summed from 1 to 8; k, l, rn are
summed from 1 to 3, and only. low-mass fermions
are included. The renormalized coupling con-
stants, hs, h, and h', are constrained by the fol-
lowing symmetry condition: The coupling constant
c of the full theory and the coupling constants of
the corresponding effective theory are equal when
the renormalization mass p, is chosen to be p, =M:

X,' - —,
' D(E).

Let F» be the following SU(2) generators of the
fermion representation:

Ea

[F,', El]=i»„, F' .

(32)

(33)

In other words, F,' is the usual "weak isospin"
generator. To calculate X„consider any irre-
ducible representation of E with generators E,
normalized as in Eq. (2). If the F„' are the cor-
responding SU(2) generators normalized as in Eq.
(33), then

Tr(F,'E,')
Tr(E, E,)

(34)

As before, the denominator is given by the T„"of
Table I and Eq. (13); the riumerator is determined
by the "weak isospin" decomposition of E's repre-
sentation. Notice that there is only a finite number
of ways of embedding SU(3) [or SU(2)] in C (or E);
therefore X, and X, must be chosen from a discrete
set of possible values.

X, is determined by the relationship of U(1)
and SU(2) x U(l). The electric charge Q, which
generates U(1)o, must be a linear combination of
E3 and E4 . Since we want the 8' bosons to have
charges +I, Q must have the form

C,' =X,C, ,

[C,', C,'] =

if�„,

C,' . (29) Q =X2E3+X,E4 ~ (35)

Therefore C,' is the usual generator of "color iso-
spin. " The easiest way to calculate X, is to con-
sider any irreducible representation of C gener-
ated by matrices C, with the normalization of Eq.
(2). The SU(3) subgroup is generated by matrices
C,' normalized as in Eq. (29). Obviously,

Tr(C,'C,')
Tr(C,C, )

(30}

The denominator is just the Tc, given in Table I
and Eq. (13). The numerator can be computed
directly from the "color isospin" decomposition
of C's representation.

X, is defined by the embedding of SU(2) in F:

X2~elm aim ~ (31}

where k, l, rn range from 1 to 3. For a typical em-
bedding choice we expect

It is useful to define F4 —=X,E4 so that

Q
—El +E I (36)

Thus E,' is one-half the usual "weak hypercharge. "
To calculate X„consider any irreducible repre-
sentation of E, generated by matrices E~ with the
normalization of Eq. (2). Then

Tr@2.
Tr(F, F,)

(3'I)

The denominator is just T~, and the numerator
is determined by the charge assignments in the
representation.

The coupling constant of QCD (gz) and the coup-
ling constants of the Weinberg-Salam model (g and
g') are related to the h's by

hs h , h'

3 2 1
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The effective Lagrangian can now be written in a more familiar form,

——,'(s„a„-s„f3„)'+P(fg g„-+.C,' g,—+„F„' g,'-gZ,')
~

+ghost, gauge-fixing, and mass terms, (38)

X3gs X2g X,g' = c. (40)

Equations (28} and (32) indicate that a typical em-
bedding of SU(3} and SU(2) in C and E will give

gs X2 16 D(E)
g' X,' 9 ~(C) (41)

at p, =M. Therefore, by choosing D(C}«D(E), we
can account for part of the great relative strength
of the strong interactions.

The electric charge and the Weinberg angle are
defined in the usual way:

(g +gl2)1/2

tan8= —.
(42)

1

In this language the "boundary conditions". of Eq.
(40) are

where a, 0, c and k, l, m run from 1 to 8 and 1 to 3,
respectively. This Lagrangian describes the low-
energy domain of the full C x F theory if the coup-
ling constants lie on a trajectory which satisfies
Eq. (25); i.e. , at p, =M,

at p, =M.
At a renormalization point p. «M the coupling

constants g~(p), g(p), and g'()j.) will differ from
the values in Eq. (40) by a power series in
c'In(1+M'/p'). The power series can be added
up' by computing the coupling-constant trajec-
tories of the renormalization group. These tra-
jectories have the following form:

1 1 1 p.

