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We show how phase transitions in Abelian two-dimensional spin and four-dimensional gauge systems can be
understood in terms of condensation of topological objects. In the spin systems these objects are kinks. and in

the gauge systems either magnetic monopoles or fluxoids (quantized lines of magnetic flux). Four models are

studied: two-dimensional Ising and XY models and four-dimensional Z2 and U(1) gauge systems.

I. INTRODUCTION
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In the present paper we discuss several underly-
ing analogies between four-dimensional gauge sys-
tems and two-dimensional magnets. Our main
purpose is to clarify the meaning of concepts such
as confinement and its relationship with order and
disorder in the system. Most generally we shall
be interested in studying the long-distance behav-
ior, i.e. , long-distance correlations, of these sys-
tems in. order to understand their phase diagrams.
It is well known that most four-dimensional gauge
theories are similar to their two-dimensional. spin
system counterparts in the sense that the renor-
malization-group equations have the same struc-
ture in both systems', they exhibit the same kind
of instantons, ' etc. Explicitly we show a remark-
able analogy between the 3+1 Abelian gauge theory
and the 1+1XF ferromagnet. Roughly speaking,
the long-distance behavior of both systems is sim-
ilar when proper analogous quantities are dis-
cussed. For instance, the behavior of Wilson's
loop integral' (for the gauge theory) is similar to
the behavior of the two-point correlation function in
the XF model' once we recognize that a decay of
the loop integral as the area of the loop means dis-
order in a gauge theory. Ori the other hand, the
XY model has a phase in which the correlation
function falls off at large distances with a power-
law behavior, 4 which is also true for the Abelian
gauge theory.

In general the systems shown in the following
table exhibit analogous behaviors:

We shall restrict our discussion in this paper to
the first two analogies. These analogies were first
pointed out by Migdal, who discussed them in the
framework of his recursion relations. '

The Z, gauge theory, which is a guage theory in
which the degrees of freedom are elements of the
permutations group of two elements, was first dis-
cussed and solved by Wegner. '

All our discussions will be done by putting the
fields on a lattice with the time direction contin-
uous and the space directions discrete. ' In Sec.
II we discuss the transfer matrix, ' a formulation
which we shall use as a tool to build up the Hamil-
tonian form of all the models. Later on in See. II,
we discuss the one-dimensional quantum Ising
model in a transverse field' and we introduce dual-
ity and dual order parameters. ' Dual order param-
eters will be related to the existence of conden-
sates of kinks (in magnetic systems) and magnetic
monopoles (in gauge thearies) which randomize
the system. In Sec. III we discuss the Z, gauge
theory, in Sec. IV the XP model and, finally, Sec.
V is devoted to Abelian gauge theory.

/

II. HAMILTONIAN THEORY OF THE ISING MODEL

A. One4imensional case

We shall begin our discussion with the Ising
model (IM). Identify one of the lattice directions
as the (Euclidean) time axis. We will look for a
limit in which this direction can be considered
continuous. The Ising model in this limit becomes
formally equivalent to a quantum-mechanical sys-
tem with a well-defined Hamiltonian describing a
continuous development in time. The method is
most easily illustrated using the transfer matrix
formalism. '

Let us construct the transfer matrix formalism
for the one-dimansional" Ising model. The action
is
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8=-P Q [v, (i)o,(i+1)+ho,(i)],
sites

(2 1)

where o, =+1 andi runs over all the sites. The
parameter h represents an external magnetic
field. It is convenient to add a constant to the ac-
tion to-normalize the ground-state energy to zero
when h =0. We also rewrite the term proportional
to k in a form which will prove more convenient.
Thus

Now we shall imagine that the axis of the lattice
is the time axis of quantum mechanics. Thus T
carries information from one time to a neighboring
time. We will in fact identify it with the time evol-
ution operator for a quantum system of a single
spin.

We want to take a limit in which neighboring lat-
tice sites are treated as infinitesimal transform-
ations of the form

(2.8)
8= —g I[a,(i) — o(i +1)]'

sites

—h[v, (i)+ o,(i+1)]] .

Define

(2.2)

where 7 is infinitesimal and B is the Hamiltonian.
' Of course this is not true in general [see Eg. (2.6)],
but there exists a limit in which Eq. (2.6) has the
form (2.8). The limit is

Z(z, 2+ 1) = —p([o' (i) —0(i +1)]'

so that

8 = Q &(i, i+1).

(2.3)

(2.4)

aIld

P -~ (low temperature),

Ph-Ae~~ (A, is any constant),
(2.9)

(2.10)

configurations

exp(-8).

The partition function is
Then

(2.11)

II exp[-z(i, i -1)].
configurations, i

— (2.5)
We can write T in terms of Pauli matrices along

on the Hilbert space of the quantum spin

8gh

28 .e Sh)

Z=TrT

(2.6)

(2.7)

where Ã is the total number of sites of the lattice.

It is easy to. see that this is the trace" of the Nth
power of the transfer matrix, T, where the rows
(columns) of T are labeled by the possible config-
urations of the initial (final) member of a neighbor-
ing pair of spins:

T = e x[p- Z(i, i + 1)]

or

T = 1+ (&v, + o, )7''
B=-0 —~0 .1 3'

(2.12)

In taking the continuum limit we must imagine
that the number of sites separating any two times
increases as e'~. This dependence of coupling con-
stant (P) on lattice spacing is a simple example of
the renormalization group.

The correspondences between classical statistical
mechanics and the equivalent Euclidean quantum
system are summarized in the following scheme:

Quantum system Statistical system

(1) Ground state

(2) Ground- state expectation
values of time-ordered
operators

(3) Ground-state energy

Equilibrium state

Averages on the ensemble

Free energy

B. The two-dimensional case

The two-dimensional Ising model will be more
interesting than the one-dimensional case. The
action. of the anisotropic IM is

8 = Q (gP, [o,(r) —v, (r n+, )]'

—p, [o,(r)o,(r +n, )]], (2.13)

where r runs over all the sites of a two-dimension-
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FIG. 3. The equal correlation contours for the sym-
metrical lattice,

Z

FIG. 1. The space-time lattice.

alp'ectangular lattice and n, (n, ) is the unit vector
in the f (z) direction (see Fig. 1). The coupling
constants in the directions t, z are P„P, which are
not necessarily equal. We will not bother with an
external field in this case.

Before dealing with the technical details of the
transfer matrix we will qualitatively describe a
limit in which the t direction becomes continuous ~

leaving discrete the z axis. In this limit the IM
becomes equivalent to a Hamiltonian quantum sys-
tem 'consisting of a one-dimensional (z) discrete
system of interacting spins.

The tao-dimensional IM has a phase transition.
In the space of the parameters P„P, there is a
critical curve which separates the ordered (fer-
romagnetic) and disordered (paramagnetic) phases.
This is shown in Fig. 2. The critical curve is giv-
en by'

(sinh2P, ) (sinh2P, ) = l. (2.14)

We will illustrate the main ideas j.n terms of the
two-point correlation function (o,(0)o,(r)) = C(r)
For P, =P„C(x) has cubic symmetry (symmetry
under rotations by v/2). To illustrate this we draw

the contours of the curves C(r) = const as circles
in the case p, = p, (see Fig. 3). However, in the
anisotropic case (P, &P,) the contours at large r
are deformed into ellipses with major axis along
t (see Fig. 4).

Now imagine rescaling the t axis in such a way
that the ellipses are transformed back into circles. .
This is shown in Fig. 5. In this way we can ap-
proximately compensate the effects of the aniso-
tropy by a rescaling of t relative to z. The form
of. the correlation function in the new model is .

' similar to the symmetric case.
We can repeat this process until we reach a lim-

it in which the lattice in the time direction becomes
dense, This is the time-continuum limit.

C. Transfer matrix for the two-dimensional case

We will now construct the time-continuum limit
in a precise way using the transfer matrix method.
Consider two neighboring rows of spins as in Fig.
6. The spine on the "earlier" ("later" ) row are
denoted by s(n) [o(n)] where n labels discrete loca-
tion along the space z axis. The Lagrangian for
this pair of rows is

2= —' Q [s,(n)- o,(n)]'
n

——' P[s,(n)s, (n+I)+o', (n)cr, (n+1)]. (2.15)
2

The rows and columns of the transfer matrix are
labeled by the spin configurations of both layers.
Since for N spins on a layer there are 2" config-
urations, the 7.

