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For fermions minimally coupled to non-Abelian gauge fields, first-order quantization in the radiation gauge

is presented in which the validity of naive %ard identities simplifies the renormalization procedure. Then,

successive Foldy-%outhuysen transformations are used to determine the nonrelativistic Hamiltonian operator

as well as its first relativistic correction. This operator expansion is verified to all orders of perturbation

theory by an extension of the Appelquist-Carazzone decoupling theorem. Next, the Hamiltonian, which

provides a systematic starting point for any nonrelativistic calculation, is used to cast the fermion-antifermion

nonrelativistic bound-state kernel into a simple and compact form. which is spin independent and serves as the

basis of a perturbative analysis. Through two loops, calculation of the kernel reveals that a mass-independent

static potential exists in the nonrelativistic. limit only for singlet states of the gauge group. Higher-loop

corrections, three-fermion bound states, and nonperturbative methods are also discussed.

I. INTRODUCTION

Phenomenological analyses' of the J/g family
of particles have indicated many unique features
of this system. One such feature is the good
agreement of nonrelativistic potential models w'ith

both the mass spectrum of the particles and with
the electromagnetic transitions of the various
states. A natural inference, therefore, is that
this physical system exhibits the nonrelativistic
limit of the strong interactions. Furthermore,
this kinematic region may, possess sufficient dy-
namical simplifications to make mathematical
analysis more tractable. In this paper, an elab-
oration and continuation of a previous work, ' a
systematic formalism is developed for describing
hadronic systems in the nonrelativistic limit as
well as for obtaining relativistic corrections. The
dynamical model is that of one massive fermion
minimally coupled to massless non-A, belian gauge
fiems, or quantum chromodynamics (QCD). More-
over, for nonrelativistic systems a clear physical
interpretation is possible in the radiation or Cou-
lomb gauge, as used in conventional treatments of
the hydrogen atom. A1so in the radiation gauge,
use of the first-order canonical quantization elim-
inates unphysical ghosts.

In Sec. II a review of this quantization is pre-
sented with emphasis on the operator nature of the
Coulomb interaction. The renormalization pro-
cedure, discussed in Sec. III, relies on Ward
identities identical in form to the quantum-elec-
trodynamics (QED) Ward identity, Z, =Z„and in
addition facilitates nonrelativistic calculations.
For describing nonrelativistic electrodynamical
systems the unitary Foldy-Wouthuysen transfor- .

mation provides a convenient representation for
the free Dirac Hamiltonian' and also for systems

of one or two fermions interacting with external
electromagnetic fields. ' This same type of trans-
formation is also relevant here to provide the non-
relativistic reduction of the non-Abelian Hamil-
tonian. In Sec. IV three successive Foldy-Wouth-
uysen operator transformations are performed on
the first-order radiation-gauge Hamiltonian to ob-
tain its nonrelativistic limit and the first relativis-
tic corrections to it. The physical interpretation
of these correction terms is given by analogy with
the corresponding QED corrections and phenome-
nological implications are discussed. The validity
of the operator expansion is verified to all orders
of perturbation theory in Sec. V.

As an explicit and relevant illustration of this
formalism nonrelativistic fermion-antif ermion
bound states are studied in perturbation theory
based on the Harpiltonian operator. The single
Coulomb exchange gives the exact nonrelativistic
potential in QED and bound states are found only
for weakly coupled systems (~- v/c «1), but in
the non-Abelian model, since the kernel is more
complicated, the condition for threshold bound
states is not necessarily that of small coupling.
In the quark model, the J'/g particle is a thresh-
old quark-antiquark bound state of charmed
quarks, heavy in the sense tha. t their kinetic en-
ergy is small compared to their apparent mass.
The nonrelativistic bound-state equation for fer-
mion-antifermion bound states is discussed in
Sec. VI and a simple and compact form of the
nonrelativistic kernel is derived, spin indepen-
dent to all orders of perturbation theory. In this
kernel, the role of the fermions is that of spatially
fixed external sources of Coulomb lines which
then interact through the Yang-Mills interactions.

A detailed perturbative analysis of this kernel
is presented in Sec. VII through sixth order. Sim-
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ilar analyses have been done recently by Appel-
quist et al. ,"' Fischler and Susskind, ' and related
work has been done by Poggio. ' If the fermions
are sufficiently massive, then indeed the single
Coulomb exchange will dominate the non-Abelian
kernel with coupling constant g(t). However, since
the mass at which the single Coulomb exchange
determines the potential is about 50 GeV (Refs.
1, 10), finite orders of perturbation theory cannot
determine all physically important contributions
to the kernel for presently known particles. How-
ever, general features may be apparent from low
orders of the perturbation expansion. For exam-
ple, at the two-loop level, the analysis in Sec.
VII shows that the potential, a function of g(t),
has a well-defined static limit for gauge-group
singlet states, whereas for nonsinglet states there
is no static potential. This result indicates a pos-
sibly fundamental distinction between singlet and
nonsinglet states, as is expected in confinement
models, since it is a direct consequence of charge
conservation. The same distinction occurs through
two loops for three-fermion bound states, which
are briefly discussed. However, in three loops
there are apparent binding-energy dependences
in the kernel, the significance of which has been
considered by Appelquist et a/. ' A discussion of
this energy dependence in the kernel, possible
nonperturbative techniques, and the conclusion
are presented in Sec. VIII.

II. FIRSTARDER QUANTIZATION IN THE RADIATION
GAUGE

For the model field theory of fermions minimal-
ly coupled to non-Abelian gauge fields, @CD, local

'gauge invariance requires isolation of the dynam
ical variables before quantization can be imposed.
Fven though manifest Lorentz invariance is lost,
the radiation (or Coulomb) gauge condition deter-
mines a useful set of dynamical quantities, which
are analogous to the QED radiation-gauge vari-
ables used for hydrogen-like systems. In addi-
tion, the physical picture in this gauge is im-
proved by using a first-order formulation which
eliminates the ghost states needed in second-or-
der form. Moreover, this approach, used in the
original quantization of the model by
Schwinger, "'"is particularly relevant for non-
relativistic systems, as discussed in Sec. IV, al-
though in this section the fully relativistic quan-
tization is presented. Because this formulation
is not used extensively, it is worthwhile to review
it and to develop the perturbation theory rules. .

The Lagrangian density is given by

Z(x) = gF'+ " gF' (8"A"—8"A-~+gf A~A")

+ p(i' gt'4, )g mgg,-- (2.1)

where A'„and E'„„are the dynamical vector-meson
coordinates, not all of which are independent.

f,~ are the structure constants of the gauge group
and P are the representation matrices of this
group for the fermions. The above Lagrangian
density gives the following Euler-Lagrange equa-
tions of motion:

F""=8"A"—8"A +gf A&A"
a a a abc b c~

(i8 —gt'4, -m)$ = 0.

(2.2a)

(2.2b)

(2.2c)

The possible independent variables are A.', E...
g, and P~ (Greek indices p, v, . . . run from 0 to
3; Roman indices i, j, . . . run from 1 to 3; Roman
indices a, 8, . . . are gauge-group indices). Since
A; does not have a canonical momentum it must
,be a dependent variable and w'ill be expressed in
terms of independent quantities below'. In addi-
tion, the time component of Eq. (2.2b) is a con-
straint equation,

(5,~8, +gf „. ~A', )F~"= g~gt'(, (2.3)

which implies that not all of the A& and Eo, are in-
dependent. To eliminate the ambiguity in defining
the operators A~ the radiation-gauge condition is
chosen:

v A'=0 (2.4)

and the transverse part of E,, is defined to be the
electric field E',

E+a —Ea

In terms of these variables the dynamical op-
erators are A', g (where V A'= 0) and the canoni-
cally conjugate momenta E', i(~ (where V E'= 0).
The constraint equation, Eq. (2.3), now becomes

(8 v'+gf„~A'v)y~= gf ~A'E~-gigt'g. (2.8)

Equation (2.8) suggests the introduction of the fol-
1owing notation:

j,'(x) = -gf E~ A'+ g~t'$ (2.9)

&"(x,y) = -(V'5„+gf„,A, V) ', (2.10)

where jo(x) is the charge density of the non-
Abelian theory and B'~(x, y) is the Green's func-

Also, division of E„ into longitudinal and trans-
verse parts isolates the Coulomb part of the in-
teraction,

Ea ETa + ELa (2 5)

where V F, '=0 and &,,~8,.E„'=0. The longitudinal
part of E;,. ean be expressed in terms of a scalar
potential

(2.6)
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tion'which determines Q'(x) 'in terms of j',(x). In
this paper it is assumed that this operator is well
defined or, equivalently, that there are no ambig-
uities in defining the radiation gauge. This as-
sumption, not true for large fields, '""does not
affect the perturbative analysis of this paper.
Equation (2.10) is equivalent to

-(V„53, »+ gf „»A, V„)X)»"(x,y) = 5,„5'(x—y) . (2.11)

In terms of these functions the scalar potential,
now an operator depending on A, (x}, is

V'(x) = d'y &"(x, y)j»(y), (2.12)

where y'=x'. Also, taking the divergence of Eq.
(2.2a) for p, = 0 expresses A;, the generalization of
the Coulomb field, in terms of A' and j,'.

/0(x) d»y Qu»(x y)V3~»(y) (2.13a)

d'y d»z S"(x, y)V,'X)"(y, a)j,'(a) . (2.12b)

In all spatial integrals of the above type, the vari-
ous time coordinates are equal.

In terms of the above variables, the Hamilton-
ian becomes

&A'
H= d'x 3 +i% ——I)8t Bt

(2.14a)

d'x [-,(E'E, + p'a. }+y'(-3~ V+ pm)p

~tnt y A. +-3" (Vq, ) ~ (Vq')], (2.14b}

where B'= 2 &„.„E». An additional term necessary
for Lorentz covariance, found by Schwinger, "will
not enter the perturbative calculations of Sec, VII
and is omitted here. The last term is analogous
to the Coulomb interaction in the Abelian theory
and can be written in terms of the charge density
j,'(x) as

Ifcoulomb d3X
~

(V~ ), (Vpu)

d'x d»z d'y [j,'(x)n„(x,z)V,'u„(z, y)j",(y) ] .

(2.15)
Note that Q, -=J d'x j,'(x) is the time-independent
generator of the non-Abelian symmetry group. —

Also J duty"(x, z)v, '5)'»(z, y) is the generalization
of the QED Coulomb Green's function, so that Eq.
(2.15) is the general form of the static non-Abelian
longitudinal interaction with only the explicit form
of j,'(x) depending on the type of particles inter-
acting with the gauge fields. In the nonrelativistic
limit this part of the interaction is unchanged.
Furthermore, each of the other terms in Eq.

(2.14b} is directly analogous to the QED Hamilton-
ian.

The derivation of the perturbation theory rules
from Eq. (2.14) is straightforward except for the
Coulomb term. This term may be symbolically
written as

1 1 .0 ~, 1 .0-29'.Vy'=-2 - - - jb v - - - j
g'+gA' V'

b — V'+gA' V,~

(2.16)

where (A)„=f„»A—» and the iliverse operators, L»",
are expanded as integral op'erators in a power
series in g. From this expansion the perturbative
rules for the Coulomb term are determined and
the radiation-gauge perturbation-theory rules
which result are given in Table I. It is important
to realize that the use of the Coulomb force as an
effective particle in Table I is introduced into the
perturbation theory because it is a very useful
technique for representing the spat;ially nonlocal
static interactions of the longitudinal part of Eo,.
and A,'.

