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Classification of SU(2} gauge fields
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Can two SU(2) gauge fields at one space-time point share the same quadratic Lorentz invariants, yet be
not gauge-Lorentz equivalent to each other? The analysis of this question leads to a classification of SU(2)
gauge field at one space-time point.

Recently there has been considerable interest
in the classifications of gauge fields. ~ Here we
present a classification of SU(2) gauge fields,
addressing specifically the following questions:
Given the quadratic Lorentz invariants for the
field, are they realizable'? If they are, how many
inequivalent realizations' are there? Can one
choose some standard forms of realizations?

In Sec. I, we solve this classification problem
for the electromagnetic field, to demonstrate our
procedure. In Sec. II, the classification of SU(2)
gauge fields is solved. The result is summarized
in Table G. In the appendixes we give proofs of
lemmas which are used in the text.

All discussions in this paper are only concerned
with the field strengths at owe space-time point.

I. ELECTROMAGNETIC FIELDS

First we consider the electromagnetic field.
Its classification is very simple. W'e shall dis-
cuss it in order to demonstrate our procedure
and develop some tools for the study of SU(2)
fields. 'gfe represent the electromagnetic field
E and H as hvo real column vectors E and H,
and the combination E+ iH as a complex column
vector A.:

H„

E„, H = H„, and A-=E+ iH. (1.1)

To show this we observe that a space rotation
is represented by such an orthogonal matrix L,
which is in fact real. A boost along the z direction
with velocity v is represented by

where

r 2rP o~
-iyP y 0

0 0 1

v 1
C (] 2/C2)1 2

(1 4)

Such an L clearly satisfies Eq. (1.3). A general
Lorentz transformation can be written as a pro-
duct of space rotations with boosts. Hence it
generates a transformation A.' =LA with L satis-
fying (1.3). We leave to Appendix A the demon-
stration that any 3 & 3 complex orthogonal matrix
with determinant =+1 represents a Lorentz trans-
formation.

Thus under a Lorentz transformation

a'=A'A' = a
i.e., 4, a complex number, is a Lorentz invari. -
ant.

If b, is given, is it realizable, i.e., does there
exist an ele.ctromagnetic field which gives this 4V
(The answer is yes.) Furthermore, is there more
than one Lorentz-inequivalent realization'P To
answer these questions it is convenient to consider
two cases separately.

Consider the 'matrix, in this case a number Case l. 6 40

(1 2)

(1.3)

~ -=AA -=X+ ~J,
where-K=E E —H ~ H, J=2E.H.

Under a Lorentz transformation, ' A is trans-
formed by a 3 && 3 complex orthogonal matrix L
with determinant equal to one:

A'=LA, LL=1, and det L=1.

In this ease one standard realization is always
possible by taking

I

a

0
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where a=positive complex =v s. This realization
is a one.-dimensional one, in that both the electric
and magnetic fields are along the x axis.

We shall now show that when 6+0, any realiza-
tion of 4 is equivalent to the standard one. Con-
sider any realization. The vectors E and H can
be made to lie in the x-y plane by. a space rotation.
Thus we can write

0

Apply a z boost described by (1.4) to A. We find
A.,'=0 and

the x. axis by r. Thus we can choose

0

(1.12)

H. SU(2) GAUGE FIELDS

A z boost (1.4}, leaves the form of (1.12) un-
changed but multiplies E by a factor y(1 —P) which
can be made to assume any positive real value.
Thus any realization is equivalent to one of the
two standard ones, (1.9)or (1.10).

These results are summarized in Table I.

A„': A' = (A„+i PA, ): (A, —iPA„) .
It is easy to prove that unless

A =+jA„,

(1.7)

(1.8)

Now we consider the classification of the SU(2}
gauge fields. Here the field strengths are E' and
H', where a=1, 2, 3 is the isospin index. We rep-
resent these nine E"s and nine H"s by 3 x 3 ma-
trices

there always exists a real p witli p2& 1 so that the
ratio (1.7) is real. But the reality of A„':A„' means
that E' and H' are collinear. By a further co-
ordjnate rotation both vectors. can be lined up
along the x axis. Thus the realization can be
transformed into the standard one by a Lorentz
transformation, if (1.8) is not satisfied.