' matrix is 2 x 2~.
The diagonal elements of T are given by setting

s,(n) =o,(n) for all n. Thus

T~,.„,„„=exp P, Q o,(n)o, (n+ 1) (2.16)

FIG. 2. Phase boundary for the anisotropic two-
diinensional Ising morsel.

FIG. 4. The equal correlation contours become ellip-
ses for the anisotropical lattice.
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FIG. 5. The ellipses are deformed back into circles
by squeezing the lattice in the time direction.

(2.17)

T„=exp(-2nP, ) exp[-E(o, s)P,].
Now consider the limit

(2.18)

p op

P 2~t.
g

(2.19)

This limit is similar to that used in the one-dim-
ensional case. In fact the replacement P, —Ph is
natural since the interaction with neighboring col-
umns exerts a field on each spin.

The limiting form of the matrix elements of T
are

T... -1+8 '~~ pa, (n)a, (n+1),

T,
-e~~~ +O(e 4'&),

T, -e '~~+0(e "~),
(2.20)

The off-diagonal elements can be classified by
the number of spin flips [the number of sites for
which a, (n) =-s~(n)]. The single-flip elements are

T, ~, = exp(-2P, ) exp[-E (a, s )P,],
where E(a, s) is the sum of the energy of the two
independent rows.

Similarly the n-flip elements are

of 0, . However, since w is infinitesimal we may
ignore all terms of order -7', v', . . . by comparison
with the order-T term. The result is that the Ham-
iltonian H contains only no-flip and single-flip
terms:

H=-g a', (n)- & go, (n)o, (n+1). (2.22)

The connection between the spacing T and e '~t

provides a quantitative estimate of the amount of
rescaling of t which is required to compensate the
anisotropy when P, becomes large.

The correlation functions will approach the lim-
iting forms of the equivalent quantum system as
P, -~, P, -% ~~. Suppose for example

Ta, (0, 0)a, (n t) I0) =r(n t) (2.23)

for the quantum system. Then in original discrete
integer-valued coordinates of the lattice the cor-
relatiori function behaves like

where
I

(2.24)

X=P e'&t.
g

In particular as Pt -~ the spatial correlation length
[decay length of the function C(n, 0)] tends to a lim-
iting function of A..

In the space P„Pt there exists a set of curves
along which the spatial correlation length is con-
stant. In particular, the critical curve is the curve
where the correlation length is infinite. The above
discussion shows us that for P, -~ these curves
have the form (see Fig. 7)

It is now possible to put T into the infinitesimal
form

J3
~-28)

8 (2.25)

T=1 —TH.

We again identify the quantity e ~t as v—the infini-
tesimal spacing along the t axis:

The parameter ~ can be used to label the curves.
We can relate any point on the symmetric line

P, = P, with a limiting theory by extrapolating along

T= 1+ 7 'A. P a, (n)a, (n+ 1)+pa, (n)

+7 ~, na, m + ~ ~ ~

(2.21)

The Pauli matrices o, have been used to flip the
spin so that the n-flip terms of T contain n factors

a. (n)
~ ~ ~ ~
~ ~ 0 ~

s (n)

FIG. 6. Two neighboring rows of spins.

FIG. 7. Asymptotic behavior of the equal correlation
length curves in the Pt P, parameter space. Each curve
is labeled by a single value of A..
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these curves. The qualitative long-range behavior
is unchanged along a line of fixed ~. The -poirits
on the symmetrical line correspond to different
temperatures of the classical square Ising model.
Thus we can relate each temperature of the iso-
tropic model to a unique quantum model with a
corresponding value of ~. Generally large ~
(small X) corresponds to large P (small P). Thus
we will refer to the large (small) X as low (high)
temperature.

D. Lattice duality

p,, (n) = o, (n + 1)o,(n),

p, (n) = g o,(m).
(2.26)

The operators p, (n) describe the mutual state of
two neighboring 0's. p,, flips all the spins to the
left of the site n.

The 0 operators satisfy the following relations
which s'pecify their algebra completely:.

The two-dimension3l IM and the equivalent one-di-
mensional quantum problem have the remarkable
property of self duality-. ' The dual of a cubic lat-
tice is a new lattice whose sites are located at the
centers of the old cubes. In particular, for a one-
dimensional lattice the sites of the dual lattice
correspond to the links of the original lattice (see
Fig. 8).

The original system can be redescribed by a
new system with degrees of freedom attached to
the dual lattice. For the one one-dimensional quan. —

tum Ising model with transverse field [Eq. (2.22)]
the dual lattice operators are called p. . They can
be written in terms of the original o's:

in terms of the p, 's as

H = —g p, (n) p, (n+ 1)—& g p, (n)

(2.29)

The remarkable thing about the Hamiltonian is that
it has the same form in terms of the p, 's and the
0's. The on).y differences are the overall factor
of A, in (2.29) and the replacement A. —I/A. inside
the brackets. We may summarize this property
by the formula

H(o", X) = AH(lJ. , V') . (2.30)

The self-duality of H is a very powerful result.
It shows that the high-temperature behavior (X &1)
and low-temperature behavior (X &1) are in a sense
equivalent. For example, we can map any eigen-
state of H(A) to a unique eigenstate of H(l/X). The
energy spectrum has the property that if E(&) is the
energy of some state then E(X)/X is the energy of
a related state of H(l/X).

For example, the energy gap between the ground
and first excited states satisfies

G(X) = ZG(I/X). (2.31)

The one-dimensional Ising model with transverse
field is exactly soluble' for the spectrum. ' The gap
G(A.) is given by

(2.32)

which is easily seen to satisfy (2.31).
The symmetry point of the duality transforma-

tion is X=1. From (2.32) we see that the gap van-
ishes at this point signaling the presence of mass-
less excitations and a divergent correlation length.
In other words, the point & =1 separates both the
ordered and disordered phases.

[o',.(m), o&(n)] = 0 for n em,

o,'(n) =1,
(2.27)

E. Order and disorder parameters

o,'(n) =1,

o,(n)o, (n)o, (n) = -o, (n).

(2.28)

From Eqs. (2.26), (2.27), and (2.28) it is easily
seen that the p, 's satisfy the same relations. Thus
the variables on the dual sites are isomorphic to
the original variables.

The Hamiltonian in Eq. (2.22) can be expressed

The duality transformation relates the high- and
low-temperature behaviors of the system. We will
discuss the properties of these phases now.

(1) I ange X (small temPexature). For X»1 the
term P[-Xo,(n)o, (n+ 1)] dominates the Hamiltonian.
The ground state for ~= is doubly degenerate
with all spins parallel either up or down (see Fig.

filK&& ji
Ground State (a)

n-i n n+I
w n ~ e& w r& w r& w rw w vw w gw w

n-I n

~ = Sites of Dual Lattice
x = Sites of Original Lattice

FIG. 8. Dual lattices in one dimension.

Ground State ( b)

FIG. 9. The ground state of the quantum-mechanical
Ising model in a transverse field at large values of A, is
doubly degenerate.
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9). By picking boundary conditions at ~ we may
choose the ground state (a), Then the expectation
value of v, is 1. Defining IO&~ to be the ground
state for given ~ we have

„&0Io,Io&„=1.

More generally

(o,&=,(OIo, IO) x0 (for X&l).

(2.33)

(2.34)

1
=Ho+ —H~. (2.35)

Applying standard perturbation theory we get

Io&, = Io&„+ H,
I
0&„+ ~ ~

0 0
(2.3 6)

H, flips one spin at a time. The state with the nth
spin flipped is called In):

(2.37)

To order X ' we find

~(o,( ) o)~
(0I ( )I0)

A. 2

+ — n 0'3 tB (2.38)

The factor (1-Nj16A.') is the normalization factor
(0 IO)

' to order X~ and N is the total number of
sites. For m en, (n

I
o, (m)

I n) =+1, while for
m=n, (nIo', (m) In) =-1. Thus

N 1 1
( 161' 161~ 16lP

The quantity (o,) is known a,s the order parameter
or magnetization.

That the magnetization persists for noninfinite
~ is not completely trivial. For example, the or-
dinary one-dimensional Ising model is ordered
for zero temperature but not for finite temperature.