III. VfARD IDENTITIES AND RENORMALIZATION

The appropriate choice of renormalization pro-
cedure is determined not only by the physical sys-
tem under investigation but also by the ability to
express most simply the. requirements of gauge
invariance. Here the renormalization scheme is
motivated by the nonrelativistic character of the
bound states studied in Secs. VI and VII, and by
the existence of elegant and simple Ward identities
derived below. Moreover, the perturbative calcu-
lations of Sec. VII verify these Ward identities
through order g' for the vertex functions and prop-
agators considered. In first-order form the-La-
grangian density may be written as

&(x) = -3(E,'+ H.') —-'(Vq.)'

+ g(i}t -m)g+gg yt'g ~ A + E, ~ A',

where (Vp')3 is given by Eq. (2.15) and the time
component of (gt'y'A'„g is contained i.n (Vgu)'.

The fermion propagator renormalization consists
of two parts: the mass part and the self-energy
part. For the former, the pole in the propagator
is defined to be at the "physical" mass m~; that is,

S„-'(p)~, =0, (2.2)

where S~(P) is the renormalized fermion propaga-
tor. However, if confinement occurs, the above
procedure is ill defined since the fermion fields
in the Lagrangian will not appear in the physical
spectrum and the fermion mass parameter will not
be a gauge-invariant quantity. Clearly this type of
behavior does not happen order by order in per-
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turbation theory based on the usual vacuum struc-
ture. Furthermore, confinement by a mechanism
analogous to that in the Schwin'ger model" implies
that mass renormalization is performed by includ-
ing only the ultraviolet contributions to self-mass
corrections and not the infrared components. In
Appendix A, these infrared components are related
to the longitudinal part of the non-Abelian interac-
tion, as expected in a Schwinger-type mechanism.
Below this distinction is ignored since only stan-
dard perturbation theory is considered.

The self-energy or wave-function renormaliza-
tion for the fermion propagator is defined as fol-
lows:

(d/ZP)S, '(P); .. ;=1, (3.3)

in which the slightly off-mass-shell point A.', 0 & A.
'

«I', and X-Pm (P=v/c), avoids infrared diver-
gences. The renormalization point for gluon
(transverse E' or A' field) and Coulomb propaga-
tors j.s chosen to be at p = -p, where 0 & p, &&m

and p ™praper vertices are renormalized at
the symmetry point (which for the three-point A'

vertex is P~ =P2 =P,'= -p, ') with the following ex-
ception: a Coulomb line (only one if there. are sev-
eral in the vertex) is renormalized at q =0 ~ Even
though this choice of renormalizatiog point for the
Coulomb line is not in the momentum region ap-
propriate to nonrelativisti. c bound states, which is
q
-Pm, the Ward identities greatly simplify with

this choice.
Charge conservation implies a trivial Ward iden-

tity for the charge vertex (explicitly the fermion-
fermion charge vertex is used, but the argument
here is also valid, for example, for the gluon-
gluon-charge vertex),

Zg Z2Q (3.4)

&0 I ~*(P(P)AP +q)j.'(q))
I

0&

where Z, is the renormalization constant of the
proper charge vertex and Z2 is the renorm@lization
constant of the fermion propagator. This Ward
identity is true in all gauges but is useful only in
the radiation gauge because in it the charge vertex
can be related simply to the Coulomb vertex. To

. find this relation consider the proper vertex

&o
I
T*(t(P)tT(P+q»: (q)) I ».

(1pl=. one. particle irreducible). For p, =1,2, 3 this
vertex is the fermion-fermion-gluon vertex and for
p, = 0 it is the fermion-fermion-Coulomb vertex
[with AO given by Eq. (2.13)]. For the Coulomb
vertex 1PI refers to the Coulomb line as given by
the perturbation-theory rules in Table I. Further-
more, this Coulomb vertex differs from the charge
densjty vertex,

FIG. 1. Difference between Coulomb and charge
d,ensity vertices, D(q ) .

D(o) =o. (3 6)

The proof of Eq. (3.6) is obtained by showing that
D, (q), defined by D(q)= q,D'(q), is fin—ite. for qeo
and diverges no worse than logarithmi'cally at q = 0
to any finite order of perturbation theory. When

q co, D,.(q) is primitively convergent and therefore
no ultraviolet divergences appear as q -0. How-
ever, simple power counting implies a possible
linear divergence in the infrared region even when
the fermion propagators are slightly off shell
(P' —m'= -X'&0) ~ Fortunately, a careful study of
the numerator structure of the propagators (for
example, the transverse projection operators) re-
duces the actual divergence by one power as q -0.
The details of the proof are given in Appendix A.
If Z, is defined to be the renormalization constant
of the Coulomb vertex, then an immediate conse-
quence of Eqs. (3.4-3.6) is that

Zl -Z2 (3.7)

since renormalization of the Coulomb line is at
q =0. This Ward identity, also valid in QED, ™
plies that the coupling constant renormalization is
given exactly by the Coulomb propagator
[(0l T*(ADA,') lo)] corrections and therefore the P
function, the logarithmic derivative of the coupling
constant with respect to the renormalization point,
depends only on these Coulomb propagator correc-
tions.

There will &iso be a Ward identity 'for the A - E-
Coulomb vertex analogous to Eq. (3.7) which im-
plies that the renormalization of this vertex is'
equal to the A- E propagator renormalization.

by the generalized Coulomb potential SV2$ [see
Eq. (2.15)]. Now define the set of graphs which
contribute to the Coulomb vertex but not to the
charge vertex as D(q) (where unnecessary indices
have been suppressed. ) ~ D(q) has the general form
given in Fig. 1 which is expressed analytically by

(0
I
T*(g(P)g(P +q)j,'(q))

I 0)„,+D(q)

= &ol &*4'(P)|t'(P+q)A.'(q))
I o)„,. (3.6)

The desired connection between the charge vertex,
that is, the charge density vertex at q = 0, and the
Coulomb vertex is established by the following fact:
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Perturbation theory rules (P~,'(k) = 6;j —k; kj/k2).

a, l

oi bj

a b

Fermion propagator

A field propagator

E field propagator

Mixed propagator

Coulomb force

—m+zE

—ip; (k)6 g

k2+ is
—ik P;.(k)6 g

k2+ie

-k
OPT j (k) b~~

k2+i&

I, a

Fermion-A field vertex

k, c

Triple vertex
-gf [(5'~(k2-kg) +6~+(k3-k2)

+ 6'~(k( —k3)j7

p, d

j,b

k, l

Quartic vertex

gg2t'f f P QQ jl QOg jA}

+f~ fy(6 6 6 6 )]

Fermion-Coulomb force -igrata

i,a c

yqI

I

Vector-meson Coulomb force ~gfacb~ ij

I

k)+

key

I

I

kg+
qn In ~r

kn, i~~

A field emission via
Coulomb force

j,(x)i =gfoa~E~
' A, + g g t 'g, (3.8a)

These two Ward identities show that the renormal-
ization of the term (VQ')2=joAo in the Lagrangian
density is accomplished by coupling-constant re-
normalization. Finally, there will be the usual
Ward identities which insure that the coupling con-
stant is independent of which vertex is used to de-
fine its renormalization.

There is another application of Eg. (S.6) which
is also related to the charge density. By using a
superpotential it is possible to define two charge
densities,

j&(x)2~gf b~(Et -&q ~) 'A, +g gt'g, (3.8b)

the first defined in. terms of the transverse elec-
tric field, the second in terms of the- full electric
field. The difference between these two densities
is 4j,'(x) where

~~:( )=xgf. ~ (-~'A') . . (3.9)

Although &j,'(x) is a total divergence, it might con-
tribute to the charge because ItI'(x) is a nonlocal.
operator. However, the set of graphs contributing
to the bj, vertex is the same set which contributes
to the Coulomb vertex, the only difference being
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the relative weights of individual graphs, as cari
be seen by comparing the perturbative expansions
of Eqs. (2.12) and (2.13). Therefore D(0) =0 im-
plies that Dj, does not contribute to the charge for
fermion states with similar arguments applying to
other states, and therefore this superpotential
does not change the charge operator.

~2S=
2&i

d x q~(x) p& ' (-iv gt-'A')y(x),
I

(4.2a)

operators S, S', and S", generate the Foldy-
Wouthuysen transformations to orders 1, 1/m,
and 1/m', respectively, where S and S' are given
by (see Appendix A)

IV. THE FOLDY-WOUTHUYSEN TRANSFORMATION Sl
4m'

'x g'(x)o.gt'g(x) '[E' —V&,j . (4.2b)

=mH, +H, +(1/m)H, +(I/m')H, +H, (4.1)

where the H,. do not contain any explicit mass de-
pendence, and H, of order 1/m', is unknown ex-
cept for kinetic energy terms. The Hermitian

The Foldy-Wouthuysen procedure consists of a
canonical unitary transformation which eliminates
the interaction terms between positive- and nega-
tive-frequency components of fermion spinors in
the Hamiltonian. This reduction is most useful in
the nonrelativistic domain; that is, for interac-
tions whose Fourier components are small com-
pared to m, the fermion mass, because in such a
case, the positive-frequency parts of the spinors
interact 'negligibly with the negative-frequency
parts and an intuitive nonrelativistic picture is
valid. For the free Dirac Hamiltonian the Foldy-
Wouthuysen transformation can be performed ex-
actly. '- In the presence of external electromagnetic
fields, the Hamiltonian, for a fixed number of fer-
mions, although not transformable exactly, maybe
put into Foldy-Wouthuysen form to any desired-
order in a power series in 1/m by a sequence of
Foldy-%outhuysen transformations. ' Here the
non-Abelian Hamiltonian is to be transcribed into
Foldy-Wouthuysen form in a second-quantized for-
malism. Therefore pair creation cannot be ig-
nored completely since it contributes in order
1/m'. Indeed, because the Foldy-Wouthuysen
transformation eliminates pair creation terms in
the Hamiltonian, to find all relativistic corrections
in order I/m' it is necessary to calculate the ef-
fect of the canonical transformation on the state
vectors, but fortunately pair creation terms do not
affect the spectrum of states.

A sequence of unitary Foldy-Wouthuysen trans-
formations on the full relativistic Hamiltonian,
given in Eq. (2.14b), produces the nonrelativistic
Hamiltonian and its first relativistic corrections
(with pair creation effects being calculated sepa-
rately). This procedure is straightforward but
tedious and the details are presented in Appendix
B. To remove all Dirac operators that connect
large and small components of the spinors through
order 1/m' requires three canonical transforma-
tions, The transformed Hamiltonian H" may be
written as

Htt eiS !~iS'eiSHe" iSe"iS'e iS"

The form of S" is irrelevant since the Hamiltonian
through order 1/m' is independent of it. Below the
various terms in the Hamiltonian are listed and
described. The fermion mass term is

H, = d'x q'(x)Pq(x) .