(M},
—8, (2S, —11)ln M,

1 1 '1 p,2, (2S, —ll) ln (44)

g'( p, )' g'(M)' 12m' ' M

Sy S2 S, are proportional to traces of the genera-
tors of the fermion representation; for example,
if Z,«contains only the (1) and (3) representations
of SU(3) (i.e. , leptons and quarks) and the (1), (2),
and (3) representations of SU(2), then

S, =—,', (number of quarks in Z„,),
S, =-,' (number of lepton doublets

gg X +X
e X3

X
s '6=

1 2

C22=
g& =X'

3

(43)

+number of quark doublets in 2,«) (46)

+ number of lepton and quark triplets in 2,«,
S, = sum of E4' over all fermions in Z, ff.
With the aid of the "boundary conditions" of Eq.
(40) and the definitions in Eq. (42), Eq. (44) can be
solved for

6 al/ () }]X,'- (I/ .(p)](X,'+X.')]
3 (X,'+X,') (11—2S,) + 2X,'(S, + 2S, —11) '

3X2 (11—2S3) —2X, (11—2S2)+ [a(y)/ng(p)] [2X~~S, +2X,'(11 —2S2)]
3(X,'+X,')(11—2S,) + 2X,'(S, + 2S, —11)

c2'}

4m~, „[cos'8(p)/n(p)] —(S,/3m) , In(M/p, )
'

(46)

where o. =8'/4w and o. 8 =g~'/4w.
These equations are important constraints on the

following procedure for constructing unified theo-
ries. The first step is to take a model from Table
III and choose an embedding of SU(3), SU(2), and
U(1)o in the full group C x E. This determines

Xy X2 X3 Next, the full particle spectrum as
given in Table III is divided into low (&M) and
high (~M) mass sectors. S„S„S,are determined
by the quantum numbers of the low-mass particles.
At low energies (say, p, '=8 GeV') we have the ex-
perimental results24
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Q 1
137

02 n 04
(47)

(48)

Finally, the X's, S's, Eqs. (47)-(48), and Eq. (46)
are used to compute M, sin'8 at p, = ~8 GeV, and
c'/4n at p, =M. In a satisfactory model these out-
put numbers should satisfy the following con-
straints: M is expected to be low (say, 10' or
10' GeV)" for reasons outlined in Sec. I, sin'8
at p = v 8 GeV should match the experimental val-
ue"

sin'6} = 0.35, (49)

Next, assume that there are not too many particles
in the low-mass spectrum. For example, suppose
that hadrons are described by three left-handed
and three right-handed quark doublets (each avail-
able in three colors); leptons are in three left-
handed doublets, three right-handed doublets,
and assorted singlets. Then Eq. (45) shows that

S3=2,

S, =6.
(51)

Now, substituting Eq. (51), Eqs. (47)-(49), and
p= vY GeV into Eq. (50),

X,' 48.1 —0.106 lnM

X,' 1.35+ 1.11 lnM

This curve is approximated by

M =10"~& 2 ~-x3 ) Qep. (53)

Therefore, any model with a low unification mass,
say M-10' GeV, must have X,'/X, '-6; then Eq.
(41) shows that such a model must" have D(E)/
D(C)-3.

Equations (50) and (53) also hold for unified theo-
ries which are based on a simple group G. In
these models a typical embedding of SU(3) and
SU(2) in G gives [see Eq. (41)j

16 D(G)
X,' 9 D(G)

Therefore the unification mass M is almost al-
ways large": M -10' GeV. This is easy to under-
stand: If a simple group is used, the strong and

and c'/4v at p = M should be reasonably small if
perturbation theory is to be trusted.

Before constructing such a theory, it is useful
to invert the above logic and demonstrate that
a low value of M can be achieved only in models
with large ratios D(F)/D(C). First, notice that
Eq. (46) implies

[sin' 8(p)]/n ( p) + (1/3w) (I1 —2S,) in(M/ p, )

X,' I/o, ( p.) + (1/2w) (11—2S,) ln(M/ p, )

(50)

B. SU(3)XO(11)model

Consider the model in Table III with C x F= SU(3)
x O(11). For p, =p, = 0 the fermion representation
contains two blocks of quarks, which transform as
(3, 11) under SU(3) x O(11), and three blocks of lep-
tons, which transform as (1,55). It turns out that
SU(3), SU(2), and U(1)o cannot be embedded in this
model in a way which is consistent with experi-
ment. This subsection is a discussion of the "dou-
bled" version of this theory with four (3,11) blocks
and six (1,55) blocks. The known low-energy
phenomena can be embedded in the "doubled" mod-
el in a unique way which is described below.