To see that (o,&
6-'0 for. large but finite A. we may

apply perturbation theory to see how (o,) changes
with 1/X. For large X we write

H 1—=-g o', (n)cr, (n+ 1) ——g o, (n)

Ising model. There the N dependence does not
disappear and t!he magnetization is not a smooth
function of T for N -~;

It will prove to be interesting to define a dual
order parameter or, "disorder parameter" which
actually measures the degree of disorder of the
o, variables. To do this we perform the duality
transformation on the order parameter, (v,&.

From (2.26) we define the disorder parameter
to be

(6,(n)) = (P rr, (ml). (2.40)

,&0Iv, (n) Io&, =0. (2.43)

0
]q ]i]i]s]g]q]g]i

This object generally vanishes in the ordered phase
and has a nonvariishing expectation value in the dis-
ordered phase. To see intuitively why this is so,
we consider the action of the operator p,,(n) when
applied to a basis state in the 0, representation.
The result is to flip all the spina up to the site n
(Fig. 10). Therefore when applied to a magnetized
state p, (n) reverses the sign of the magnetization
at an infinite number of sites. The resulting state
is obviously orthogonal to the original.

Accordingly for any magntized state

(2.41)

On the other hand, if the state is sufficiently dis-
ordered it may be possible for the state resulting
from an infinite number of spin flips to have a pro-
jection onto the original state.

(2) Small & (high temPeratuxe) The grou.nd state
is that of H, =p„o', (n) for & «1. The o, 's are all
aligned with positive value 1. Then we define the
ground state for &=0 as a state IO)o such that

a', (n)
I 0&o

=
I 0&o (all n). (2.42)

Evidently the average of v, (magnetization) satis-
fies

1
8X2 ' (2.39)

(b)
The important feature of this result is that the

N dependence of the order ~ 2 correction cancels
leaving a finite coefficient. This is true to all
orders and therefore we expect a finite region of
~ to have a nonvanishing magnetization. This re-
sult may be contrasted with a calculation of the
derivative of the magnetization with respect to
temperature for the ordinary one-dimensional

n
]s ](]c]c

(n)10 )

FIG. 10. A kink applied at site n Qips all the spins
&rom-~ up to sitee,
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. (0~)= 0 ((T~) & 0

0

Dual

Transformation

0 1

(o)
]C]L ]L]q]S

(b)
i( ]L ]LL] ~

Kink at Dual Site n Antikink at Dual Site n

Fig. 11. The effect of the dual transformation.

In fact Eq. (2.33) is true for all &&1. This is true
because the transformation

(c)
]L]L]s]S]L,

n

X X
n+1

0'3 ~-0'3,

0'~. 0'~

(2.44)

Kink- Antikink Pair at Dual Site
n and n+1

FIG. 12. Kinks in action.

is a symmetry of H. Unless this symmetry is
spontaneously broken ~(0 le, l0)~ must vanish. Now
consider the disorder parameter for & = O. Since
l0), is an eigenvector of v, [see Eq, (2.42)] it fol-
lows that

,(Ol p, (n) l0)~=1. (2.45)

By the same arguments as in Eqs. (2.36)-(2.39)
we can prove that the disorder parameter is not
vanishing for a finite range of ~:

(0
l

LLL, (n)
l 0), o 0; (2.46)

we summarize these results in Fig. 11.

F. Kink condensates and disorder

In the preceding section we showed, that (p.,(n))
measures the amount of disorder in. the system.
However, we can reinterpret all these results in
an interesting way.

The operator p, (n) acting on an ordered state
creates a, spin configuration which we shall call
a kink. This object has finite energy and the num-
ber of such an object is a conserved quantity. Thus
we can regard these configurations as ma, ssive par-
ticles.

Since a kink configuration is orthogonal to the
ground state in an ordered phase there will be no
kinks present in this phase. However, we know
that if ~ is very large but finite there wiLL be a
finite (and small) number of spine flipped. As we .

see from Fig. 12 a single spin flip is equivalent as
a pair kink and antikink at two neighboring duaL

sites. At lower vaLu~s of ~ there will be blocks
of spins flipped, which are clearly equivalent to
the kink-antikink pairs with some size. If ~ is
large the distance between pairs will be much
larger than the size of the pair. However, as ~
approaches its critical value 1 the interpair dis-
tance becomes comparable to the pair size. Thus
the phase transition is a kink condensation pheno-

]'L i 4] C ]i] LL i L ]&

(a) (b)

iLL ]L i( ig]L, ](]L

X X X X

) =& No Kink
Antikink Pairs

X»I The paired Kink-
Antikink Gas

]LL ] IE

(c)
]L.]i]a ]L] LiL ]L

X X X X X

) = I+ ~ Star ts C ondensation

i LL] IL i i i c ]S ]LL]L ] 'L

X X X X X X

'LL I LL i LL I

X X X

The Pairs are Condensed

FIG. 13. The sequence shows how kinks disorder the
system. The disordered state is the kink condensate.

menon (Fig. 13). Moreover, the kink-antikink
pairs become "ionized" at ~=1 without any cost
of energy.

Kioks have very important features. Unpaired
kinks cannot be present in any ordered phase of
the system since they violate the imposed boundary
conditions. They only can exist in the system

' paired with antikinks (in the ordered phase) or as
a condensate in the disordered phase where the
system ignores boundary conditions. Moreover,
they are topological objects because they are large
perturbations of the system which change the
boundary conditions. Finally they disorder the
system, and above the critical temperature their
presence as a condensate is responsible for the
short range of the two-point correlation function.
Thus, if we are considering (o,(0)o', (n)), an indef-
inite or random number of kinks occurring between
the two points will destroy the correlation between
the two spins.
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III. GAUGE SYSTEMS IN 3+1 DIMENSIONS

A. Gauge invariance

The Ising model studied in the previous sections
has a global symmetry consisting of flipping all
the cr, (n) simultaneously. We call this a global
symmetry because the symmetry operation in-
volves all the spins.

Gauge symmetries"' are local symmetries in
which the operation only involves degrees of free-
dom localized near some point. In this section we
will consider the simplest example of a guage sys-
tem in (3+ 1)-dimensional space- time. We will
call it the Z, gauge system.

Let us imagine a simple cubic lattice in (cf=4)-
dimensional space. The elements of the lattice. are
sites labeled by four integers X= (x„x„x„x,) and
links labeled by a site X and a unit vector n,. point-
ing in one of eight lattice directions. Alternatively
the links can be labeled by a pair of nearest-neigh-
bor sites (X„X,). The spin degrees of freedom
for the gauge system are defined on the links (see
Fig. 14). Each site of the lattice is connected to
eight links (Fig. 15) and therefore to eight spins.
A local gauge transformation at the site X flip all
eight spins leaving the remaining spins unchanged.

I et us now build an action which is invariant
under such gauge transformations. The terms of
the action are identified with the faces or elemen-
tary boxes of the lattice (see Fig. 16).

For each box, define an action

2,.„=-Po, (1)o,(2)o.(3)cr, (4),
(3.1)

2=-P g a', cr, o,o„
boxes

where a,o,a,o, represents the product of spins on
the edges of the box.

Now consider the behavior of Zb, „under a local
guage transformation at X. If X is not a corner of
"box" then none of the spins in Zb, „are flipped and

Zb, „is unchanged. If X is a corner of box then two

FIG. 15. In 3+ 1 dimensions, each lattice site is
connected vrith eight links.

spins are flipped and 8b,„ is again unchanged.
Therefore Z„,„and 2 are invariant under local
gauge transformations. A more general class of
gauge-invariant objects can be formed by consid-
ering arbitrary closed paths of links as in Fig.
17. The products of o, 's on the links forming such
paths are gauge invariant.

Consider the expectation value of any gauge-in-
variant object 1

(I') =g I'(o') exp(-2) p exp(-2). (3.2)
{fy) (ty)

I

The sum P», »
is over all configurations of the o's.

This means that we will add contributions corre-
sponding to configurations which are identical
modulo a gauge transformation. Since both 2 and
I" are gauge invariant we are counting the same
contributions many times. , One way to avoid. that
is to introduce a gauge-fixing condition or con-
straint which selects out from each gauge equival-
ence class a single configuration a. The sum

P», »
can be replaced by

Q N(cT)

where Q»;» means a sum over the unique repre-
sentative of each class and N(cT) is the number of
equivalent configurations to 0. For an infinite
lattice N(o) is infinite but for any finite lattice
N(o) is in fact independent of cr so that restricting
the sum to 0 merely introduces an irrelevant mul-

= Spin.