The term independent of fermi. on mass is
r

d3+ I Ea 2+ Ba 2 +~0~a

(4.3)

(4.4)

H, consists of two terms which, together with the
nonrelativistic kinetic energy and H „ forms the
nonrelativistic Hamiltonian. The first of these
two terms is the radiation part of the Yang-Mills
Hamiltonian and the second is the non-Abelian
generalization of the instantaneous Coulomb inter-
action [j, and A, are given in Eqs. (2.9) and (2.13),
respectively] identical to Eq. (2,15). Unlike the
Abelian theory, this interaction is not a c number.
The nonrelativistic kinetic energy is contained in

H~, which is

H, = d'x 2 (g'PD'g+ (~Pogt'g B ) (4.5)

3x (tPD2$ . (4.6)

The other term in H, represents the non-Abelian
magnetic dipole interaction.

'

Here the magnetic
field includes that produced by the particles them-
selves, and is not only an external field. H, (when
iterated) contributes to the fine structure, and in
particular it includes th'e spin-spin and tensor in-
teractions. H„ the final term calculated, pro-
duces the rest of the relativistic fine-structure
corrections:

where D' = (i V +gt, A') and—

(-, 0)
( 0 o~f

with o~ being the Pauli matrices. H, also consists
of two parts, the first of which is the ca,nonical
nonrelativistic kinetic energy of the fermi. ons in
the presence of non-Abelian gauge fields. There-
fore the complete nonrelativistic Hamiltonian is

H„„=m d'x(~P(+2 d x (E,'+ B, +j,'Ao).
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H = — d x ',g'- V'g' V' '- 4 d ge V'g' x S„x,g V, S, , ge V'4 gg

+8 d'x ~gt' V2A'

2
~ jgU (yS QA'gt + g t~ QA + g@t gk

where

The first term is a relativistic correction to the
fermion interaction due to retardation effects of
the non-Abelian vector fieM in the radiation gauge.
This effect is also present classically. The second
term, characteristic of the Dirac theory and cor-
responding in classical electrodynamics to a mo-
mentum-dependent interaction of a charged parti-
cle with the Coulomb field, is the Zitterbewegung
and the generalization of the Darwin term. The
spin-orbit coupling is included in the third and
fourth terms.

In a calculation of matrix elements to order 1/m'
appropriate insertions of H„H„S, and S' must
be included'. For example, in a given graph these
.1/m2 corrections might consist of two insertions
of H, or one insertion of H, . However, for a cal-
culation of the spectrum of states, insertions of S
and S', and therefore fermion pair creation terms,
may be ignored since the Foldy-Vifouthuysen trans-
formations are unitary. Finally note that in order
for this expansion in terms of 1/m to be meaning-
ful the parameter m must be the renormalized
mass and not the bare mass (see the discussion in
Sec. III).

V. VERIFICATION OF THE FOLDY-VfOUTHUYSEN
TRANSFORMATION

In the preceding section the formal operator ex-
pansion of the radiation-gauge Hamiltonian in
powers of 1/m was presented through order (1/m)'.
However, even when all external momentum are
restricted to be in the nonrelativistic domain this
expansion may fail to give the correct behavior
of Green's functions in powers of 1/m if loop in-
tegrals are dominated by ultraviolet regions of
integration. In such a case the large-mass ex-
pansion of the Green's function is not directly re-
lated to the large-. mass operator expansion. The
absence of such behavior, which vq, lidates the
Foldy-Wouthuysen operator expansion in Sec. IV,
is guaranteed by the following theorem, an exten-

P) P2

q,

FIG. 2. Isolation of external fermion lines.

sion of the Appelquist-Carazzone theorem":
For any suitably renormalized Green's function

in which all external fermion momenta are in the
nonrelativistic domain and in which all external
gluon momenta are of the same order of magnitude
as the external fermion three momenta, all mo-
mentum transf ers from fermion lines are effective-
ly the same order of magnitude as the external
three momenta, fermion pair creation is negligi-
ble, and fermions couple only to Coulomb lines.

To prove this theorem. consider an arbitrary
graph contributing to any Green's function and iso-
late the fermion lines which are connected to ex-
ternal fermions. The only contributions in the
norirelativistic limit are those in which the number
of external fermions and the number of external
antifermions are the same in the initial and final
states. In.

,
this way, a typical graph may be rep-

resented as in Fig. 2. The obj ect B need not be
connected and the Green's function may be off the
mass shell. By assumption the external fermion
momenta p,. are in the region ~p,. ~

-Pm, p',.
—m -P'm (P = v/c «1) and the external gluon mo-
menta q',. - pm To prove the theorem it is suffi-
cient to show that the dominant contribution to any
graph comes from the region where all k,". », Pm
(all of the k,. are not independent). In Euclidean
space an equivalent statement to show is thai
+„,~k,.)'» P'm' for every set 8 of indices. First
assume that this region dominates. Then the
Appelquist- Carazzone theorem implies that all
loop momenta in B are infrared dominated and
that there are no internal fermion loops. Consider
any fermion propagator in Fig. 2, which may be
written as
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P'- QP,. + m P'y'+ O(Pm)
(P'- m') - 2P Z,k,. + (ZP,.)' -2P'ZP', +O.(P'm')

(5.1a)

y'+1 1
2 Q,ho+ O(P'm)

(5.1b)

where + refers to fermions or antifermions. It is
clear from Eq. (5.1b) that the only non-negligible
fermion couplings (here particle and antiparticle
are distinguished) are the fermion-fermion-Coul-
omb and fermion-antifermion-transverse-gluon
ones. The latter interaction produces a trans-
verse gluon propagator with energy of order rn by
energy-momentum conservation. However, dom-
inant contributions come from the region ~benz so
that this interaction is negligible, and the only

relevant coupling for the fermions is the fermion-
fermion-Coulomb vertex which implies that there
is no pair creation. Then the Foldy-Wouthuysen
transformation gives the correct nonrelativistic
Hamiltonian, Eq. (4.6), and it may be used to cal-
culate any nonrelativistic Green's function.

To complete the proof it is necessary to show
that the region 0,. s Pm is the only dominant one
in the loop integrations. Consider any region of
the k,. in which some subset of all possible invar-
iants is of order m' or larger and redefine the
loop momenta so that a minimum number of lin-
early independent integration variables, labeled
E, , are required to be of order m or larger in
order that the particular subset of possible in-
variants is of order m' or larger. Let that num-
ber be N. The remaining loop momenta, labeled
x, , are small compared to m. Symbolically the
integral in this region may be represented as

(m)

d $ ~ ~ d)~
O(g m)

d'r„, " d'r„F'(~, , I, , m)P(f, , ~„m)

where F is the contribution of the explicit fermion lines and P represents the rest of the graph. Now scale
all of the large loop momenta l,. by m; that is, define E, , i=1, . . . ,N, such that /,. =K,.m. The fermion
propagators containing only small momenta behave similar to F~ where

Fz -2(ya q1)(1/ [P,x; + (OP 2m)]f, (5.2)

whereas those containing any large momenta behave similar to (I/m)Fz where

(1/m)F, - (1/m) [(y'+ I) -ZP;l/ [2Z;K;+ (Z;K, )' l.

The term O(p2m} in the denominator of Eq. (5.2) may be ignored except when it serves as an infrared cut-
off for the energy integrations. In such a case the integral's dependence on P'm will be of the form (ex-
cluding logs which are irrelevant for this proof) (1/P'm)~, k &0. This dependence on P'm cannot occur
for propagators containing large momenta. Furthermore, each large momentum must flow through at
least one fermion line and therefore there are a minimum of N fermion propagators of type (1, m)F~. The
contribution of this region to the graph can now be written as

O(g m)

d'K„(F, ) d'~„„d'~„(F,)" P(mK, , ~„m)
0

However, the graphs under consideration are prop-
erly renormalized so that all internal integrations
are convergent. Therefore the integral of P(mk, ,

f, , m) over K„.. . , K~ must converge in the ultra-
violet region and may be written

d'K, ~ d'K„(F~)"
O,(1 )

o(Bm)
d4~ . . .d4+ (F )E npI-N+x tl

p-(1/m'~ )p, (5.4)

where r is an integer, even by symmetry, and
~ 2. Furthermore, by Eq. (5.4) the contribution
of this region to the graph is at most

In the region in which all 4, ~ Pnz each factor of
m is accompaniedbyP or P'with/'m always occurr-
ing as a nonpositive power in fermion propagators,
as discussed above. The power of these P'nz terms
(which do not appear in large-momentum propa-
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gators) from the region of integration under con-
sideration is therefore greater than that in the re-
gion where all momenta are small. Dimensional
arguments now imply that this region is suppressed
by at least a factor of. P', due to the external I/m'
above, with respect to the region in which all
k,. & /mand thus the region k,. & Pm for all loop mo-
menta is the dominant one for any graph.

VI. NONRELATIVISTIC BOUND STATES

In the previous sections a general formalism has
been developed for studying any nonrelativistic
system of fermions minimally coupled to non-Abe-

lian gauge fields. Now, as a specific example of
this formalism, nonrelativistic fermion-anti-fer-
mion bound sta.tes will be analyzed in perturbation
theory. In particular, threshold bound states will
be discussed in detail through two loops and three-
fermion bound states will be treated as well. The
bound- state spectrum is determined by the non-
relativistic reduction of the Bethe-Salpeter kernel,
which will be presented here in order to clarify
certain aspects of the perturbation calculations to
be done in Sec. VIJI. The general formalism is
based on that of Schwinger, "Bethe,"Salpeter, ""
and Mandelstam. ' The fully relativistic inhomo-
geneous Bethe-Salpeter equation is given by

G(xl &y2tylt 2) F( lsy2) E( 2tyl)

+ d&~~d'gad'w ~d4w~ [S~(x„g,) @Sp (g2, y, )g(z„x,;w„w, )G(w„w, ;y„x,) ], (6.1)

where

& (x y) -=«l&*(«x)&(y))lo)

is the full fermion propagator,

G(x.».'y i x2) =- « I
T*&'(xi)Ax2) ((y i) ((y2)) I

0&

(x', +y,')» (y', +x', ),

lx', - y',
l

« lx', +y', -x,'- y', l,

fx', -y',
l

« lx', +y,'-x,'-y', l,

(6.2a)

(6.2b)

(6.2c)

in which G(x„y,;y„x,) is denoted G, . For G, the
time scale between initial and final states is much
larger than the time scales of either state. In-

is the full four-point fermion-antifermion scat-
tering amplitude and K(z„z„w„w,) is the Bethe-
Salpeter kernel, which is two-particle (fermion-
antifermion) irreducible in the s channel. Graph-
ically this equation is given by Fig. 3.

To derive the bound-state equation consider G in
the region

sertion of a complete set of states between the
initial and final fermion-antifermion fields in G,
allows the isolation of the contribution of bound
states. In particular, consider a bound state of
mass Ms, momentum P, and energy Es=(Ms'
+ P')'~' which is described by a bound-state wave
function P(x, P) as follows:

&'(x P) =&OIT*(g(x~2)e(-x~2))IB P M.).
(6.3)

Then, translational invarian(„. e and the fact thai
the bound state contributes only when (x', +yo)
&(y', +x', ) gives for G, the form below after trans-
forming the center-of-mass coordinate,

X'(x, P) g'(y, P)

+ terms regular as I -E~,
(6.4)

where x=(x, —y, ) andy=(y, —x,). It has been as-
sumed here that the bound state is nondegenerate.
To proceed from the inhomogeneous equation for
G to the homogeneous bound-state equation for
ys, note that Eq. (6.4) implies that

Xl

Xp

Xi
- ~9' -

y,

= u+~ = xg

I'IG. 3. Inhomogeneous Bethe-Salpeter equation.