X, is uniquely determined since C =SU(3). To
calculate X„consider the (3) representation of

SU(3), generated by C, with the normalization of
Eq. (2). Table I implies that the denominator of
Eq. (30) is —,'. Since the (3) representation con-
tains one doublet and one singlet of "color iso-
spin, " the numerator of Eq. (30) is —,. Therefore

X 3 (54)

To embed SU(2) x U(1) in O(11), consider the
(11) representation of O(11). It is generated by
imaginary, antisymmetric matrices E„normal-
ized as in Eq. (2). Therefore Table I implies

weak interactions have the same strength at p, =M.
Therefore the great relative strength of the strong
interaction is entirely due to a large renormaliza-
tion effect; this requires a huge M. In a semi-
simple model with D(E)/D(C) -3, the large relative
strength of the C interactions at p, =M accounts for
part of the strength of the strong interactions;
therefore the renormalization effect can be re-
duced, and M is drastically smaller.

Table III contains several models with large
D(E)/D(C); the relevant groups are

SU(3) x O(7),

SU(3) x O(11),

SU(3) x F4,

G, x O(8),

SU(4) x O(8).

For each group there is only a limited number of
ways of embedding SU(3), SU{2), and U{1)o. Each
embedding choice gives a definite value of sin'8
and a certain particle spectrum. The next sub-
section outlines a theory based on C x E = SU(3)
x O(11) which is consistent with experimental in-
formation on sin'8 and the low-energy particle
spectrum. Almost all other models, which can
be embedded in the full groups listed above, are
not compatible with low- energy phenomenology.
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TrF3 F3 =
-g ~ (55)

Tr(J Z, ) = &„,
Tr(L„L,) = &„,
Tr(Z, L, ) =0 .

(56)

Then a set of 11 x 11 imaginary antisymmetric
matrices, which satisfy Eq. (55) and which gen-
erate an SU(2) x U(1) subgroup of O(11), are
(0=1,2, 3)

0
k

Let J', and L„(@=1,2, 3) be the 4 x 4 imaginary
antisymmetric matrices which generate the (—,', —,')
representation of SU(2) x SU(2):

and three singlets with charges 3 3 0. Evident-
ly, the u, d doublet and c,s doublet will have to lie
in different (3, 11) blocks. The adjoint represen-
tation of O(11) decomposes into SU(2) x U(1) multi-
plets with quantum numbers (2

~

F'~+ l,E,'):

(55) = (1,+—,')+(1,+1)+(1,+3)

+2(1, +3)+3(1,o)+ (2, +~6)

+ (2, +—.')+ 2(2, +a)+ 2(2, +~)

+ (3, yl ) + (3, y—,') + 2 (3, 0) .

Observe that the two blocks with quantum numbers
(2, --,') are suitable" for describing the t „e doub-
let since they have the charge content

f' 0)

Substituting these values of X„X„X,into, Eq.
(43) gives the following "boundary conditions"
on g, (q), e(q), e(q):

0
(57)

5L3

0

To calculate X„notice that Eq. (55) means that
the denominator of Eq. (34) is —,'. Because each
(~, 2) representation of SU(2) x SU(2) contains two
"weak isospin" doublets, the numerator of Eq. (34)
is 4(-,') =2. Thus

X '=18. (58)

X, =28. (59)

With this choice of embedding the (11) represen-
tation contains four "weak isospin" doublets with
charges

(-:l (-:& c-:

3 3 3 3

(60)

Since X,'/X, '= 6, this model will yield M = 10'
GeV.

X, is now determined by the embedding of U(1)~
in SU(2) x U(1). Equations (35), (57), and (58) show
that there will be quark doublets with charges —'„
-3 only if

sin'6(M) = 0.39,

g, (M)' = -', (c'), ,
(62)

Thus the strong interaction is many times larger
than the electromagnetic interaction at the unifi-
cation ene rgy.