FIG. 14. The degrees of freedom of the gauge theory
are defined on the links of the lattice.

FIG. 16. The terms of the action are identified vvith

the faces of the four-dimensional cubic lattice.
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B. Hamiltonian form

. As in the Ising case, we will introduce two cou-
pling constants, one for space-time boxes and one
for.space-space boxes. The action for a given
space-time box (see Fig. 19}is

FIG. 17. A closed path of links.
Z =-P,[cr,(1)(r,(2)o,(3)o,(4)]

= -P,[o.(1)o.(3)]

=+ —,'p, [o,(1)—cr, (3)]'—const. (3.4)
tiplicative factor.

In what follows we will impose such a restriction
on the configuration space. It can be shown that
any corifiguration is gauge equivalent to a configur-
ation in which the spins on timelike links are fixed
to be equal to 1. However, this condition does not
determine a unique configuration. Consider an ar-
bitrary configuration of a', 's on spacelike links and

a, =1 on time links. Now consider -a transforma-
tion which is composed of an infinite product of
local gauge transformation-which is composed of a
an infini. te product of local gauge transformations.
The product is over all the lattice sites which have
given spatial location (x„x„x,) and all values of
Euclidean time x4. The relevant sites are shown in
Fig. 18. The effect is to reverse only those spins
on the six spatial links connected to (x„x„x,). In
particular, no time link is flipped. Thus the gauge-
fixing condition

Thus for each spatial link the sum over x4 is an
Ising-type action. We denote the space-time term
of the action by

2P, [(r,(l,x,) - a, (l,x, + 1)]',
(t, x4)

(3.5)

where l labels spatial links.
- The space-space boxes contribute with a term

SS
,asasa'sa's ~ (3.6)

8= g 2P, [o,(l, x,) —o,(l, x, + 1)]'
[t,x4)

,~sas~s~s
SS

(3.7}

where the sum is. over all spatially oriented. boxes.
Thus

o, =1 (time links) (3.3)
The passage to a Hamiltonian formulation is per-

formed by the same limiting procedure as for the
Ising case, namely

does not uniquely define a configuration within each
gauge equivalence class. However, it can be seen
that the number. of configurations satisfying (3.3)
is the same for each equivalence class. Thus im-
posing (3.3) on the configuration sum introduces
a mere numerical factor. Henceforth Eq. (3.3) will
be assumed.

P ao

P -Xexp(-2P, }.
Thus, we find

boxeslinks

H= —g cr, (l) —X g o,o,o,o„

(3.8)

(3 9)

where the sums are over spatial positions only.
As in the previous case of the Ising model the a' s
are Pauli spin operators acting in a Hilbert space.

The Hamiltonian (3.9) has a local gauge invari-
ance as a consequence of the original gauge in-
variarice of the Lagrangian. Consider the spatial

Xg

2

X( Xp Xp

FIG. 18. A time-independent gauge transformation
at spatial site g&, x2 x3).

Space

FIG. 19. A space-time box.
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I

site r= (x„x„x,) and define the operator

G - = Q o', (f,.), (3.10)

X+A.
I

FIG. 20. How to label a link.

where l,. are the six links attached to x. G„ is a
unitary operator which has the following action on
the 0's:

G„'o,(l)G„=o, (l) all l,

G„'o',(l,)G„=—o,(l,.) (l,. attached to r),
G„'o,(l)G„=o',(f) (l not attached to x).

(3.11)

Thus, the action of G„ is to flip the 0, 's linked
to site ~ and leave unchanged all 0, 's. Evidently
the Hamiltonian (3.9) is invariant under G .

It may also be proved that the ground state of
H is invariant under gauge transformations. "
Calling the ground state IO),

0&, (all r). (3.12)

G(~) f(&= ft& (»1~)

(3.13)

v, (l,.) I g&
=

I g) ..

This is very different from the'global invariance
of the Ising model. In that case the ground state
for»&1 is doubly degenerate and the symmetry
transformation takes one vacuum to the other.
The stability of the spontaneously broken symmetry
lies in the fact that it takes an infinite number of
steps in perturbation theory (powers of H, ~-~,)

to mix the degenerate states. This is not the case
here. For example, sugpose the vacuum for
X»1 was all o', =1. The perturbation -Q„.„„,o',

can act six times to flip the o spine linked to (x„
x„x,) thus mixing the ground state with another in
the same class. Thus even for ~»1 the spontan-
eously broken ground state is unstable.

Since we are interested only in gauge-invariant
operators acting on IO) the only states of interest
will also be gauge. invariant. Accordingly we con-
sider as physically interesting only those states
satisfying

so &g fo, I g& =0. Therefore there can be no mag-
netization in any state satisfying gauge invariance.
In particular, no phase transition can lead to a
magnetized phase. Nevertheless we shall see that
a phase transition exists.

C. Lattice duality

In the first part of this paper we demonstrated
the self-duality of the Ising model in the Hamilton-
ian version. We shall now prove that the Z, gauge
system is also self-dual in the Hamiltonian form. '
We shall explicitly construct the variables on the
dual lattice. We show that the Hamiltonian takes
the same form in terms of the original and dual
variables. To carry out this discussion we will
rice a compact notation to label spatial links. A
link may be labeled by a site and a unit vector.
The link (x,n,. ) originates at x and ends at x+n,
where i may be any of six unit vectors. The link
(x, n,.) is evidently equivalent to ( +xn, , -n,.) (see
Fig. 20). The link variables will be denoted by
o(x, n).

The duality transformation turns out to be simp-
lest in a different gauge the gauge we have used
up to now. We define the "axial" gauge by

(3.16)

on those links oriented along the spatial x, axis.
The independent variables in the axial gauge are

the o, 's and o, 's on the x„x, (transverse) links.
The 0, 's on the x, links are defined in terms of the
independent variables by requiring Eq. (3.13) to be

C

Xp

From (3.13) we write

&elo. (f) le&
= &VIG '(~)o.(f)G(~)

I e&, (3.14)

Note that since H is gauge invariant, condition
(3.13) is consistent with the. dynamics.

Equation (3.13) has as a consequence the vanish-
ing of expectation values of all o, (l). Thus con-
sider

I

I

'
l

21

5 ~ (X( X~ X~)

G ', (x)a, (l)G(x) =-o,(l) , (3.15)

where r is one of the end points of the link /. But FIG. 21. The operator 0&(x&, x2, x3, n3) is defined in
terms of the 0', 's on the n,

&
and n2 directions (broken

lines)
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true. This can be done by defining

4
o', (x„x„x„n,) = j[l gl o,(x'„x,x,', n, ),. (3.17)

x'3 ~x3 g=l

where o,(x„x„x„n,) is the (dependent) variable
for the link (x, ,x„x„n,) shown as solid in Fig. 21.
The product is over all transverse links shown as
broken lines in Fig. 21. v, (x,n, ) satisfies the iden-
tity

Xi

X2

i n2

o,(x„x„x„n,) = g o,(x„x„x„n,.)

&«o', (x„x„x,—l,n, ).

The reader. can now easily prove that

(3.18)

A=(Xj, Xp}
6

Q v, (x, n,.) =1 (3.18)
j=1

is an identity. The Hamiltonian in the axial gauge
takes exactly the same form as Eq. (3.9). The
only modification is that the o, (x,n, ) are set equal
to 1 and v, (x,n, ) is defined by (3.17).

Now we define the dual lattice. The sites of the
dual lattice are placed at the body centers of the
original lattice. (centers of cubes). The dual links
pierce the original boxes at their centers. The
dual boxes correspond to the original links .(see
Fig. 22).

Next we must define dual lattice variables p.,
and p,3 on the dual links. Each dual link corre-
sponds uniquely to an original box. The variables
p., are defined by

&) =lI ~so'Sonics ~ (3.20)

Dual Site
(a)

Dual Link

where the four 0., 's belong to the edges of the box.
For the p,3 variables we distinguish the x3.and

transverse links of the dual lattice. For the x3
links the defiriition of p, 3 is 1 since we are working
in the axial gauge. For the transverse link the
definition of p3 is analogous to the Ising case.