The geometrical meaning of (1.8) is that E and
H are perpendicular to each other and of the same
length. It is thus equivalent to the condition 4=0.

Case 2. 6 = 0 (Aadiationlike case)

We can find two standard realizations in this
case:

(1.9)

El E2 E3

H.„H II3

(2.1)

Define A=E+iH. As in the electromagnetic case,
under a Lorentz transformation A'=LA, where
LL =1 and det I =1. In addition, . the row vectors
of A. transform like a vector under a local gauge
transformation

A'=A. G, where GG=1, detG=1, G=real.
(2.2)

Again we define

(2.3)

0

0

i.e., vacuum.

where g ab ga .Eb Ha Hb gab Ea ~ Hb+ Fb, Ha

Notice that both K and J are real symmetric ma-
trices. Clearly 4 is a quadratic Lorentz invari-
ant, and transforms under a gauge transformation
like

(2.4)
These two are obviously inequivalent.

Any realization of 6= 0 has E' = H' and E H =0.
Thus by a space rotation it can be brought to the
form

0

The bvo cases distinguished by the + sign are
transformable to each other by a rotation around

In the case of the electromagnetic field, there
are bvo independent real parameters in 4, its
real and imaginary parts. How many gauge-in-
dependent parameters are there in b, in the present
case'? 4 is complex symmetrical. So there are
to start with 12 reaJ. parameters. But the matrix

in (2.4) contains 3 real parameters. So the num-
ber of gauge-independent parameters is 12 —3 =9.

We now come to the question of the realizability
and its uniqueness once 6 is given. We consider
separate cases, again according to the rank of 6,.
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TABLE I. Classification of electromagnetic fields. In each case, & can be realized by one
of the standard realizations. Two different standard realizations are Lorentz-gauge-inequiva-
lent. The column labelled "No. of space dimensions spanned" refers to the standard realiza-
tions.

Case Bank (&)
Standard

realization
No. of space

dimensions spanned
No. of inequivalent

realizations

a
0
0

a= positive complex

0
or 0

0

Case 1. Rank (6) = 3

This is the ca.se det440. %e shall demonstrate
first that in this case there exists a gauge frame
such that 4 is realized by

mined, because of (2.6) and the requirement in
(2.5) that a=positive complex. Next, equate the
12 and 13 elements of both sides of 4=AH. We
thus uniquely determine f and e. Then equate the
22 clem. ents of both sides of 4=AD. We obtain

or

00' a, b, c = positive4 complex

a f e

a f e

0 b d, a, . . . ,f=complex (2.5a)

b2 g22 f2 g22 (g12)2(g11) 1 (2.6)

which is 40 because of (2.6) and (2.7). Proceeding
this way we find that in a proper gauge, 5, =-AA

uniquely determines an, A of 6e form (2.5a).
Thus in a proper guage, 4 is realizable by a

standard realization, (2.5a). In the same proper
gauge,

A= 0 b d, a, . . . ,f=complex (2.5b)

g00c a, b, -e =positive~ complex.
(2 9)

Before proceeding with the demonstration we
notice that if A is given by (2.5), then

a» ~0

(since it is equal to a'), and

(2.6)

gll g12

g21 g22
+0 (2.7)

since it is equal to (ab)'. We thus have to demon-
strate first that if det4 &0, there is always a gauge
(to be called a proper gauge), in which (2.6) and
(2.7) are valid. This will be done in Appendix B.

In a, proper gauge, we substitute (2.5) into 6 =AA
and try to solve for a, b, . . . ,f. First, the 11 ele-
ments of both sides show that 4"=a'. Thus a
= (6")'~' and is nonvanishing and uniquely deter-

is clearly also a realization, since A."A~=RA = h.
Now A~ and A are not gauge-Lorentz-equivalent,
since their determinants differ by a sign. Thus
in the proper gauge we have two inequivalent real-
izations. They are the standard realizations,
(2.5a) and (2.5b).