We can work backward from phenomenology to
show that the above method of embedding SU(3),
SU(2), and U(1)o in SU(3) x O(ll) is almost unique.
Since C =SU(3), there is obviously only one choice
of X„X,' = 3. Equation (53) demonstrates that a
unification mass" of 10' GeV can be achieved only
if X,'/X, '-6. Therefore SU(2) must be embedded.
in O(11) so that X,'-18. Equations (34) and (55)
then imply that the (11) representation must have
an SU(2) decomposition such that TrE3E3-2. This
means that the (11) representation must be d'ecom-
posed into four doublets and three singlets or into
one triplet and eight singlets. Since the u, d quark
doublet must be contained in the (3, 11) represen-
tation of SU(3) X O(11), the (11)must contain three
singlets and four doublets, one of which has charges

Because of the reality of the (11) rep-
resentation, another of the doublets must have
charges' —,', ——,'. The remaining two doublets and
three singlets must have charge assignments of
the form

q, ) /1 —q) -q„o.
iq, —lp (-q, f

The charge q, is determined in terms of q, by the
requirement that the Weinberg angle be near the
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Trg' =—",+ 2q, '+ 2(q, —1)'+ 2q, ' - 5. (63)

A second constraint on q, and q, is provided by the
requirement that the charge of v, turn out to be
zero. The adjoint representation of O(11) must
contain a "weak isospin" doublet with charges
0, +1, which describes the v, and e . or e'. Since
the adjoint representation transforms as part of
the direct product (11)x (11), it wili contain a
doublet, one component of which has vanishing
charge, only if q2

= +3 or q2 +3 or q2 + qy or
q, = +(q, —1) or q, = 0 or q, —1 = 0. Therefore the
pair q„q, must be chosen from the following dis-
crete set of values, which are dictated by the above
choices in conjunction with Eq. (63):

1
3 Or-»

2 6 1
q2=+3~ qj. 5 or»

1or-—,',

q, =+(q, —1), q, - —,
' or 0,

(64)

q, =0, q, -+1,

q, —1 = 0, q2-+1.

For all of these alternatives each (11).representa-
tion contains only one doublet of quarks with charges
3 3 This is the reason it is necessary to
consider the "doubled" SU(3) x O(11) model. In
the undoubled version the u, & and c, s doublets
must be in the same (3, 11) block; therefore Eq.
(64) cannot be satisfied, and either 8 or the v,
charge is wrong, In the "doubled" model the left-
handed u, d and c,s doublets are in separate (3, 11)
blocks; the corresponding right-handed particles
must be in an additional two (3, 11) blocks. Only
the first choice in Eq. (64) allows the (11) repre-
sentation to contain a second quark with charge

3 Since some expe ri ments" sugge st that such
a "bottom" or "b" quark does exist, we only dis-
cuss the embedding with q, = +& and q, = —', (or —&)

in this subsection.
We present two ways of embedding the complete

low-mass particle spectrum in the above model.
The first method depends on the assumption that
dynamical symmetry breaking picks out the fol-
lowing low-mass quarks from each of the four
(3, 11) blocks:

experimental value, sin'0-0. 4 at low p, . Since
the value of M is low, we expect the renormaliza-
tion effect to be small; therefore we should require
sin'8(M) -0.4. Because X,' -18, Eq. (43) implies
X,' —27. Then Eq. (37) shows that, we must have
Trg'-5. This means that q, and q, are related by

( 2

each(3, 11)-3 colors x
I

'
I+ (

k--')

+ states with masses -M.

In one (3, ll) block the "weak isospin" doublet
with charges —,', -3 is identified as the left-handed
u, d~ quark pair and the singlet with charge --, is
the left-handed b quark

The other three (3, 11) blocks contain the following
low-mass states:

'& (.)„

(c) + (s)„,

where the subscript "C" refers to Cabibbo rota-
tion and "a" is a new quark with charge -3 which
has not yet been obse.rved. There are six (1,55)
blocks, of which three are left-handed and three
are right-handed. Dynamical symmetry breaking
is supposed to pick out the following low-mass
leptons from each of the three left-handed (1,55)'s:

each (1, 55)~ - + (0)~
(0l

1

+ states with masses -M.