In the Ising model the dual variables p3 were

FIG. 23. g& on a dual link is defined as a product
of 0 f s on the solid links .

defined by infinite products of 0', 's from z =-~
to the preceding site. The p3 on transverse links
are again infinite products of 0', 's. To define this
product we note that each transverse link (say in
thex, direction) may be identified with a box of the
original lattice lying in the x~, plane (see Fig.
23).

Now consider the product

II p,, =l all dual sites. (3.22)

(iii) For each dual box the product p, , p,, p,,p,, on
the edges of the box is equal to the 0, on the cor-
responding original link. This, however, is only
true if we impose Eq. (3.13).

(iv) By definition p, , on a dual link equals
63030303 for 'the cor re sponding box .

Thus, it follows that the original Hamiltonian
may be reexpressed in terms of the dual variables
as

p, (n, ) = II o, (x„x„n,); (3.21)
X3 ~x'3

The links included in the product are indic3ted in
Fig. 23 by heavy lines. An identical procedure is
used for p, (n, ) .

The following points can be proved very easily:
(i) On transverse dual links the p, , and p,, satisfy

a Pauli algebra.
(ii) Consider the six dua, l links originating at a.

dual site. Then

dual boxes
P, 3 P,3 P.3 P.3 —~ P.l

dual link

(b)

Dual Face
=~(

dual links

1
P.l —— ~ P,3P,3 P3 P,3

dual boxes

FIG. 22. The dual lattice. (3.23)
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Thus H is self-dual. As for the Ising case the
self-duality relates the physics of & &1 with ~(1.

D. Small g phase

For ~ = 0 the Hamiltonian is

(3.24)

FIG. 25. A disconnected graph.

Now suppose ~ is small but finite. The term

links

H has a well-defined nondegenerate gauge-invari-
ant ground state IO), , such that

&i(«) I0)g=o = Io),=o (3.25)

for all (r, n).
The spectrum of excitations includes both gauge-

invariant and gauge-noninvariant states. These
states are created by flipping the value of o; on

any combination of links. However, the gauge-
invariant subspace sa,tisfying (3.13) corresponds
to special configurations. To construct these
states we begin with an arbitrary closed path of
links. The path may intersect itself and may con-
sist of several disconnected parts but it should
have no ends. Now consider the state obta, ined by
slipping the o s on these links. The result is a
closed path of links with o; =-1. It is evident that
as long as no end points occur then (3.13) is satis-
fied at every vertex. These then are a complete
set of gauge-invariant excitations. The energy of
an excitation for ~ =0 is simply

F =2n, (3.26)

where n is the total number of flipped 01 s.
In addition to the finite-energy excitations there

are a class of interesting excitations whose energy
diverges linearly with the radius of the lattice.
These consist of infinite lines of inverted 0, 's
called strings (see Fig. 24). The simplest such
object is a straight line of flipped spins along one
of the lattice axes.

The energy of such a configuration is proportion-
al to 2n where n is the linear dimension of the lat-
tice. The energy per unit length of such a line is
called-the string tension. For ~=0 the tension is
2

H1 = —~ 0'30'30'30'3 (3.27)
boxes

will cause modifications of the ground state and
' excitations. Evidently the action of H1 on the
ground state is to create closed boxes of flipped
spine (elementary gauge-invariant excitations).
The density of elementary gauge-invariant exci-
tations in the perturbed ground state is -A'. Fur-
thermore, the ground-state energy density is low-
ered. The ground-state energy per site is

g =-3 ——X ——X~+ ~ ~ ~ (3.28)

More interesting is the-effect of the perturbation
on the strings. The perturbation in this case can
act in two different ways. First it can excite an
elementary gauge-invariant excitation on a box
which is disconnected from the string (see Fig.
25).

These contributions are just renormalizing the
vacuum. The other action is to deform the string
by putting in a kink. This happens when the per-
turbatlon acts on a box containing a side on the
string (see Fig. 26). Higher orders in X cause the
string to fluctuate out of the straight line (see Fig.
27). Thus as we let the perturbation act on the
string a large number of times, the string w,ill
start to percolate. - This effect will be more im-
portant closer to the critical point.

The fact that strings at ~ finite are not straight
lines makes ambiguous our definition of the string
tension. We can define the string tension, for fin-
ite values of &, as the energy of the string divided
by N, the linear dimension of the lattice, i.e. , the
original string length.

Now we can see that the whole effect of the elemen-
tary gauge-invariant excitations acting on the string
is just to deform the string as well as to lower its ten-
sion. We find

T = 2 ——'~2 —'-2' &4+ - ~ ~
1536 (3.29)

From (3.29) it appears that T might vanish for
some finite ~. Suppose this occurs. Re argue that
this signals a phase transition. The reason is that
the tension cannot become negative. If it did the

FIG. 24. A stringlike excitation. FIG. 26. The string is deformed by the perturbation.
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LX LL
FIG. 27. The string starts to percolate,

string would lower its energy by growing longer.
The ground state would be unstable with respect
to the creation af infinitely long strings which fill
space. Thus at the point where T vanishes a global
change in the behavior of the ground state must
occur.

If we ignore higher orders in ~ then T vanishes
at about X'=2.1. However, for ~'=2.1 the serieS
is not yet converging. We can improve the situa-
tion by using Pade approximants to extrapolate
(3.29). This gives

1 —0.67&
T 2 x

1 0 42y2 (3.30)

which vanishes at ~-1.22. A more refined method
is to compute thb logarithmic derivative of T and
use Pade approximants" to determine the pole of

1 dT = ——'(1+1.1A.'+ ~ ~ ~ )T cjA,

1 1
pave 4 1 —1.1A.2

(3.31)

The pole (zero of T) occurs at

A, = 0.912. (3.32)

E. Large& pham

Now consider the limit »&l. We write

0'3 1 0'3 2 0'~ 3 0'3 4 —— 0'~. 3.33
H 1

box links

For X=~ the second term of (3.33) may be ignored.
In this case the ground state is determined by the
term

The exact position of the phase transition (assum-
ing one occurs) must be at A. =1. This is because
of the self-duality relating ~& 1 and ~&1. However,
the self-duality does not tell us whether the trans-
ition is first order or second order. The apparent
vanishing of T for ~=1 strongly suggests a second-
order transition.

of (3.34) unchanged. Thus, there is a degeneracy
due to the non-gauge-invariance of the state o, =1
(all r).

In the Ising model an analogous condition occurs
for ~= ~. Here the ground state is twofoM degen-
erate. -This is connected with the global Z, invari-
ance. There is, however, an important difference
between the models In the Ising case, the two
vacuums cannot mix in any infinite order in per-
turbation theory in & '. In other words, it requires
an infinite number of spin flips to go from one to
the other.

In the 8, gauge case, a gauge transformation flips
only six spins. Therefore, to go from one degen-
erate vacuum to another requires only six orders
in ~ '. Accordingly sixth-order perturbation theory
lifts the degeneracy.

The correct vacuum for ~=~ is a gauge singlet.
It is formed by superposing symmetrically the
state o,(r) = 1 with all its gauge-related counter-
parts. Of course for all gauge-invariant quantities
we can ignore this subtlety and use the state v, (r)
=1.

The lightest excitations of the ground state for
A = ~ are given by applying o,(link) on some link.
This flips the corresponding o, .

To give a gauge-invariant description of these
excitations we must specify the values of some
complete set of gauge-invariant functions of the
o, 's. Most simply we can give the value of every
box variable o,(1)a,(2)o,(3)o,(4) or equivalently p, .
For example, suppose we apply o,(link) on.the link
shown as the heavy line in Fig. 28. This operation
evidently inverts the four box variables on the four
boxes containing the link. These are shown in the
figure by unbroken light lines. The four boxes can
be identified with four links of the dual lattice
shown as dashed lines. These four dual links form
a closed loop. Thus the resulting excitation is a
closed ring of flipped p, , 's dual to the excitations
of the ~=~ ground state.

rt-~
I

I I

box

0'30'30'30'3. (3.34)

The lowest eigenvalue of (3.34) occurs when all
03 1 However, the ground state is inf initely de-
generate. To see this consider a gauge transform-
ation on the state with v, (r) =1. Such a transform-
ation flips various 0, 's but always leaving the value

FIG. 28. An excited link (in dark) is dual to a box&
with inverted flux (dotted line).
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FIG. 29. The string is dual to a tube of boxes with
inverted Qux.