Xp

d'y 2Es lim (P' —Zs)G(x, y, P, P')X, (y, P)
Po Zg

= X (x, P) (6.5)

The orthonormality of P and &s has been used
here. Similarly, projecting onto the bound state

(x, P) in Eq. (6.1) and expressing the result in
momentum space gives
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d'k, P
X (k&P) —

(2 ),S~ k, +
2

S ~, ——K k„~„PX' &„P .

(6.6)

Equation (6.6) is the fully relativistic bound-state

wave equation with irreducible kernel K.
To obtain the nonrelativistic limit, it is con-

venient to work in the center-of-momentum. frame
P =0 so that P'= (5,M). In this frame the operator

y'S~o'(k, +p/2)8SO~ (k, —p/2)y'

is applied to both sides of Eq. (6.6) (So~ is the free
fermion. propagator):

I

~ ~ ~

M M
+k~ —(o'k~+&~) 8 ——+k', —(Pm- o k } X'(k„M)=

where (with explicit indices)
.g

c

(„)',T(k„k.;k'„k,', M) X'(k„M), (6.7a)

(6.7b)

This equation may be represented as 4(k) =
dyO

X'(k, k', M), (6.11)

Xs (k, M) = S~ (k~ + ~P) y 8 y S~(k~ —pP)

d'k
x

(
)', T(k„k,;k'„k'„M)X (k„M) .

(6 8)

To obtain a nonrelativistic equation from Eq.
(6.8) it is necessary to make the following funda-
mental assumption: the basic interactions occur
over a time scale small compared to the inverse
of the energy spread of the wave function. Ex-
plicitly, this assumption is that over the range of
k', and k,' for which Xs(k„ko„M) and Xs(k2, k,', M)
are significantly different from zero, T(k„k,;
k'„k'„M) is approximately constant in the vari-
ables k', and k,'. Therefore T may be decomposed
into two parts,

Eq. (6.10) becomes

4(k, ) = dy0' S'(k, + 'P) y'8 y—'S'(k, + P)—
X— 1 To

TIS0 y08 yOS0F
(6.12)

P', (k, ) = [E.(k, )+H.(k,-) j ~ ka I

where the last integration is only over the spatial
components of the momentum. This exact equa-
tion provides a convenient representation of the
kernel for quasistatic systems. To extract the
large components of the wave function P(k) it is
useful to use the following projection operators:

II =a.k +PM (6.13)
T=T +T',

where To is instant;aneous and T', which contains
all the k', and k', dependence of T, is small in the
sense that it is possible to make a perturbative
expansion of Eq. (6.8) in powers of T' Substi-.
tuting Eq. (6.9) into Eq. (6.8) and iterating with
respect to T' gives

X'(k„k'„M) =P;P'X. +P;P,'X„
+ papb X + papbX '

(6.14)

in terms of which the bound-state wave function
may be decomposed as follows (a =fermion index,
k = antifermion index):

XB(k„M)=SE(k, +2P)y 8y S~(k~ —2P)

X
1 To B

f$0 y 0 g) ~ OQO X j (6.10)

However, in the nonrelativistic limit H, (k, ) =E,(k, )
for fermions and H~(k, ) = —E~(k, ) for antifermions.
Therefore only X, is large in this limit and the
nonrelativistic wave function g(k) is defined by

in which the appropriate four- dimensional integrals
are to be performed when the denominator is ex-
panded in a power series in T'. In terms of the
nonrelativistic wave function P(k), given by

dk'
P(k, ) = ' P:P'X. , (6.15) .

so that for the large nonrelativistic components
Eq (6.12) now .becomes approximately
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2v M/2 —E,+k, +is M/2 —E~+k, i& 1 —T'(M/2 —E, +ko+ia) '(M/2 —E,+k —ie) '

Now consider Eq. (6.16) when T is zero, as in nonrelativistic QED. Then

(M —E,-E~)((k,) = )', T'(k„k,)g(k, ). (6.17)

In the nonrelativistic limit for the left-hand side of Eq. (6.17),

M E, —E~ =— Es ——k2/2 P, (6.18)

with EB =binding energy and p, =m,m, /(m, +m, ). Therefore Eq. (6.17) is the nonrelativistic Schr5dinger
equation with a possibly nonlocal potential given by T'(k„k,).

The most important application of Eq. (6.16) is when T eO but the lowest-order perturbative expression
for T is instantaneous as is the case in QCD. Thentoanyorderofperturbationtheoryonlyafinitenumber
of iterations of T' contributes, and the nonrelativistic kernel K(k„k,) is given by

K(k„k,) = (M —E,—E~
de . 3.

2v M/2-E. +k', +i~ M/2 —E,+k', —ie

1 0

1 —T'(M/2 —E,+ k +i&) '(M/2 —E„+ko—ie) ' NE -E =0',
a b

(6.19)

If the limit M-E, -F.b-4 does not exist in the above
above expression there is no self-consistent static
potential. The terms in this equation involving
iterations of T' are not iterations of the nonrela-
tivistic kernel but contribute an amount of the
same order and form as T' alone. Such terms
exist when the nonrelativistic (or static) limit of
iterations of the relativistic kernel is not equal
to iterations of the nonrelativistic kernel itself.
Thus the nonrelativistic kernel is not given by T'
but by Eq. (6.19) which equals T' only when T'=O.
Use of this kernel produces the correct nonrela-
tivistic bound-state spectrum and all contributions
to the nonrelativistic kernel may riow be classified
as

(a) two-fermion irreducible graphs,
(b) initial state self-energy corrections [see

Eq. (6.7b) ],
(c) nonrelativistic limit of kernel iterations not

iterations of the nonrelativistic kernel [see Eq.
(6.19)1.

In QCD nonrelativistic bound states are described
, by the Foldy-Wouthuysen transformed Hamiltonian,

Eq. (4.6). In particular only threshold bound states
are being considered here and for such states the
binding energy e -P'm, the same order of magni-
tude as the kinetic energy. In QED the nonrela-
tivistic kernel is simply the single Coulomb ex-
change so that a bound state is built solely from
the momentum dependence of iterations of the
kernel with n/P-1. If o. is small, as in QED, all
bound states are threshold, but for large
need not be small and the bound states need not be

threshold. Since here the nonrelativistic kernel
is not a single Coulomb exchange, the require-
ments on the coupling constant for. threshold bound
states are more complicated than in QED.

Furthermore, in order to produce nonrelativis-
tic bound states, the Bethe-Salpeter kernel must
become effectively instantaneous but the limita-
tion of loop momenta shown in Sec. V does not
guarantee an instantaneous kernel. More specific-
al]y, if &T is the time scale over which the inter-
actions in the kernel occur, then an instantaneous
potential is found when b.T «1/e- I/P'm (I/e is
the time scale of motion inside the bound state;
i.e., the scale over which the fermions appear
free). The k'ernel must "see" the quarks as free
and essentially at rest. This requirement is ex-
pressed by e(- P'm) «effective loop energy (~ Pm
as shown in 'Sec. V). Another way of understand-
ing the criterion is as the requirement that. most

(p, E) (p, E )
} I

n

FIG. 4. Nonrelativistic Bethe-Salpeter kernel.
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of the time the bound state is simply qq (q a quark).
In old fashioned perturbation theory, qq interme-
diate states must have energy denominators much
smaller than those for qq+ gluons, or more pre-
cisely,

denominator for qq
denominator for (qq+ gluons) 8 0

As verified in Sec. VII, this requirement is satis-

fied explicitly for the sum of graphs through two
loops in singlet states only, although not true
graph by graph. Problems occurring in higher
loops are mentioned in Sec. VIII.

The general expression for Kin Eq. (6.19) in
the non-Abelian theory may be cast into a simple
form. Since only Coulomb lines interact with the
fermioris the nonrelativi;stic kernel is given by
(see Fig. 4)

d dn-1 q 1 . . . q~-lit q&
~ ~ ~ a„(yo I 0)fi a~ ~ ab @by ~ ~ b+(qo: q& )

(2w)' (2n )' (2m)' (2m)'
(6.20a)

with

0 g 1 taj. ..tan

0', (k', +k', ) '"(0',+ ~ ~ +y'„)' (6.20b)

/

the form of t/', &' "~ is an immediate consequence
of Eq. (5.16) and

either in the singlet or in the adjoint representa-
tion of the gauge group SU(1V), the fermions being
in the fundamental representation. To lowest or-
der only the single Coulomb exchange, shown in
Fig. 5, contributes to the kernel which is

ig'T26b~i', 6b, b l~ t, singlet

ig (T, ——C,)6 ~ 6, ~ —,adjoint.

is the appropriate (n+m)-point Coulomb function
with only Yang-Mills interactions internally
(+0,. =PPq,. =P'-P). This form is reminiscent
of the eikonal approximation in that the incoming
fermion and antifermion "scetter" several times,
each scattering process involving the exchange of
only a small fraction of the total energy. Also,
in the nonrelativistic limit all of the fermion scat-
tering processes occur at the same point in space
(the fermions are at rest) so that the fermion has
become an effective external source of soft Coul-
omb lines with vertices given by Eq. (6.20a).

VII. PERTURBATION THEORY

The spectrum of nonrelativistic fermion anti-
fermioz bound states in a non-'Abelian gauge theo-
ry is determined by the kernel given by Eq. (6.20)
(shown in Fig. 5) in which the appropriate kine-
matic region is p,.' —m', t, and s —4m all of order
P'm'«m' (s, t are the Mandelstam variables). In
this Section a thorough perturbative analysis of the
kernel is made through two loops, and in addition
three-fermion bound states are discussed. More-
over, since nonrelativistic calculations are easily
performed in old-fashioned perturbation theory,
the analysis here will be performed in this formal-
ism and the graphs in this section are therefore
not covariant but represent 3, particular time or-
dering with time increasing from left to ri.ght.
The initial fermion-antifermion state may be

A. and A.
' are the diagonal spin indices which will

be suppressed below, and -t = (p —p')' in the cen-
ter-of-mass frame. The constants T, and C, as-
sociated with the gauge group are defined by

Z, t't, = T,1 where —t' are the fermion representation
matrices and Z,T'T, = C,1 where g-' are the adjoint
representation matrices given by (T,)„=if,„„
f„,being the structure constants of the group.
Here, T, = (N' —1)/2N and (T, ——,C, ) = -1/2N so that,
3s is well known, the adjoint representation is re-
pulsive with respect to the singlet. For large N

the singlet-state group factor T, =N/2, N' larger
than the adjoint-state factor.