These are interpreted as

("'),(X )

4')

+( ')

f'~) +(Uo)

F)~
where P, v~ are the new leptons discovered at
SPEAR and X', Yo, U are leptons which have not
yet been produced. Each of the three right-handed
(1,55)'s has the particle content

0('5)"
I I

+

I, I),
These doublets contain the following particles:
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(~l
)R (& jR k+ )z

Equation (45) can now be used to find S„S„S,from
the quantum numbers, of the low-mass particles

The u, d, c, .s, b, and a quarks are identified as
before; now, however, there are four additional
quarks with charges 3, 3 '3 and --,'. The lepton
spectrum is unchanged. Equation (45) shows that

~1

3 3

S3= 2,

S =—9
2 2 P

S, =5 ~

(65)

S2 2

and Eq. (46) gives

(69)

Substituting Eqs. (65), (54), (58)-(59), and (47) into
Eq. (46) yields

log„(M/p, ) = 3.41— 0.38

sin'8( p, ) = 0.37+ 0.0022
p,

~ ~

C2 28
4w, ~ 82.1 + 0.17/n ~ (p. )

(66)

for low values of p, . Analyses of scaling behavior'4
suggest that o.~(p, ) lies between 0.2 and 0.4 at. p,

'
=8 GeV'. If we take et~ =0.4, then Eq. (66) gives

log»(M/p, ) = 5.12— 0.57

ns &

(')()39'00002
o', (u)

/c' 28
4~ 76.5+0.82/o (~)

at lorn p, . If @~=0.4 at p.'=8 GeV', then

M = 1.42 x 104 GeV,
sin'6) = 0.39,

= 0.36.

(70)

(71)

+=815 GeV,

si.n'6I ='0.38,

= 0.34.

(67)

Qn the other hand, if n~ =0.2, then

M=526 GeV,

san'8 = 0.39,
(72)

M =92 GeV,

sin'6 = 0.38,

= 0.34.

(68)

Notice that the particle spectrum and Weinberg
angle of this model make it identical to one of the
theories (the "E"model) which was picked out by
Barnett" to describe weak and electromagnetic in-
teractions. Therefore the unified theory of this
section is compatible with experiments in the lom-
energy domain. If n, is as low as 0.2,- then we
get

As long as the "a" quark and the four additional
quarks are sufficiently heavy, these models" will
be in agreement with experimental data on the
strong and weak interactions.

Figure 2 gives a physical picture of the models
which are associated with n~(v 8 GeV) =0.4 [Eqs.
(67) and (71)]. The unification energy is M - 10'
or 10' GeV. For energies below M the S matrix

The value of M in Eq. (68) is too low to be con-
sistent with the initial assumption, M»M~, which
justifies the use of 2,« instead of the full theory
in the low-energy domain. This problem can be
avoided by introducing four more quarks into the
low-mass parti. eke spectrum. Each of the four
(3, 11) blocks 'is now assumed to have the particle
content

O.I5—

0.(2—

0.09—

0.06—

0.03—

0
WEAK

l0

c = sU(3I

F =0(l I)

I I

lO lO M lO

p. (GeV)

lo'

each (3, 11)-3 colorsx
I

' '+ ' ' I+(--'),
3 3

+ states -with masses -M.

FIG. 2. The strengths of the various interactions in
an Slj(3) x O(11) model with unification energy ~- 103
or 10 Qe7. As p approaches M from below the strong
and weak interactions blend into the g and E interac-
tions, respectively.
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can be calculated approximately by using the "ef-
fective" SU(3) x SU(2) x U(1) theory. An argument of
the type given in Sec. IV shows that the size of the
strong interaction is characterized by —', a ~(p, ).
This quantity falls from 0.150 at p, = WB GeV to
0.045 at p, =M. The strength of the weak inter-
action is given by —,'g(p)'/4m, which has a nearly
constant value of 0.012 as ij. varies between v 8

GeV and M. At the unification energy many new
leptons and E gauge bosons appear suddenly. At
an energy above M the S matrix must be calculated
from the full C xE theory. The strength of the C
interaction is described by —,'(c'/4v) „„=0.044
while the size of the E interaction is given by
—,', (c'/4v), ~= 0.006. Thus, even at 10' or 104 GeV,
)here is a natural hierarchy of interaction
strengths which is scaled by the relative sizes of
the C and F groups. Since the full SU(3) x O(11)
model is not asymptotically free, both the C and
E interactions grow as the energy becomes sub-
stantially greater than M."