Next consider the dual of the infinite line of in-
verted o, 's. These excitations should be lines of
boxes with the box product 0,0,o,o, =-l, namely
lines of inverted p, 's (see Fig. 29). The small
~ excitations are lines of inverted 0, 's. A line of
inverted 0, 's is dual to a half plane of inverted
p3, as is shown in Fig. 30. However, this state
is not gauge invariant. We can get a gauge-invari-
ant state dual to the line of inverted 0., 's if we not-
ice that, 0, is a gauge-invariant operator dual to the
box product p,, p,,p.,p., which is a gauge-invariant
operator too. Thus the dual statement to o, =-1
is p,, p,, p,, p,,=-1 on the boxes which is dual to the
link with an inverted 0, . Therefore a line of boxes
with the box product 0'30'30'30'3 = —.1 1s a gauge-in-
variant state which is dual to the line with p, , =-1.

FIG. 31. A closed loop on the lattice.

ever, Cr(R) will depend in general on the details
of the loop F. But we shall be interested only in
its asymptotic behavior as 8 - . In this limit
we shall want to know if there is a phase in which
Cr(R) is asymptotically constant (this should be
an ordered phase) or what kind of decay it exhibits
as R —~ otherwise.

We shall show that Cr(R) exhibits two different
behaviors for ~ large and small although there is
nothing like an ordered phase behavior in both
cases.

The asymptotic behavior is

F. Correlation functions

In the preceding sections we stated that only
gauge-invariant operators will have a nonvanish-
ing expectation value. Thus it is clear thai the
two-point correlation function vanishes identically
since o,(r, n)o, (r', n') is not a gauge:

(a, (P, n)o', (r', n')) —= 0 (all A). (3.35)

What we need is a suitable definition of the correla-
tion functions.

The correct object to study is the ground-state
expectation value of the product of 0, 's along a
closed loop" on the lattice (see Fig. 31). Let
us call Cr(R) such a magnitude for a, loop 1" with
typical size R. Since Cr(R) is a gauge-invariant
quantity it may have a nonvanishing value. How-

C,(R)
exp(-A), X &1

exp(-P), ~ & 1
(3.36)

where A and I' are the area and the perimeter of
the loop. Clearly e " is analogous to the exponen-
tial decay in Ising-type systems and therefore we
regard the ~&1 phase as a disordered phase. How-

ever, the phase»l is not ordered since C~(R)
vanishes as R -~, but it decays much more slow-
ly than in other phase. It is clear that the phase
transition is not order-disorder, but it is a change
in the behavior of the correlation function.

It is easy to understand the behavior of the ~&1
phase. Since the unperturbed ground state ~0)
is orthogonal to the state II„,',o, ~0), then at zeroth
order in perturbation theory

=0, ~=0. (3.37)
I

~01$~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ IO ~ ~ ~ OO ~ ~I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ 0

I I I I

However, we may get a nonvanishing result if we

go to some higher order in perturbation theory.
The lowest order needed to get a nonvanishing re-
sult is equal to the least number of elementary
loops enclosed by F, which is exactly the area of
F. Thus

o. = —
I

l (R) yn 8-nIinXIr (3.38)

FIG. 30. A half plane of inverted p, 3 is dual to the
string, although is not a gauge-invariant state.

for the lowest order in ~. Here n is the area of
F and ~& 1.

Let us consider the other behavior, ~&1. Now
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the operator IIro; just counts the number of in-
verted spins along the loop I". More precisely,
it coun-ts if there is an odd or even number of in-
verted o, 's.

The ground state at first order in ~ ' is

1
)x (1 &Ng-2)1/2

x, 0 -g~+~& n
boxes

(3 39)

where in) is the state with all the boxes with flux
(v,v, o,o,) equal to 1 but the nth box with flux -1.
Then

g(r, ~0)~-g= i0)~-i + p X ' Q ~n)
r boxes

unlinked
to I'

—2~' Z In) 1 N~-2)&g. (3 4o)
boxes + 4
linked
to I'

A box is considered to be linked to the loop I' if
its inverted spin lies on I'. There are four linked
boxes per spin flipped lying on 1".

Thus if 4n is the number of boxes linked to 1",
we can write

Boundary of inverted links

FIG. 32. The kiriks of the Z2 gauge theory in 3 + 1 di-
mensions are lines of inverted links which are closed at
infinity.

the system. These kinks change the behavior of
the correlation function when they condense. They
play here exactly the same role as in the Ising
model. in the strongly coupled phase (A, & 1) they
are massive. However, at the critical point they
become massless and therefore they condensate
randomizing the system. It is clea, rly seen from
their definition that they are large topological
objects which change the boundary conditions and
cannot be removed by any finite number of spin
flippings.

1
(1+-,'NX ') '

Cr(R) =—1 —2n& ' —= e '"~

(3.41) IV. THEXYMODEL

A. Construction of the Hamjltonian

But if P is the perimeter of F, we have n =P.
Then

2P
Ce pe ) —= exp (- (3.42)

which is the "perimeter decay" behavior. There-
fore we can regard the phase transition as a change
in the behavior of the correlation function since it
decays exponentially as A for ~&1 while as R' for

We can understand the perimeter behavior as a
boundary effect. However, as ~ is decreased more
and more box fluxes may be inverted, and when ~
is close enough to the critical value 1 the regions
with inverted flux become of the same size of the
area of I". Thus a boundary effect is turned into
an area effect. These large regions of inverted
flux have boundaries which are lines of flipped
spins. Near the critica, l point long lines of in-
verted spins go through the loop (see Fig. 32).
These lines are closed at infinity and they are
topological objects which cannot be removed from

t cos r — r+nt

—g P, cos[Q(r) —Q(r+n, )]. (4.1)
r

Evidently the action is minimized by configura-
tions in which all the spins are parallel as for the
Ising model, although this state is not unique.
However, unlike the Ising case the degeneracy is
infinite corresponding to the continuously. variable
direction of magnetization. The fact that the de-

In the next systems we shall study, the symmetry
operations, both global and gauge, are continuous.
The group Z, is replaced by the continuous rotation
group 0, . The first example with 0, symmetry is
the two-dimensional XY model of a, magnet. 4 At
each site of a two-dimensional square lattice there
is a unit two-vector, a, described by an angle
Q(r). All physical quantities are pe'riodic in Q.

The interaction between sites is of the form
o(x) ~ o(x+1) or cos[Q(r) —Q(r')]. Thus for an an-
isotropic lattice the action is defined as
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. 4(r) —4(r+s, ))-p, cosa
a (4.2)

As p, -~ the important values of (t(r) and (j)(r+n, )
will be those for which Q(r) —p(r+n, ) -0 as 1/p„
which is equal to a. Thus we replace (4.2) by

(4.3)

We may of course ignore the constant term. The
sum over space-time location may be approximated
by

Thus the timelike terms in a are replaced by

generate states are infinitely close to one another
makes the two systems essentially different. This
will be evident when we discuss the long-range cor-
relations in the system.

To construct a time-continuum limit we can fol-
low the method used for the Ising case. The same,
result can be obtained from a simpler and more

, familiar argument. Let us first allow P, - . We
also introduce a time lattice spacing a which in the
present case behaves like 1/P, . The reason for re-
scaling the time direction is again to make the the-
ory finite as P, -~.

We write the time-like term as

(4.9)

- where L is the canonical momentum conjugate to
Quantum mechanically it satisfies

[I e44)] g (s4441 (4.10)

Since the variables P are periodic it follows
that L has a discrete spectrum which consists
of all the integer numbers.