In one loop the only contributions to the kernel
are the two graphs shown in Fig. 6. Here q=p —p'
and k is the loop momentum. The first graph,
Fig. 6(a), is exactly instantaneous whereas the
transverse gluon loop contribution contains a non-
instantaneous part negligible in the one-loop kern-
el. This transverse gluon loop, as shown in Fig.
6(b) represents the sum of two graphs in the first-

FIG. 5. Single Coulomb exchange.
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q
'0

k

(b)

I

I

+
I

ent methods. " The result for the kernel through
one loop is

ig'(p, ) 11g'(p) f—
3 ]6+

FIG. 6. One-loop graphs contributing to nonrelativ-
istic kernel. X

~ ~

T„singlet
adj oint

(7.2)

order formalism: the first being two mixed A —E
propagators and the second an A and an E propaga-
tor. Also, another time ordering in which the anti-
fermion emits the Coulomb line before the fermion
absorbs it must be included in the kernel. Below
it is assumed that all appropriate time orderings
have been added to the graphs shown to produce
the kernel. It is also clear that to this order the
only corrections to the kernel are Coulomb line
corrections. These graphs are calculated explicit-
ly in Appendix C by dimensional regularization
methods which are useful in two loops. The calcu-
lations have been performed previously by differ-

p. is the renormalization point (see Sec. III). The
second term in Eq. ('l.2), the one-loop contribu-
tion, increases the strength of the interaction at
large distances as expected in an asymptotically
free theory. However, the noninstantaneous graph
in Fig. 6(b) must decrease the interaction since it
produces QED-type vacuum polarization. ' " The
instantaneous graph is responsible for the asymp-
totic freedom effects and dominates the other
graph. Also, to order g' the renormalization
group equation for the coupling constant gives the
following result based on the well-known value of
the P function in one loop (which is gauge indepen-
dent):

TABLE II. Two-loop graphs relevant for the Bethe-Salpeter kernel.

(a)

(

Graph

k i
I I

I

I

pq
I
I

Renor maliz ed amplitude

, „,...(, y~), ,)j, y~)
)S~A 8 (2~)4 . 3j 2(~2 g ()

Group structure (S = singlet
constants A = adj oint)

G, =T C (T, ~C2)

GA ——C2 (T2 —~C2)

(b)
I I

Y~

q4
)

8(2m)4
(2GS,A)

(2 )4
(2tt —3)& ln~&+ B 2GS —--T2C2

2

2GA ——--C2 (T2 —-C2)
2 2.

. (c) Zg g'")8(2~)4
2GS =—T2C21 2

2'

2GA ——--C2 (T2 —-C2)1 2 1

2 2

{d)
g' („, „),(.)(, i,)-.,(.(., r~),

)„-t ' 8 (27t )4 3 2(cg —E 2)

G S ——T2 C2 {T2—-C2)
2

GA
——C2 (T2 ——C2) (T2 —C2)

2

(e)

I q

2 4

'*"8(2~)4
GS- —T2C21 2

4

GA- -4C2 (T2- ~C2)

I

I

VQ
l

'
I

~ 2 4 2zg g (2&2 $6) 1 c1
S,A 8{27t)4 3 2 $2

GS ——T2 C2

2

(g) vp

I

1

v Q-P
I

I

4 2
Zg g 2 58 1

—. t ' 8 (2~)4GS,A (27t. —-)—ln ——D GS ——T2 C2

G„=c,(T,-- 'c, )
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g (~) —— . C.»—.=g'(-&).ll g (p) -f
(7.3)

The value of the P function in Eq. (7.3) is that for
a pure Yang-Mills theory since fermions are neg-
ligible nonrelativistically. Furthermore, Eqs.
(7.2) and (7.3) show that the coupling constant re-
normalization is given exactly by the Coulomb
propagator renormalization, as requi. red by the
Ward identity Z, = Z, proven in Sec. III and Appen-
dix A. The kernel through one loop may now be
written as

~2 ) singlet

T2 ——,'C2, adj oint .
(7.4)

Next, for the two-loop kernel, there are several
important contributions. Consider first Coulomb
propagator corrections. These terms effect the
change of the coupling constant from g'(- p, ) to
g'(-f) as a consequence of the Ward identity proved
in Sec. III, that Z, = Z, . Therefore, these graphs
may be used to calculate the P function to two loops in

the .Coulomb gauge. The value of the leading log con-
tributions to the P function in ea,ch order are just ite-
rations of the value of the one-loop kernel since the P
function itself is expressible as a, power series in
g'(-f) alone. Infact, the Wardidentities clarifycan-
cellations of some leading log contributions. Con-
sider for example the two-loop irreducible correc-
tions to Fig. 6(b) consisting of graphs which are
either gluori-gluon-Coulomb vertex corrections or

gluon propagator corrections. The Ward identity
Z, =Z, applies to the gluori propagator as well as
to the fermion propagator, so that the leading di-
vergences of these graphs must cancel by them-
selves.

All contributions to the two-loop kernel except
the Coulomb line corrections, discussed above,
are shown in Table II. The details of the calcula-
tion of graph (a) are presented in Appendix C, the
calculatiori of the other graphs being similar. X is
the fermion renormalization point (see Sec. III) and
t= -q'. At the two-loop level it is necessary to
specify the initial and final states more carefully
than previously by distinguishing between p, and

p„ the amounts by which these two states are off
shell, respectively, with q, &&, and &„&,-P'm.
The kernel must be effectively independent of both
these parameters. B,C, D, and E are numerical
constants. In addition there are, of course, sim-
ilar graphs with fermion and antifermion lines
interchanged. Graph (f) is an external fermion
self-energy correction which is included in the
kernel for. the initial state only and graph (g) is a
two-fermion reducible contribution due to the en-
ergy dependence of the kernel as discussed in the
preceding section. For the fully relativistic kern-
el this graph would be an iteration of the one-loop
kernel with the zero-loop kernel, but it is not an
iteration nonrelativistically. To see explicitly how
this contribution arises consider the energy de-
nominator of the intermediate state with two glu-
ons:

(Ikl+ II-kl+ "}'=(lkl II-kl) '- (lkl+Il:k I) "~(lkl+ II-kl+") ' (7.5)

The second term, a relativistic correction for the one-loop kernel, combines with the energy denominator
of the two-fermion intermediate state, q, , to produce a contribution to the two-loop kernel of the same
order of magnitude as the other graphs in Table II. The X on the fermion line indicates that the second
term in Eq. (7.5} is to be used for the energy denominator in the appropriate intermediate state.

The logarithmic dependence on the fermion renormalization point X in graph (f) cancels w'ith the X depen-
dence in the vertex correction graphs (a) and (b) for both singlet and adjoint states. This result is a veri-
fication in two loops of the Ward identity Z, =Z, . Graph (c) is a finite graph unrenormalized since it is a
graph in the fermion-Coulomb vertex not part of the fermiori charge vertex, as explained in Sec. III. Also
the dependence on the off shellness, &, and E„which is similar to an infrared or large time cutoff, can-
cels pairwise between graphs (a) and (d), and between graphs (f) and (g), b'ut only for the singlet state.
The two graphs in each pair are distinguished by a Coulomb line being absorbed on a fermion or antifer-
mion line. Since the bare instantaneous Coulomb line at zero momentum couples only to the charge opera-
tor, the sum of the graphs in each'pair is the total charge in the state, zero only- for the singlet. This ob-
servation is also the basis of the Ward identity Z~ = Z2 so that cancellation of infrared and ultraviolet diver-
gences both are due to the same effect. Adding al1. of the contributions indicated in Table II gives for the
kernel through two loops

ig (-f) I,g'( f) i

7', I+ bC,'8(2 ), , singlet
E'2 = (7.6)

(T C ) I bC 2g (-f) xC 2g (-f)
2

2 56
-f ' ' ' 8(2w)' ' ' 8(2w}' 3 g, —&, g, , adjoint,
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I
Pp, .I

FIG. 7. Nonzero contribution to three-body kernel in
two loops.

where" 5-20. For the singlet state only, the
kernel in Eq. (7.6} gives a static nonrelativistic
potential valid in the infinite-mass limit. The en-
ergy dependence of the kernel for the adjoint rep-
resentation does not permit a self-consistent non-
relativistic limit to be obtained. Note that this dis-
tinction between the singlet and nonsinglet only ap-
plies to the kernel where g, q, . For on- or off-
shell matrix elements q, = q, so that the third term
of the kernel for the nonsinglet state vanishes and
the remaining terms are the same as the singlet
with the change, as is valid in lower orders,

1
T2 - T2 —~C2.

For three-fermion bound states, qualitatively
the same structure will emerge as in the fermion-
antiferinion case since the form of the kernel. is
determined by the Ward identities and the identifi-
cation of the charge operator. However, the kine-
matics is more complicated and a simple form as
in Eq. (7.6) has not been obtained so that only some
general features are described here. The projec-
tion operator onto the singlet sector is -', &;» (i,j, k

are group indices). Also, there are three possible
momentum transfers q;&'= (p, —p, )' where i,j
=1,2, 3, and the energy denominator for the three-
fermion state is (M-E, E, E,) for either the
two-body or three-body kernel. Below sixth order
the kernel is the sum of the three two-body ker-
nels, each of which is similar to the fermion-anti-
fermion kernels. However, in sixth order there
are contributions to the three-body kernel, such
as the graph shown in Fig. 7, which contributes a
finite amount to the kernel. Furthermore cancel-
lation of the infrared divergences requires terms
from both the two-body and three-body kernels,

as can be seen from the graphs shown in Fig. 8.
The first two graphs, 8(a) and 8(b} are two-body
contributions but this sum still depends on the
binding energy. Only when graph 8(c), a three-
body contribution, is added does the cancellation
occur since the final Coulomb line, which gives a
measure of the charge in the infrared limit, must
be attached to each fermion line in order to give
cancellation in the singlet states. However, in or-
der to obtain this cancellation the bound-state wave
function must be attached to the final state and the
resulting integrations performed explicitly. There-
fore the three-body kernel not only cannot be neg-
lected, but also is necessary in order to obtain a
static potential.

VIII. DISCUSSION AND CONCLUSIONS

In this paper a consistent general formalism has
been developed for describing nonrelativistic sys-
tems of fermions minimally coupled to Yang-Mills
fields. The application of this nonrelativistic for-
malism to bound states produced a kernel which
has several interesting characteristics. First,
the nonrelativistic potential is not simply the in-
stantaneous part of the relativistic kernel, as i.t is
in QED, but has a more intricate structure involv-
ing terms which relativistically are iterations of
the kernel. A perturbative analysis through two
loops in the radiation gauge distinguished group
singlet states by the fact thai only for these states
does a nonrelativistic potential exist. Also the ef-
fective strength of the coupling constant is deter-
gnined by the pure Yang-Mills theory at a momen-
tum value typical of the momentum transfers in the
bound state. Finally, the nonrelativistic potential
is completely spin independent even though its I o-
rentz structure is complicated.

Three-loop contributions. to the kernel apparently
produce log q terms even in the singlet channel,
as, for example, in the graph shown in Fig. 9.
Whether this energy dependence cancels with other
three-loop graphs is not known at present. If one
sums the contributions of all possible numbers of
Coulomb lines at intermediate times in the graph,
then the energy dependence becomes negligible. '

(a) (b} (c)
FIG. 8. Cancellations of divergences in the three-

fermion kernel.
FIG. 9. Three-loop contribution to the kernel with

logy dependence'.
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A similar process occurs in Lamb-shift calculations
but the Lg,mb shift is a relativistic correction
whereas Fig. 9 is a nonrelativistic contribution.
Although this resummation of the perturbation ex-
pansion removes this energy dependence in three
loops, a consistent scheme to eliminate such en-
ergy dependences valid in higher orders of pertur-
bation theory has not been found.