Consider any realization Ap of 4 in the same
proper gauge. We shall now show that it can be
Lorentz transformed into either of the standard
realizations. Consider the first column of Ap
is a column of three complex-numbers and can be
thought of as an electromagnetic field discussed
in Sec. I. 4"40 then puts this electromagnetic
field into Case 1 of that section. Now perform
a Lorentz transformation to bring this electro-
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magnetic field to its standard realization. Thus
A, becomes realization A., whose first column is
the same as that of (1.5), i.e.,

a' f' e'

0 b' d'

g0 g' c'

a' = positive complex.

(2.10)

Now & =A, A, =W, where A is the standard real-
ization (2.5). It follows easily that a=a', f=f',
e = e'. Furthermore (2.7) implies that

$12+g 12 g 0
Consider the electromagnetic field

(2.11)

P
0

0

Using (2.11) we find it is of Case 1 of Sec. I. Thus

by a boost along the x direction we can make its
E and H collinear in the y-z plane. A rotation of
the y-s axis then brings it into the form

x components. Thus we have transformed A, into
realization A., by a Lorentz transformation, where

0 f 8

0 pe yII (2.12) .

Cuse 2. Rank(h) =2

There is orQy one standard realization in this

case:

a f e

0 0 c

Now K=A, A2=AA. Hence b =O'. lf b"=-b we
can make a 180 rotation around the x axis to
change the sign of b". Continuing this way we con-
clude that A, can be Lorentz transformed into one
of the two standard realizations, (2.5a) or (2.5b).

Thus in this case, by a gauge transformation b, can
be brought into a proper gauge. In a proper gauge,
there are exactly two Lor entz-inequivalent realiza-
tions, which can be respectively Lorentz trans-
formed into standard realizations 1 and 2. These
results are summarized in the first row of Table
II.

A= 0 b d, a, . . . ,f= comlpe x (2.13)

Neither this rotation nor the x boost changes any

0 0 0 a, b=positive~ complex.

We notice that if A is of this form, (2.6) and (2.7)
are satisfied. Thus we have to demonstrate that

TABLE II. Classifications of SU2 gauge fields. In each case, 4 can be realized by one of
the standard realizations. Two different standard realizations are Lorentz-gauge-inequiva-
lent. Two standard realizations rvith different parameters ~ (or p) are Lorentz-gauge-inequiv-
alent. The column labelled "No. of space dimensions spanned" refers to the standard realiza-
tions.

Bank
Case (&)

No. of
Standard No. of space No. of isospin inequivalent

realization dimensions spanned dimensions spanned realizstions

(2.5a)
OX'

(2.5b)

(2.13)

(2.20)

(2.21)
ox'

(2.22)

(2.25)
or

(2.26)

3or2

(2.31)

(2.32)

2 or 1
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there is a gauge, tobe called a proper guage, in
which (2.6) and (2.7) are valid. This will be done
in Appendix C.

In the proper gauge, following the same argu-
ment as for the case rank(h}=3, we find that
(2.13) is always a realization. Since the bottom
element of the diagonal is now 0, there is only
one standard realization in the present case.

Again using the same argument as for the case
rank(a) = 3, we find that for the present case any
realization in the proper gauge is Lorentz trans-
formable to the standard one (2.13).

Case 3. Rank (6) = 1

Any symmetrical complex matrix 6 of rank 1
can be written in the form

a

f [a f e], a,f, e = complex. (2.14)

f [a f 0], a=positive complex.

0
(2.15) .

We shall call such a gauge a proper gauge. In a,

proper gauge 4 is realizable by

a f 0

A= 0 X p,

0 &i pi

(2.16)

where -& and p, are two arbitrary complex num-
bers. This statement is true because (2.16) im-
plies that L=AA is of the form (2.15). The real-
ization

0 X' p,
'

0 -~'i -p. 'i
(2.17)

is Lorentz-gauge-transformable to (2.16) because

The real and imaginary parts of the isovector
[a,f, e] represent two real vectors in isospin
space. %e can always choose a gauge so that they
both have only 1 and 2 components, i.e., there
always exists a gauge in which

(2.15) has its first column describing an electro-
magnetic field of class 1 or Sec. I. Thus there is
a Lorentz frame in which. this electromagnetic
field is brought to its standard realization. In
such a Lorentz frame, A, becomes

ia f'e'
0b' d'

2 (2.18)

n NO, nA =X„np, = pm, , (2.19)

then A, and A, are Lorentz-gauge-equivalent.
Condition (2.19). is sufficient for the Lorentz-

gauge equivalence of A~ and A3. Is it necessary'
To analyze this question we need to discuss two
subcases.