B. Large- &behavior

For X large the term -AZ cos[(t)(z) —Q(z+1)]
forces the field p to b'e very smooth. For the
low-energy configurations the field differences
at neighboring sites will be so small that we may
expand the cosine. Thus

gL(z)'
2

&[y(z) —y(z+1)]' &[y(z) —y(z+1)]'
2 4f

+ ~ ~ ~ (4.11)
I

For the lowest-energy states it is a good approx-
imation to truncate the series af ter the second
term. To see this explicitly a change of variables
will be useful. Define

(p, a) (4 4)
U= )('~4y

P=~ "4L
(4.12)

The space terms can, be written

a —cos r — r +Pc,
r

(4.5)

Evidently U and P are conjugate variables. In
terms of the new variables H becomes

If P,P, is allowed to remain finite as P, -~ then

P,/a is a constant & and (4.5) becomes

X" iH= — Pz + Uz —Us+1

dt g cos[(t'(r) —(j)(r+n, )]. ( (4.6)
1

(II(r) —U(s+1)]'+ .
)

. (4.14)

Thus the full action is

rr =+ dr Q —1 cos(4'(r) - 4(s+ ())).
4'(z)'

(4.7)

In this case the trajectories in P„P, space cor-
responding to time-continuum limits are hyper-
bolas

(4.8)

Finding the Hamiltonian from (4.7) is just the
usual problem of passing from the Lagrangian
to the Hamiltonian in mechanics except that the
time variable is Euclidean. Thus we obtain

I

(4.14)

which can be written as

II s*p S.r. (&(II) —&(r)i 4) (4.15)

We will approximate this quantity by the corre-
sponding free field value defined by truncating
(4.13). For a free field we can write

In this form it is plausible that the quartic and
higher terms can be neglected for the lowest-en-
ergy states. It is also evidently useful to rescale
the energy so that ~ ' 'H becomes the new energy.

Let us consider the ground-state correlations
(vacuum expectation values) defined by

(0 ~e4(4(0)& i(I(s) ~0}-
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0 exp „,[P(0) —P(e)]} 0):

=exp —,z, 0 U0 —U g 0, 4.16

/'/'/'/'/'/'/'/'/'/'
f t t t t t '! t t I f

Z

FIG. 33. The kink creation operator rotates all the
spins from - up to site & by the same angle@ .

and for large z one easily finds

&0 I [U(0) —U(z)]'10 = const x 1

Thus the correlation function behaves like

Thus define

Kz(z, ) =exp ifP L(z)
SgÃp

(4.21)

(4.17)

Thus for large X the correlation decays as a
power of the distance. ~ This type of behavior is
somewhat unusual. Qn the one hand, the fact that
the correlation goes to zero implies a lack of in-
finite range order or what is equivalent, no spon-
taneous magnetization. On the other hand, the
order is not of the usual short-range type which
decays as an exponential. Note that the power
behavior depends on X.

C. The small-&behavior

For the limit X-0 the dominant term in H is

g L(z)'
2

(4.18)

and the ground state is the product state annihilat-
ed by each I.(z):

L(z) ~0)=0 (all z) . (4.19)

For this ground state the correlation function is
identically zero for any nonvanishing separation.
This is because exp'~' ' increases the value of
I.(0) by one unit which is not compensated by
exp[-i&t(z)] if z wO.

For small X we may use perturbation theory
to compute the correlation function. To get a non-
vanishing contribution to the correlation the per-
turbation must act at least z times. Accordingly
the correlation will behave like

8 -I lnXI g (4.20)

D. Kinks

We have seen that the X» 1 phase is riot charac-
terized by a nonvanishing order parameter. We
will now show that a dual order parameter exists
which also vanishes for X»1 but which is non-
zero for X» 1. The existence of this dual order
can be used to characterize the phase transition.

For this phase the correlation decays in the con-
ventional way of a disordered system. The energy
spectrum for small X consists of a ground state
and massive excitations created by applying the
operators exp[i&(z)].

&0 IK,(z) io& (4.22)

is a suitable parameter to describe the phase
transition and since it is related with the dual
of the XF model, we call it the dual order para-
meter. Let us consider first the larg(e-X phase.
We calculate the correlation function

&0 [K~(s)K*(z)
[ 0) = C (z —s), (4.23)

where z) s, and we want to compute this function
in the limit ~z —s

~

» 1. In order to carry out this
calculation it is useful to make a spin wave ex-
pansion of the field p(z) . . I.et a'(k), a (k) be the
creation and destruction operators of a spin wave
of momentum k and let ~~- ~k

~
be the dispersion

relation for small k. Since

Z(z) = y(z) = ~'"L(z)

we get the following expansions for p(z) and p(z):

{I)(z)= [a'(k)e'"+ a (k)e '"],dk

)t(d,

(t}(z)= -i dkv &@~[a'(k)e'~' —a (k)e '~'].
(4.24)

The magnitude we want to compute is

04{x-e}=(0 exp „, Q 0(x) . 0), (4.25)
if

S cXC

which is the same as

z

C&(z —s) = exp —,~, 0 g (t)(x) 0 (
) free f ield

(4.26)

for the same arguments given above.
After some algebra one finds that the leading

contribution to

(4.27)

I.et us consider the action of this operator on
the classical ground state for which {t}(z)=0. Since
L(z) and ({()(z) are conjugate, K& rotates all the
spins for z& z, by angle f (see Fig. 33).

We shall now show that
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as L = ~z —s
~

to infinity is

(
&L

0 g Q(x) 0 =81n
p&g& I free 2

(4.28)

then the correlation function Cz(L) falls off as

c~(c)=exp(- „,ln—

= const & L Z/2
(4.29)

(0 ~Kz ~0)'=lim Cz(L) =0. (4.30)

However, the behavior of the correlation function
is not of the type for a disordered phase, i.e. ,
exponential decay.

Let us finally consider the small-X phase where
(0~K&~0) is finite. Since the ground state for A. =O

verifies that L 0)=0 for all lattice sites, it is
clear that

in leading terms in L. This means that the order
parameter (0 ~K&(z) ~0) is exactly zero in this phase
since

V. ABELIAN GAUGE THEORY

A, The model

As in Sec. III a simple cubic three-dimensional
lattice replaces space. Time is continuous. The
degrees of freedom are attached to the links 4 and
consist of planar rotators or phase angles p(r, n).
The conjugate variables L(r, n) [= -L(r+ n, -n)]
have integer spectrum.

The Hamiltonian for this system is given by the
sum of hvo terms which we call electric and
magnetic,

2

Ifelectrge ~ o L(ri n)
links ~~

(5.1)

where g is a dimensionless coupling constant and
a is the lattice spacing in some arbitrary units.

The magnetic term is a sum of interactions,
each associated with an elementary square box of
the lattice. Let us consider a given box as shown
in Fig. 34. The sides of the box are labeled 1, 2, 3,
4 and are thought of as oriented. The magnetic
interaction for this box is given by

(4.31)

at A. =O. Once again we may ask the question: Is
it nonzero only at X=0 or is there a finite neigh-
borhood of &=0 where (0 ~K& ~0) has a nonvanishing
value? This question can be answered by com-
puting (0 jK& ~0) in perturbation theory.

The calculation gives the result

, cos[P(l)+ p(2)+ Q(3)+ Q(4)].ag',

Thus the Hamiltonian is

L( -)2

cos[p(1)+ ~ ~ ~ + p(4)] .
1

bpxes g

(5.2)

(5.3)

(0 iK& i 0) = 1 ——,'X2(1 —cosf)+ O(X') (4.32)
B. Gauge invariance

for the lowest nontrivial order in perturbation
theory. Since the coefficient of X' is finite we
argue again, the same as in the Ising model, that
(0 ~Kz ~0) is not only nonzero at &=0 but it has a
nonvanishing value at a finite neighborhood of X=O.
This result makes it impossible to have a first-
order phase transition in X at X= 0 as is the case
of the one-dimensional Ising model as a function
of temperature.

As a conclusion we summarize the results just
obtained drawing a qualitative picture of both
phases. For large A. the system has massless
spin waves and exhibits an almost-ordered phase
in terms of the original system. In this phase
the system has heavy kinks. Qn the other hand;
for small ~ the spin waves become massive and
'the kinks become massless and, what is much
morA important, they condense giving rise to a
nonvanishing dual order parameter (0 ~Kz ~0) which
characterizes the phase.

g(fo~ n& eig(rO'n +iX (5.4)

These transformations are expressed as unitary

4]N 5/2

FIG. 34. The magnetic terms are associated with
the boxes.

For each site of the lattice we can define a gauge
transformation which rotates the phase angles of
all six links radiating from that site. Thus
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operators

G(4o)=exp i&Qf (r„n,) (5.5)

- Q I.(r„n,) l g& = 0.
i=i

(5.6)

The Hamiltonian is invariant under these trans-
formations. Furthermore, as in the Z, gauge
theory we will consider the physical space of
states to consist of the gauge-invariant states.
Froxn (5.5) we see that a physical state is defined by

Later we will see that this is the lattice form of
Gauss's t.aw V' E =0. It is easy to show that for
any gauge-invariant state the expectation value
of e'~'""' vanishes.