The Foldy-Wouthuysen transformations which
produced the nonrelativistic Hamiltonian, Eq. (4.6),
also give the structure of the first relativistic cor-
rections. These terms lead to effective interac-
tions for energy shifts and splittings in two-fer-
mion bound states analogous to the Breit-Fermi
interactions in QED. Presently the possible phe-
nomenological implications of these terms in J/P
and & systems are under investigations. "

The perturbative analysis of Sec. VII is valid for
weak fields with the naive vacuum structure al-
though nonperturbative effects may make major
modifications in the bound-state spectra. How-
ever, the radiation gauge Hamiltonian formalism
developed in this paper can serve as a convenient
starting point for a nonperturbative analysis in the
nonrelativistic limit of gauge ambiguities"' or of
multiple- vacua phenomena.
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APPENDIX A: PROOF OF THE WARD IDENTITY

In this appendix a proof is given of Eq. (3.5),
D(0) =0, and in fact it is shown that D(q) =, q ln"q.
The external fermions are assumed to be off mass
shell by an amount P'-m'=-A, '- 2m& where here,
unlike in Sec. VII, a»q. Furthermore, old-fash-
ioned (time-ordered) perturbation theory' is used
throughout. As q- 0, the only possible diver-
gences that arise are infrared divergences since
clearly this limit cannot introduce ultraviolet
divergences. Any possible divergence at a finite
value of the loop momenta can be shifted to zero
by a suitable redefinition of the appropriate loop
mom enta.

The method of the proof is as follows: All pos-

l=2V + V —2(N —2) (Al)

and, in addition, the order of the graph ing is
g" && [order in g of Born graph]. Now let dim V, be
the dimension of the ith vertex and dimP, . be the
dimension of the jth propagator. Then d is given
by

d=3l+ Z dimV'. + Z dimP&.
i

vertices yr oyagato»
(A2)

Rewriting d as a sum over vertices only is very
useful below. First 3E =3+ 2V'+3V4- &N can be
rewritten as

sible sets of subintegrations for each graph in D(q)
are classified and examined to show for each one
D(q) is finite as q-0. In particular, it is shown
that D, (q) [D(q) = q'D—, (q)] is finite as q-0 except
for possible log divergences. Note that for exam-
ination of each particular set of subintegrations,
all other loop momenta can be considered finite
and fixed. Then each graph in D, (q) w. ill diverge
no worse than logarithmically if no set of subinte-
grations diverges worse than logarithmically. In
the proof below dimensions will always refer to
D&(q). Each set of subintegrations forms a sub-
graph with fixed finite external momenta (except
possibly q). These subgraphs are divided into
three classes as follows:

(I) No linear combination of external momenta
equals q; i.e., no linear combination goes to zero
as q-0 except clearly the sum of all the momenta
which is identically zero.

(2) There is a linear combination of the external
momenta which equals q. However, the first in-
teraction vertex of the external Coulomb line, the
Coulomb-Coulomb-gluon vertex explicitly shown
in Fig. 2, does not appear. This vertex will be
called the distinguished vertex below.

(3) The distinguished vertex does appear in the
sub graph.
The proof of case (I) shows that there are no in-
frared divergences for any graph at nonexceptional
momenta, a fact which is known, but the proof
here is constructed so as to facilitate the proof in
cases (2) and (3).

The basis of the proof is an infrared power
counting argument. Consider the region of loop
momenta in a subgraph which is much smaller
than any of the external momenta (except q-0).
In this region scale all loop momenta by X, which
scales the subgraph by ~' where d is the infrared
dimension of the graph and if d~ 0, the subintegral
diverges at most logarithmically in the infrared
region. For a given subgraph let l = number of
loops, ¹ number of external lines, V'= number
of 3-point vertices and V4= number of 4-point ver-
tices. Then
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TABLE III. d; for vertices with internal momentum
only (see Appendix A),

TABLE IV. d; for vertices with some external mo-
menta (arrows indicate a link with external momenta)
(see Appendix A).

Vertex z(n; —2) 2 l; dimV; zg; dimP;; d;
3 I,~Vertex 2 (n; —2) dim V& 2'Q~ dim P;,. dg

0 2 (-3)
(a)

3
2 0 2(-&) 31 28i

0 0 3
2 —.'(-2) 3 3

3
2 0 0 2(—2)

1
2

(c) 0 2(-&) 31 —ze;

(d)
3
2 0 3

. 0 0

(e)
3
2 2(&)

32 —28

3
2 0 0 3

2
1
2(—2)

0 2(-3)
3
2 0 —,'(0) 3 3

2 —2eg

(h) 0 2(-2) 1 3

Si =2+ P [q(n,. —2) —2e,], (AS)
vertices

where n,. =number of lines at vertex i and /,. =num-
ber of external particles at vertex i. Since each
propagator appears at two vertices,

3
2 —.(0) 3 3

2 —Zeg

dimP, .= ~ g Q dimP, , ,
i.pr opagat or s ver t ices pr opagators

at ith vertex

(A4)

where dimP&, . is the dimension of the jth propaga-
tor at the ith vertex. Using Eqs. (A2) and (A4) in

Eq. (AS) produces

d=S+ Q [2(n, —2)

(k)

Any, '3-point

(m) vertex with
3 large
momenta

0

0

0

2(-2)

2(—&)

3
2 —2P

5 3

3 3
2 —Zeg

al 1
vertices

—2e,. +dimV, .+ g dimP, ,] (A5)

Finally define for the ith vertex d, =—2(n, —2) ——,e,
+dimV, .+ZjdimP, , . Now consider vertices which
contain only internal or loop momenta. The calcu-
lation of d,. for each type of vertex is given in
Table III. In.all cases, d,.& 0 and this type of ver-
tex can be ignor'ed in finding the minimum value of .

d for a type of subgraph. Therefore,

4-point vertex
(n) with 4 large 3

momenta
0

cP 3+ i.vert ices
cont ai ning ext ernal moment um

(A6)

and equality is obtained only when all omitted ver-
tices are Coulomb-Coulomb-gluon vertices. Next
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d,. must be calculated for vertices carrying exter-
na) momentum. Here these external momenta are
considered as fixed and nonzero. If q, occurs as
an external momenta or combination of momenta,
such a subgraph will be treated separately below.
The various possible values of d,. are given in
Table IV with the fixed momenta indicated by ar-
rows. For e,. =0-, d, ~ 2 so that only e,.&0 vertices
present convergence problems. Vertices contain-
ing external lines are classified in a convenient
form in Table V. /,. is the number of large (or ex-
ternal) momenta. For a type-one vertex, d,. = -'1
only for vertices of type ('f) and (h) in Table IV.

In case I, no subset of the external momenta is
~Nzero except ~, ,I',.=0 where I',. is the ith external

momentum. Therefore, P„=—(P, + ' '+P„,) and
there must be vertices in the graph which link
various external momenta to produce P„. In fact
there must be N —2 such linkages (a 4-point vertex
where three momenta join counts as a two-1ink
vertex and all other relevant vertices are one-link
vertices). These linkages must occur at either in-
ternal vertices, e,. =0, or vertices with external
lines, e,.&0, and it is possible to find the maxi-
mum number of possible links in a given subgraph
at vertices with e,. &0 by assuming in Table V that
the maximum number of linearly independent rno-
menta appear at each vertex. Now define rn by
m =—nurser of external lines minus the maximum
number of links possible in e,-&0 vertices, or

m = g [e,.+ (1 —maximum number of linearly independent large momenta at vertex i)]
g &&0

=ax+ b~ b4+ b5+ b

(AVa)

(AVb)

From the definition of m it is clear that m —2=minimum number of links in e,. =0 (internal) vertices. Let

n, =number of 3-point e,-=0 vertices with l,.=3,

n, =number of 4-point 8,. =0 vertices with l,.=3,

n, =number of 4-point e,. =0 vertices with /,.=4.

Therefore n, +n, +2n, ~m —2. However dim (vertex of type n, ) =2, dim (vertex of type n, ) = —,', dim (vertex
of type n, ) =3. Therefore

(AS)g d,. ~ & (n, + —,
'

ns+ 2 n, ) - s (n, +n2+ 2 n, ) - 2 (m —2) e(m —2)
e &-0

and the 6 function can clearly be inserted since m —2~ 0. Therefore, using Eqs. (A6) and (A8) produces

d~ 3+ —,(m —2)8(m —2)+g d, =3+ —,(m —2)6(m —2) —a, i —,b, +b, + ,b, + ,b, ,b,————
y .&0

and from Eq. (Avb) comes the final result,

(Ag)

TABLE V. Classification of vertices with external lines (see Appendix A).

Type e; n;

Number of
linearly

independent l;
Number in

subqraph
Do large and

small momenta couple?, d;

(3)

1 3 2

1 3 3

1 4 2

1 or 2

ai'

bf„

yes

no

yes 1
2

(4) 1 4 3 101 2 b2 yes

(7)

1 4 4

1 4 4

2 4 3

2 4 4

2 4 4

lor 2

b4

b5

b6

no

no

yes

no

no

1
2

0
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&yrt &2

2a, +2b, + 2b2+2b3+b5+ 2b6 j I 2 or a, +b, —b4+b, +b6 2

(Alo)

3 —g, p —,'b, +b, + —', b, + —,'b4- —,'b, , ni ~2 or a, +b, —b, +b, +b, -2.

Inspection of this inequality gives

minimum (d) =1 (Alla)

01=2 ~

1 2 3 4 5

a„b, arbitrary, (Allb)

and case (1) is proven since d ~ 1.
In case (2) some subset of the external momenta

sums to q - 0. Iri terms of the analysis of case (1),
one large-momentum propagator now has small
momentum and the most divergent case is for a
Coulomb propagator for which ~d = -2 and d ~ -1.
To obtain this result more clearly divide the lai ge
momenta into two subsets such that in each no par-
tial sum of momenta equals q except the sum of all
momenta in the subset. If momenta from the two
sets appear at the same vertex then the subgraph
is more convergent than in the case of no such
vertices. Therefore, to find the minimum value of
d, each subset may be considered separately and
analyzed as in case (1) so that the minimum value
of d is min(d) =-1, when a, =4, b, =b, =b, =b, =b,
=b, =0, a2 and b, arbitrary. Except for the four
&,-type vertices in this most divergence example

of case (2), no vertex couples external momenta
to loop momenta since b, = b~ = b, =0 (see Table, V).
Furthermore, to get d,.= -1 for an a, -type vertex
the vertex must be of type (f) or (h) in Table IV
with the Coulomb line carrying small momentum.
The general structure of this type of subgraph is
shown in Fig. 10 where Z, ' P, =Z, 'Q,. =q-0 and
the heavy lines each are A —E or fermion propaga-
tors, I contains only loop momenta, G and G' only
external momenta and in the most divergent sub-
graph I' contains only Coulomb-Coulomb-gluon
vertices. Therefore the dominant infrared struc-
ture arises from the longitudinal part of the Ham-
iltonian. Assume that the subgraph in Fig. 10
gives d = —i so that it behaves as 1/ ~q ~

as q- 0.
Now consider the coefficient of this subgraph.
Either G or G' must couple to the distinguished
vertex and the part of the graph coupling to this
vertex then has the form shown in Fig. 11. G"-
contains only large momenta and in it / may be set
to zero. The general form of this subgraph is
D(q) =D'(q)q;, where

D'(q) =q'f, +I'f, + P P,'n'f, ,
a=&

the f, being scalar functions of:large momenta
only and the o.', constants. The q term implies that
the entire subgraph a,cts like q'/~q~ or d&0. The
E' term must have zero coefficient since in G" k =0

Qp

Qnp + q-$
f

q-$)

P) Pn,

FIG. 10. Most divergent type of subgraph in case (2)
(see Appendix A).