Subcase 3a. Rank (6) = 1, f/a Areal

ln this subcase, one can prove that (2.19) is also
necessary for the Lorentz-gauge equivalence of
A, and A., (proof omitted). Thus there are many
Lorentz-gauge-inequivalent realizations of 4, one
for each value of the ratio &: p, . In other words,
in this subcase, it is always possible to realize
4 with one of the three standard realizations

a f 0

0. gl ~t

Now aeO. The equation A, A2=b, of (2.15) then
implies that A, is of the form of the A. of (2.16),
or A' of (2.17).

We have thus proved that if rank(6) = 1, in a
proper gauge (2.15), all realizations are Lorentz
equivalent to the realizations (2.16) for some
values of & and p, .

It remains to investigate the following question:
Given two sets of (&, p)'s,

(&„y,,) and (g, p,),
with the corresponding realization (2.16), to be
denoted by A, and A„what is the conditon that they
are Lorentz-gauge-equivalents It is easy to verify
that a rotation in the y-z plane multiplies & and p,

simultaneously by one and the same phase factor
e'~. It is also easy to verify that an @boost on
(2.16) multiplies A, and p, simultaneously by one and
the same factor z(1 —P) which can assume any
positive value between 0 and . Thus if there
exists a complex number 0'. so that

if we put ~ =~, p, =-p.
Any realization A, of 4 in the proper gauge

0 &i i

f 0

A= . 0 1 0

0 $0

~= complex, (2.20)

(2.21)
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OP

a f 0

OQ0
0 0 0~

(2.22)

In all these three realizations a = positive complex.
The three are not Lorentz-gauge-equivalent.
Furthermore, the realizations (2.20) with
different &'s are not Lorentz-gauge-equivalent.

Case 4. Rank(d, ) = 0

In this case 4 =0, if a realization is not the
vacuum (i.e., if A 40), we can always choose a
gauge where the last column of A is not zer'o.
=0 implies that E' and H' are perpendicular and
of equal length &. Rotate coordinates so that
E' is along the y axis and H' along the z axis. By
an x boost we can always bring them to lengths
1, Thus any realization A 40 is gauge-Lorentz-
equivalent to

Subease 3b. Rank (6)= 1, f/a = real

In this case one can always make a gauge trans-
formation to make f= 0. Thus Eq. (2.16) becomes

ado
b e 1

C

(2.27)

a 0 0

0 Xi pi

(2.23)

6"=6"=0 imply a'+ b2+c2=0, b+ci=o. Hence
a=0, c=bi. Similarly d=0, f=ei, and

A;„

1 0 0 a 0 0

0 0 1 = 0 -p~

0 1 0', „0 pi 1

Thus by a further Lorentz transformation we see
that if p, , &p,

where a=positive complex %. Now we can. make
a further. gauge transformation, mixing the second
and third columns of A». Combining such a gauge
transformation with the Lorentz transformation
(2.19), we can always have a realization A;„
where p,, is real, unless &= @, =p. Now

0 0 0

b e 1

bi ei i
(2.28)

0 0 0

Q A, p,

0 &i pi

(2.29)

A gauge transformation on (2.28) is an orthogonal
transformation on the row matrix [b, e, 1]. It is
always possible to find a real vector perpendicular'
to both the real and imaginary parts of [b, e, I]. Thus
A is gauge-equivalent to

A;.1
is gauge-Lorentz equivalent

to Ag(p ~$) ~
. 1 (2.24)

%e can now proceed exactly as we did after Eq.
(2.23) and conclude that any realization A 40 of
6=0, is gauge-Lorentz-equivalent to