VI. CONCLUSIONS

In general, there are two coupling constants in
a gauge model for the group C xE. Usually, it is
not possible to relate these coupling constants in
a renormalizable (i.e., cutoff independent) way.
In this work a computer is used to scan millions
of semisimple gyuge theories for various groups
and fermion representations. The computer picks
out those groups and representations which are
compatible with the existence of any renormaliz-
able coupling-constant relation at the two-loop
level. A small number of such models is found.
In every case the coupling-constant relation turns
out-to be linear and fixes the C and E interaction
strengths so that they are inversely proportional
to the size of the respective groups. Thus a semi, -
simple gauge model with one coupling constant,
which is based on a small C group and a large F
group, will have a natural hierarchy of interaction
strengths. This hierarchy can be exploited to con-
struct unified theories of strong, weak, and elec-
tromagnetic interactions, in which the unification
energy M is low. At energies above M, the C in-
teractions will be stronger than the E interactions.
Therefore at very high energies the strong inter-

-actions, which are embedded in C, are larger
than the weak interactions, which are contained
in E. In a sense the great strength of the strong
interactions derives from the fact that color SU(3)
is one of the smallest Lie groups. This group-
theoretical effect accounts for much of the ob-
served difference between the strong 3'nd weak
interactions. Since the remaining difference can
be explained by a relatively small renormalization

effect, the unification energy M can be low. These
ideas are illustrated in an SU(3) x O(11),model in
which M is 10' or 10' GeV. At low energies the
model contains the usual quark and lepton spec-
trum, and it is consistent with phenomenology.
As the energy approaches M from below, we ex-
pect a large number of leptons and O(11) gauge
bosons to appear suddenly.

It is useful to contrast these semisimple models
with unified theories based on simple groups. In
the latter case the entire difference between strong
and weak interactions is explained by a renormal-
ization effect; therefore M is very large, 10' to
10"GeV. In the semisimple theories it is not
necessary to extrapolate the principles of local
quantum field theory up to such high energies.
For this reason such models are less speculative
than the ones based on simple groups. The small
values of M in the semisimple models are also
more consistent with Gildener 's discovery that
spontaneous symmetry breaking cannot produce
mass ratios greater than n ' '. Finally, the semi-
simple approach has the theoretica1, advantage that
renormalizability almost fixes the gauge group and
the fermion representation.

~
. There may be many types of microscopic struc-
ture for which the semisimple theories of Table
III are effective Lagrangians at low energies. In
fact, the main virtue of the work in this paper is
that it provides a unification of all interactions
without making a commitment to a particular pic-
ture of physics at extremely short distances.
Nevertheless, it is amusing to propose thai spon-
taneously compactified gravity" in 4+% dimen-
sions is an example of a microscopic structure
which generates semisimple unified theories at

. relatively low energies. Consider the coupling of
gravitational and Yang-Mills fields for a simple
group H in 4+% dimensions. The I agrangian can
be written in terms of one parameter with dimen-
sion (the gravitational constant G) and one dimen-
sionless parameter (the gauge coupling constant
k). Cremmer and Scherk" discovered that the
presence. of the gauge fields causes N of the space-
time dimensions to compactify into a hypersphere
while the other four dimensions remain flat or,
at least, open. Since the hypersphere has a tiny
1adlus q

/3vCI '» (avG') ' &2

-10 ". cm,&"),
its existence is not manifest until the Planck energy
(G '~'-10" GeV) is reached. The effective four-
dimensional Lagrangian at lower energies contains
the following fields: the usual gravitational field

g„, (g, v=1, . . . , 4), massless gauge bosons as-
sociated with an unbroken subgroup (call it F) of
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H, massless gauge bosons described by remnant
fields g„(a=5, . . . , N; p=1, . . . , 4) of the (4+Ã)-
dimensional metric, and various scalar fields.
The gauge bosons of I' will have. a coupling f which
i.s proportional to h. The g,„fields will be the
gauge bosons of some group (call it C) and will have
a coupling constant c, which is proportional to
(8sG jR')'~' =k. Therefore the (4+N)-dimensional
theory automatically generates a low-energy ef-
fective Lagrangian which is a gauge model for
C x E with a linear coupling-constant relation be-

tween c and f. Perhaps this effective Lagrangian
(minus gravity) is a renormalizable theory like
those in Table III. In that case the color group
would have a purely geometric origin while the
weak-electromagnetic group would be related to
a truly internal symmetry.
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