FIG. 11'. Coefficient of leading divergence in case 2
(see Appendix A).
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FIG. 12. Most divergent type of graph in case (3)
(see Appendix A).

and the two explicit vertices in the graph in Fig. 11
with momentum / in them are either A-E-Coulomb
or fermion-fermion-Coulomb with the Coulomb
line carrying the momentum t, neither of which
have a l' factor. Of course an l,. can appear if the
(neglected) l dependence in the propagators is
used; e.g. ,

1 P'l
fp+Tf

but then this additional numerator factor of P l
will make the subgraph in Fig. 10 one less power
divergent or d~ 0. Finally consider theZ, P,' n'f,
term. f, is a scalar function of the P, and is there-
fore even under the operation P;- -P,. Therefore
adding to the subgraphs in Figs. 10 and 11 the con-
tributions with P,- -P, (since the P; are integra-
tion variables in the whole graph) gives zero for
this term. Thus' in case (2), d& 0.

Case (3) is now easy. Here all the external mo-
menta except at the distinguished vertex sum to
give q. The analysis in case (1) applied to these
momenta gives d&1. In the most divergent possi-
ble case the Coulomb and gluon lines at the dis-
tinguished vertex carry only small momentum and
analysis as in case (2) gives the form in Fig. 12
as the form of the most divergent type of subgraph
with I' similar to I' in Fig. 10. The Coulomb line
at the distinguished vertex gives d=-1 and the glu-
on line at term d= -z. However, in E' the mini-
mal value for d(= 1) is obtained only when all ver-
tices are Coulomb-Coulomb-gluon vertices. The
presence of the gluon line from the distinguished
vertex makes it impossible to have all minimal
vertices and therefore there is at least one non-
minimal, vertex giving ~d & &. The sum of the d's
is -1--', +-,' = -1 which implies d&0 for case (3).

APPENDIX 8: DERIVATION OF THE FOLDY-WOUTHUYSEN TRANSFORMED HAMILTONIAN

In this appendix the Foldy-'Wouthuysen transformations described in Sec. IV are explicitly calculated.
The Hamiltonian is given by Eq. (2. 14),

I

H= j d'x[-,'(E,'+ B,')+ gt( in ~ &+Pm)g gg—tnt'-g ~ A, ]

+ —,
' d 'x d '~ d 'yj.'(x)u.,(x, .~),'u„(~, y)j,'(y) .

The goal is to eliminate operators which connect upper and lower spinor indices (or positive- and negative-
frequency spinors). Such operators are called "odd." The following Dirac matrices are odd operators:

r„ Pr„ n', Pn' (B2)
The remaining independent operators are "even"; that is, they do not connect positive- and negative-fre-
quency components:

1, P, Pn'y5, o" .
For purposes of calculation it is convenient to rewrite Eq. (Al) in the following form:

H = d'x Q t(x) [Pm+ 8]g(x) + —,(E, '+ B,') + —j',A;(x)j

(B3)

(B4)

where 8= n D (D = i& —gf'A—'—) is an odd operator j, contains o. nly even terms as does the mass term.
The transformation of the Hamiltonian is expressed in terms of a Hermitian operator S such that
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H'=e' He

cont'aine odd operators only in order 1/m. S itself should be of order 1/m so that equation (85) has the

following expansion in 1/m:

H =, H+ t[S,H] 2[S, [S,H]] —'[S, [S,[S,H]]]+ r[S, [S, [S, [S,H]]]]+ (88)

In the term quartic in. S, only the mass term in. H
need be considered since the four S's produce a
factor 1/m' and no terms of order 1/m' are re-
quired. Also in order 1/m' the only terms quartic
in S needed are kinetic energy terms. Finding H'
will complete the first of the Foldy-Wouthuysen
transformations. S is determined by the' condition
that H' does not have any odd terms of order {m)'.
Since S is of order 1/m, the commutator of S with
the mass term in H should can.cel the odd terms
in Eq. (84). Clearly the S that satisfies this re-
quirement is

i S, d'y 'x Pm, x d 'x (t)~(x)6$(x),

(88a)

i S 2 dxE, =2- exp, E', (88c)

S, 2 d xa, =0, (88d)

i S, d'x g'(x)6$(x) =— d'x g'( x)P6'P( )x,

S= d'x q'(x)pep(x)
2m

(BV)
i S 2 Q x J AD g x & g x Ao x

(88e)

Using this 5 it is straightforward to compute the
various commutators needed to determine H' in
Eq. (86). For the commutator of S with H, the
following terms are needed:

where Q'=)t)t(x)Pngt'g(x). Note that Eq. (88b) cori-
tains the magnetic dipole term since 6'"-(n ~ D)'
=D' —(g/2)o'~F;, t'. Combin. ing the above results
produces

t[S,H]= d'x ()) (x) —pD' —n D —
2

pv"F;, gt' (1)(x)+ . j, ~ E' . V ~ g, A;

Next, using Eq. (A9) the various terms in the double commutator of S with H are found:

i s,— d'x('l)D*t) = ——,J d'x('(x)(-,'SD'+-', D*S]t)(x), (810a)

i S — gx ~xn D x = —— dx ~x 6 x (810b)

S $3x f x + +cjQ ta x $3x f x i~ +2 ta tb Aa, Bb++2 bac~c&, Za. Bb

+ —, d'x (t)t(x)ty, gt'8, ~ Q(x)

d 'x g~(x)[ n. (vtxB,)gt'+ty, & ~ B,gt']g( ), x (810c)1,- 1 1d'x s,Q'(x)c '~D, gt'—.( (t.))xA;( )x

3+, d'x —. ~ f()'(x)n 'gA' „/, t'
n( ({)jxA;( )x

d'xd'~ d'y v j'(x)u„(x,~)&,'~„(~,y)& S'(y)

1+, d'x y'( ) tx'yg(x) V'a;(x), (810d)
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d 'x P~(x) -iq"~(r' —. S~gt'y —(t', t')A» + ,' g'f„—„t'A,'(x) g(x)E,'(x) .

The sum of these terms yields

[x, [s, tt]] =—,t' rr) x(x)[eD'e D'e]tr(x) — f—A'x r) (x)PD'r)(x)

(B10e)

,1,. 1'x l[~(x) i&&" 2gt'E' . 8'+ —..—&'E'
i
gt'

+X'Ar'X; [t', t']) + —,'X. 'A.' E'[t', t ]rt(x)'1, - -, --, 1- -'I 1v 8 —V g, i
+, d'xq'( )xgt'y(x)~'A;(x)

1 3 1+, d 'x —. 8JQ "(x)io"D,gt'(])(x) jAD(x)1,1-d'x —. & f [([))xn A'g't'f„, (Tl[()x) ]A;(x)

d'xd'zd'y & f'n (x ~)& 'u (&,y)& 8'(y)

~

~ ~

/

d sx $~(x)[iy5g (t't t JA' ~ B +g f ' t a (A ~ BD)](f)(x)

d x i[t (x)iy' gt'B, ' Vg(x)

d'xi/r'( )[x-a (&x B )gt'+iy & B gt']]))(x) (Bl1)

For the triple commutator simplifications occur because to order I/m' in H' only kinetic energy terms are
kept:

/ )„.„tr(,)[eD*,tt.e)t(x) =,f A xtr(x)t)D't(x)tether terms, (B12a)

~ pD' g =, d'g x ~ 8D'+D'6 (B12b)

Therefore,
t

t[e [X [X, tt]]]= fA'xrtr(x)(eD'+D'e)t(x) —,J A xt (x)t)e'0(x): (B13)

Below it is implicit that I/m terms include only kinetic energy corrections and all higher-order terms in
1/m are omitted. Finally

[S, [S, [S, [S,e]]]]=, d 'x g'(x) tie'0(x) .

Inserting Eqs. (B9), (Bll), (Bls), and (B14) tnt«'I (B6) p"d""'
(B14)
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H'= d'x gt(x) m p+ pD' — (6D'+ D'6), po' q(x)+ — d'x [(E,'+ B,')+g', A;]
2m 6m' 8m' 2~

+2 d'x [j' (E, vA;)+ g~(x)p~gf y(x). B (x)]m 0
I

y3x f x gt x V2~0

4'x d'z d'y & J'@„(x,z)rr, '~„(g,y)i. jb(&)

+ 8, d'x g'(x) ie"'o,. . a,t'+ —fF,t—')A» + f„,g—'t'A" (1)(x)[E' s Ao]

+ 8, (f 'x )I)'(x) ie"'gt'o, —. s,E. .g(x)8m'

2m 2
3

~

~ ~

5
2 a

j
b

~

~
a

~
~

b
b ac c ~

~

~
a

~
b m

2

~

~

3 ~ ~

5
a ~

a

~I

d'x)I)'(x)[iy, g'{f', t']A, B,+g f'"t'Z' ~ (A, xB,)]p(x)+ ', d'xp'(x)iy gf B ~ Vg(x)

+2, d'x x —o. ~ VX9 gp+iy5V B gt' x, (B15)

where

with cr~ the Pauli spinors. Equation (B15) is the result of the first. Foldy-outhuysen transformation. The
secondtransformationwilleliminatetheoddterms of order 1/m in fI,whjchare (1/2~) Jd'xgd (Ed

and the choice of S' is again obvious, being

S'= — — -2 d x, ~ E' VA. (B16)
t

where J'= g'(x)gt'ng(x). The commutator of S' with the mass term eliminates the odd term of order 1/m.
The commutator of S' with the term of order (I)' gives odd terms which will be removed by S" and there-
fore will be ignored. The remaining commutators are of order 1/I or higher and may be ignored. The
effective 0" we obtain is

H"=m d' x ~x P x+ d x& E, +B, +jAD

(i x[gt(x)PD P(x)+ gt(x)P(xgt't/r(x) ~ B (x)]
2m

g .J~ Vg~ VJ d x x 6D+D g

d xdagd'y V ~ g'S x, g V ~ b g, y V ~ g y

+, d'xg'(x) it"'x,. —. X,gt'+ {t',t')A,' + f.„—t'g'A, ' g(x)lg; ——. t, A—:)
xx

+, d'xttt(x)gt tt(x)tt'A:+, d'x'g'(x) it"'gt x, —t, g;) tt(x)'
d3x fx & + ta tb A .B ++2 bactc Aa+Bb