Thus in this subcase 3b, there are two standard
realizations,

J

a 0 0

0 0 0

0 i p, , -1&p &1. (2.30)

or

Q z p, , -l~p ~1

0 -1 p, i

a 0 0

(2.25)

Now

0 -1 pi

-1 0 0 0 0 0

Aoo= p 0 0

„000
(2.26) A]„.0 0

0 1 0

0 p, i

0 pg -1~

where a =positive eomplexWO. These are not
Lorentz-gauge-equivalent. Furthermore for two
different p. 's the realizations (2.25) are Lorentz-
gauge-inequivalent (proof omitted) .

which can be transformed by a Lorentz transfor-
mation(2. 19) to A,

&
„-&& if p, 40. Thus any realiza-

tion can be gauge Lorentz transformed to one of
the two standard realizations
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1 0 0

0~( p ~( (2.31) L'=ML = 0L„', L,',
~0 L' L'

or

A=:0 (2'. 22)

Two standard realizations with different p, are not
gauge-Lorentz-equivalent.

The condition that L' is orthogonal and has deter-
minant 1 can be easily shown to imply that L' is
a rotation in the y-z plane multiplied by an x
boost. Thus L =M"~L' is a Lorentz transforma-
tion.
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APPENDIX A

Lemma. Any 3 x 3 orthogonal matrices L with
determinant equal to+1 represents a Lorentz
transformation.

Proof. We prove the lemma by showing that
any such matrix can be reduced to the identity ma-
trix by a series of rotations and boosts. Actually,
many of the reasonings have been used through
the text. The 3 x 3 matrix

APPENDIX B

Lemma. If det440, there always exists a
gauge in which (2.6) and (2.7) are satisfied.

Proof. b. ' exists and is symmetrical. Separate
it into real and imaginary paris:

&" =R+ iI,

where 8 and I are both real symmetrical. The 6
eigenvalues of R and I cannot all be zero, for if
so R =I=0, which is not possible. Let g be an
eigenvector of R or I with a nonvanishing eigen-
value. Then (6"'g 40. Make a gauge transforma-
tion so that g becomes the third isospin direction.
After the transformation (4 ')33 40. Since

can be viewed as made up of three complex column
vectors, L', L', L'. Each column vector is just
like the columri vector of ari electromagnetic field.
The fact that LL = 1 means that none of the three
column vectors is radiation-field-like. As shown
in the discussion of Case 1 in Sec. I, we c'an al-
ways apply a rotation and then a boost in the z
direction and another rotation so that after these
opera'tions L' has only the first element, i.e.,

L'
XC

„0 L,', L'„

where L' is still orthogorial and has determinant
equal, to one. Hence, L'„„=+1, L' =L„' =0. If L„',
=-1, we can rotate around the z axis by 180,
thus. changing it to +1.. Hence we can always take

we see that in the new gauge (2.7) is satisfied.
Now consider the 2 && 2 matrix i.x (2.7) and separ-

ate it into real and imaginary part. ". By a reason-
ing identical to the one following (B.) we finish
the proof of the lemma, .

APPENDIX C

Lemma. If det 4= 0 and all 2 & 2 diagonal minors
of 4 are=0, then 4 has Rank 1.

Proof. Since all 2 diagonal minors of b, are
zero we can always choose signs in a = a(4")' ~',
b=+(n")'~', c=+(n")'~', so that

a' ah ac

ab b +bc

ac +bc c'

detb, =O then implies that the sign is + in (Cl), or
else abc=0. In both cases the lemma follows.

From this lemma it follows that if rank(n) = 2,
there always is a permutation of the isospin axis
so that (2.7) is valid. It then follows easily that
there is a gauge in which (2.6) is also valid.
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~Two realizations are inequivalent if they are not re-
lated by Lorentz and gauge transformations. We call
a realization unique if there is only one inequivalent
realization.

3Throughout this paper we mean by a Lorentz transform. —

ation an orthochronous proper one, i.e., one that does
not involve a time reversal and is represented by a
4 && 4 matrix whose determinant is +1.

A positive complex number a is one that is nonvanish-
ing and either (i) has a.positive real part or (ii) is
equal to yi where y = real and is &0.