+—, d*xttt(x)txgt 8 ~ ttg(:x)x. -, fd xttt'(x)' {-tt (ttXB)gt'Xtx, tt. Bgt']tt(x)

+, (odd terms) —,d'x i{t (x)PD i{)(x).m' 8m
(B17)
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The final Foldy-Wouthuysen transformation will eliminate the odd terms in H" of order 1jm . &n order
to remove these terms it is necessary to isolate the odd parts of H" in order 1/mE. Consider, for exam-
ple, the term Id'x4, g', which has both even and odd parts. The even and odd parts are separated by
using the projection operators —,'(1 ~ P),

(B18)

where J;(x) = (/) (x))8ngt'(1 + P)(/)(x). The term J;(x) ~ 8'(x) is an even term, as may be shown by using the
Fierz reordering theorem

(/), n(1+ p)(/)E ~ )/)Bn(1 —)8)(/)A= E(/)i(1 —p)(/)A(/)E(1+ p)(/)E —iz(/))a "(1—p)(/jA(/)Ba' (1+ p)(/j (B19)

(internal degrees of freedom have been suppressed). g;.g' and 8'.j' are odd. Therefore the odd terms of
H" may be isolated as follows:

(E )I "—
&

=JA xEt(x) (BII*+Ij'B)E(x)

+, d'x g:.J,.+8' g, ~ 4:—,v p i J'—,v g
62m2

d'x d'zd'y [& g;n„(x, z)V,'~„(z,y)W ~ g'(y)+ V g'~ (x, g)V'~ (z y)ET ~ p(y)]~ ~ ~

~

~ ~ ~d'x )/) ( )x[iy, g(t', t']A' B'+g'f"'t'n ~ (A' x B')](/)(x)+-, d'x /'((j)xiy, gtEB, ~ V(/)(x)

I

+ ',
J

d'x(/'(x)[-n (vtxB )gt +i~ vt B.gt'](/'(x)--, ~', d'x-.'[(E '+B ')+i'A']

(B20)

The only complication in finding an S to eliminate the right-hand side of Eq. (B20) is in some of the terms
quartic in the fermion fields. For terms quadratic in the fermion fields and for quartic terms with only

one n matrix, the correct form for 9' is obtained by inserting the Dirac matrix P between the fermion-
antifermion pairs which contain an Q. . The quartic terms with more than one a are of the form 4, 4„
where the projection matrixes make the placement of the additional P irrelevant. Therefore 8" may be
constructed. The final form of the Hamiltonian is

E"'=m~ A'xji(x)EE(x)+ —,
'
JA x((E,'+B,')+j;A;]

1
d PD P t B

I

, ~ J,—v' ~ J'—v'. J + — d g g gt'g ~ v'Q' g

d xd z d y & g'Q, xz &, ~, zy &.J y

+8, d'x(/) (x) ie""o,. —. &„gt'+—(t', t'}A +-f g't'A' (/)(x) E,' —. d'A,'

+, d'xp (x)ie" gt'o, '
—. s, E» /() —()x, d'x(/jt(x)pD'(/j(x) (B21)
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APPENDIX C: PERTURBATION THEORY CALCULATIONS

In this appendix the explicit calculations are given for the one-loop kernel and for graph (a) in Table II,
which contributes to the two-loop kernel, bj means of dimensional regulations. The one-loop graph in
Fig. 6(a) may be written analytically as

2

tu(p, A.,)y'u(p, 'X,')v(p,'I )y v(p, X,') g t„t, g, (q—', u)C,
q

where n —1 = the number of space dimensions and

2 1 d" '4 k]k~ 1 1
8 (q' ")=-3g'q

(2m)
q q' 5g'-

k
'

2i, (q k)

1 —cos'8
dg"

16m3 1+x'- 2x cos8

g (2)n —
dx g32 1 2 (1 x)l 1 —x

16 ~ q 2
XX +x+

2
n

1

' As n-4,

n 4
(q ) = expI(lnq')

I
= 1+ (In@') ( ) + —,'(in@')'( (&2)

J
(1 x )' 1-x ~" „, , (1 —x' ' 1 1dxx" ' 1+x'+ ln = dxx" ' 1+x'+ (-2) -+, + ~ ~ ~

2x 1+x ~, 2x x 3x'

(1 —x' ' 1 —x
+ dxx" ' 1+x'+ ln

2x 1+x (C3a)

x —2x +1 1 8 1dxx" 1+x 1+ + Reg = + Regx' 3x2 3n-4 (C3b)

Therefore g, (q', n) becomes as n -4,

g, (q', n) =—,1+ (lnq') + —,'(lnq')' — + Reg16w2 2 2 3n —4 (C4)

and subtracting the integral at the renormalization point p, gives

g, (q', n) —J, (p', n) = — —ln ——+ Reg2 2 3g 1 Q 8
16m 2

so that [y,(q') -=g, (q', 4)]

2 2

(C6)

For the other one-loop contribution to the kernel, Fig. 6(b), the analytic expression is (using the same
notation as above)

2

iu(P~X~)y u(P~IXf)v (Pf A2')y v(pf X2) Q tP tqg —2$~(q, n)C~, .

where
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g' f d 'k 1 1 2
6 krak~ (q —k)i(q —k);8,gq, nj ——,j ( ), — &;, — ',' ~, —

( „),
* k(k —fq-kf)2lq-kf k+ fq -kl

2 Ik —q 2 I —Ik+ q/2 I

16~' q' lk q 2l+ lk+q
1 1

(q k=qkn)
Ik+q/2 I (k2+q2/4)2 (q. k)2

I/2 1

162', ' (-,'+x'+ nx)'i 2+(-'+x' —nx)'i'

X[(x + 4) —x n + (x —4) ] 1 2 1(2 —
2 4 2 2 2(-, + x + nx) (x + 4) —x n

g2 22 ~ 2&~2 &. x" 2q" (] +x2+ 2nx)~~2 (1+x2 2nx)~~2
dx dQ

2&2 F((n —1)/2), 2" ' (1+x'+ 2nx)"'+ (1+x' —2nx)'"

1
' (1+x'+ 2 nx)' "(1+x') ' —4x'n' '

x'+ 1
X.

F((n —2)/2) 2" ', , $+ ($' —4n')'" '$' —4n'($+2n) ~

. (p . ] 4ot&
dx dnx" 'i2 —1+—(x' —2n2) —, 1+, —1 ——

8m', , 2x x x' x' vx x

1 . , n —4
+ higher-order —terms 1+ (lnq') + ~ ~ ~

x 2

Bm'

1 Q x" '+O(x" ') 1+(lnq') + ~ ~ ~

Therefore,

g' 1 1
+ Reg 1+ (lnq2) + ~ ~ ~

B~' 3~ 4 2
(CVb)

& (q n)-!) (p n) =- ——— +Reg ln—1 1 ~ q' n —4
87t' 3 pg 4 p, 2 (C8)

2 2

8,(q') —1,(p, ') =,ln —,.
48m p,

'
The sum of Eqs. (C6) and (C9) with the appropriate kinematic and group factors produces the one-loop
kernel K, (for the singlet state),

(C9)

Ky z' CgTgK 4 g ln —,+ 48, ln —,
4m p, 48m p,

'(C10a)

(C10b)ig', ll 1 q'
T2N' —g'C2 —,ln

q
' 316m~ p,

The final calculation in the appendix is for graph (a) in Table 11, which is given by (for the singlet state)

q' (2w)' (2tt )' ' P

(k, —l, ) (k,. —f, ) 1
(k —E)' 2k 2fk-If z, fk f fk 1,

f
q,

where

Z
6

=—,C 2T 2N(T2 ——,C, )I, (Cl 1a)
q
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(27r)' (21r}21'472 ' 0'(T-k)' 0+ ~T-k~ —~, &+ ~1-k
~

- &2

d'l d'k
(2W)2 (2n)2

dpi'(o

—a)5((T-k[ —p),—, —((T-k( —a)

[-,'u'+-,'P+-,'(k- T)']
02(l —l'2)' 0+ IT- k I

—e, (('2+ IT- k I
—e2

oo 2l'dl
(2w}2

.aP11
dp ~ &—(n+1 p)-8(p Io-- l I) —.—(p- ~)(22)' o. /4 4e

[2@2+jp2 (12]2
1+ '

Q P &+/ —&~ Q+ —E2

1
2(27()

I a (I+@2+2 l2 2

dP(P2- nP) 1+ 1 1.c(+P-t, O(+P- ~2

1
2(2w)'

d$
dQ

E

(a+a( —
(@2+P2 1)2dp(p'- c(p) 1+

1
8(2m)'

"d) " 1 1
d'g

q —~,/l q —a2/l
(2(q2+ y2 2)2 ",

dXX 1+
(

2 2)2
(C12)

It can be shown by elementary methods that

.. = ', +12(q' 1)+2(3q' 1) ln (C13)

so that

dg . / 4 2 2 g gI=
8(2 )

—,
(

—
)( )

—,+12(q —1) -2(3q —1) (C14)

in which e„e2-
~

c, ~, ~ &2~ with c„&2&0. The l integration is done by dimensional regularization as follows:
CO

dl ln ' — ~ (C15)
(1+&,/q)(l+&, /q)

=
=4& r((n-1}/2}, 6 —~ -.l+~ /q l+~ /q

r(4 ~)
~(n-2) j2 q

-
e n4 e n-2 1'(22 2)

2I'((n —1)/2) &, —e,
1

+ ' ' ' 2+constants+lnq+O(n-4)1 q~ln&, —q, lng2
4 —fL E2 —6g

-=A+ lnq+ O(n —4)

The integral I now becomes [q- (1/q)]

I=, dq[A —lnq] ———,(1-q') —,(3 —q')(1- q')ln
1 4 12, 2 2 2 1+g

8(2~)', 3 q2 q2

dx —= a" I'(n. - 2)I'(3 —n)) (C(6a(x+a

(Cleb)

(C18c)

(C17a)

dq[A, —lnq] -', —l2+ —(4- q2)ln +—,——,ln1 f x
4 2 ~ 1+q 12 6 1+

8(2v)4 2
2 q 1 —q q' qn 1 —q

(C17b)

To evaluate Eq. (C17b) the following integrals are needed:
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(C18a)

12 6 1+gd)I[A in7I] —,——,ln =6(-,' —A) —6—~1 —g 8
(C18b)

1+@
dqqln =1 p

0 1 ~ g
(C18c)

1 1+/ 7T

dg —ln =—
p

1 —g 4 (C18d)

~ 1 4 1+@ w2
drI(in') ——'g ln = —If(3) ——+-

~Jo q 1 —g 8 2

g is the Riemann zeta function. Plugging Eqs. (C18) into Eq. (Cl'Ib) gives

(C18e)

1
8(2)) )4

4 8m
(A+ l)(~4 12) 2 A+ A+ 14$(3) +—3 6(A ~) 6—

4 8
.(C19a)

' +eonstan(s (2w' ——")- ——14((3)+—', )3 2

Subtracting I at &, = &2 = X and setting n= 4 produces

r~=f r(I')1, ,6. &,1n(e~'/A. ') —e,ln(E, '/X')

(C19b)

(C20)

which gives the desired result when inserted into Eq. (C1lb).
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