Moreover, the two-point correlation function

(P eiLe(oin) 4(R, n)1
lP&

vanishes. The vacuum is defined to be a gauge-
invariant state lp) where we have lp)= G lp) for
all G. Thus

(o le"&'"'e-*" "'lo&=(o lG '(o)e"""'G,(o)G -'(o)e-"&R ")G,(o) lo&

(0 lee&4(O, n)eX')e-ie(R, n) Io) (5.V)

for all values of X. Equation (5.8) implies that"

(P leis(o'")e &4&R n) lP)=0 . (5.9)

This means that the two-point correlatio'n
function is not the right object to look at.
Again, as in the Z, gauge theory, the correct
magnitude is the loop integral, namely

since I and (t) commute at different lines. Then

(P le&i)&o'n)e- 4(R'I)
lP) =e'x(0 le'e)(o, n)e-is(R, n) lo&

)

(5.8)
A (r, n) =—y (r, n)

ag

and the conjugate electric field E(y, n),

E(r, n) = —,f, (r, n),

so that

LA(r, n), E(r', n')]= —,lS„- -„, 6;;,

The Hamiltonian now takes the form

(5.12)

(5.13)

(5.14)

exp i (5.10)

where Z„(r) means the sum of all the angles &t) over
all the links lying along the closed loop 1.

Following Qlilson's criterion. ' we calculate

p2H=a'. Q (link)+a' Q, (Q A)
links ' boxes 2a

,s g oa' ( rA), O( 4)
boXes 4' (5.15)

where I' is an elementary box of the lattice. For
the long wavelengths we can approximate

0 expi. 0, (5.11)
\ a' P- d'x

which is known as the loop integral. %'e shall
show that this function is able to distinguish
between two phases. First of all as the opera-
tor (5.10) is gauge invariant (5.11) may not be
zero. Furthermore, we shall show that in the
small coupling phase it decays as e '"' ""and
in the large-coupling phase it goes as e "in
agreement with the results already discussed in
the Z, gauge theory. In addition we shall see a
remarkable parallel between the behavior of the
3+ 1 Abelian gauge theory and the 1+ 1 XE' ferro-
magnet.

4

C. Small-g phase

As in the XF model we have to rescale the vari-
ables in order to describe the small-g phase. Thus
we define the components of the, vector potential

—gA-VxA
0 r

(5.16)

The long-wavelength physics is approximated
by the continuum field theory

a = —,
' a'x[E'(x)+ (V )& A)']+ O(g'a') . (5.17)

C„= 0 T expig A dl 0 (5.18)

Thus the first two terms define conventional free
field electrodynamics and the higher-order non-
.renormalizable term's are believed to be unim-
portant for distances very much larger than the
lattice spacing.

We now would like to calculate the loop integral
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for a circular path I' of radius B.
It can be easily proved that

In the limit@- ~ the vacuum state ~0) is de-
termined by the first term in the Hamiltonian and
therefore satisfies

g 2

C~=exp — 0
2

[A(l) dl][A(l') ~ dt'] 0)I, L(r, n) ~0) =0 all links. (5.26)

(5.19)

where A(I) indicates the vector potential at the
point l along the closed curve.

Since C~ is gauge invariant we choose to evalu-
ate (5.19) in the Feynman gauge. The free field
propagator is

(5.20)

The integrals can be most easily evaluated de-
fining angular coordinates on the circle. The
final result is

The second term will be treated as a perturbation
and it wBl excite boxes with circulating electric
flux. This phase is very similar to the small-X
phase of the Z, gauge theory. Here we have stable
lines of electric flux whose energy is proportional
to their length.
e shall now calculate the loop integral in this

phase. As in the Z, case the lowest contribution
in powers of I/g~ is proportional to (I/g )", where
N is the number of boxes of the minimal surface
bounded by the loop.

Thus

A

C~ = const& —
4

Cr=exp —
4 2 I (5.21)

= const x e ~" '~ (5.2 7)

where I is the integral

21'I=-j. cos(e, —62)
sin'[(8 —9 )/2]

However, I is singular since the integrand has
singularities at 8, —6I2=0, 2m. Thus the integral
has to be cut off by constraining both angles and
angular differences to be larger than a/R. With
this cutoff procedure the integral I can be ex-
pressed as

RI=+ 2 ln —+0
2m+

+ const (5.23)

for R»a.
Thus the loop integral has the asymptotic form

I

const g'R

(ft/ )(d 2/2 ll'2] 2](a (5.24)

This is essentially a perimeter law modified by a
falling power at large distances. This is very
similar to tPe behavior of the XY model. In both
cases the asymptotic behavior at large distances
of the correlation function is a power-law modifi-
cation of an ordered-phase behavior.

D. Large-g phase

To study the g» 1 phase we write the Hamiltoni-
an,

aH' =—2II

E. Monopoles

The loop integral'characterizing the two phases
can be rewrittin, for small g, as

exp ig 8 do 0, (5.28)

where the integral indicates the total magnetic
flux passing through the loop. The phase trans-
ition is caused by the increasing large scale fluc-
tuations of the magnetic flux which randomize the
integral for arbitrary large loops. The source
of these fluctutations can be traced to the conden-
sation of magnetic monopoles. "

We shall first discuss what is a magnetic mono-
pole on a lattice. Following Dirac'7 we define a
magnetic monopole of the field configuration cre-
ated by an infinitely thin solenoid with one end
placed at infinity. To define a monopole on a lat-
tice" we embed the solenoid along the Z axis with
the finite end at the center of a cube.

The monopole is described by the classical vec-
tor potential A„(r —r,), where r, is the position
of the monopole. The classical lattice monopole,
Fig. 35, is defined by assigning a phase to each
link according to the rule

where A is the area of the loop.
We have seen that for weak coupling the correla-

tion function behaves as e '"' ""while here it
is e ". These two behaviors characterize two
different phases of the theory which must be sep-
arated by a phase transition.

(r, d) ——I cos(P„A). (5.2l)L
I inks 'g boxes box

r+n

A„~ dl (5.29)
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/

~ I l~

/ I

)

FIG. 35. The classical lattice monopole.

z .,=, P 1 —cos(&PI (5.30)

where we have subtracted the energy of the clas-
sical vacuum. The (1/g)Eg is the flux E of the
classical field through the box. I.et us divide the
energy into two parts, a term for those boxes
through which the solenoid passes and all others.
For the first class of boxes the flux per box is
just the total monopole charge p. . The energy.
stored in those boxes is

L, [1—cos(p,g) ],ag2 (5.31)

where I. is the length of the solenoid in lattice
units and it is infinite.

Accordingly the magnetic monopole energy can
be finite if

Let us consider the magnetic energy of the clas-
sical lattice monopole. Since the field is static
there is no electric contribution to the energy
(Z =A). The magnetic energy is

vacuum. For this purpose we write

M'= exp, i A,'", ' E(r)d'r

The'electric field can Qe expanded in creation and
annihilation operators for free photons and the
expectation value can be computed to be

(0 ~M'(r)
~
0) = exp ——,

' A'„( r)A~„(r ')

and therefore

(5.35)

For weak coupling the order parameter
(0~M'(0) ~0) vanishes, but for g-~ we have seen
that it is equal to one. To show that it is con-
nected to a phase transition we have to show that
the order parameter is nonzero for some range
of the coupling constant. To test this statement
we have to compute the derivatives of (0 ~M' ~0)
with respect to 1/g' by strong-coupling perturba-
tion theory. If these derivatives axte finite we can
say that in the neighborhood of g= ~ the ground-
state expectation value of M' is nonzero. Indeed

&& (E'(r)Z'(r '))d'r d'r '

(5.34)

Explicit calculations with free fields show -the

exponent to be logarithmically divergent of the
volume. This result is analogous to the behavior
of the kink creation operator in the XF model.

Next let us consider the behavior of this quantity
i,n the g»1 phase. For g=~ the vacuum state
satisfies

I.
~
0) = 0 all links

p,g = 2'&. (5.32)

This is the famous Dirac quantization relation"
which in the lattice formulation expresses the
condition of the energy of the monopole ta be fin-
ite.

In order to define the monopole condensate phase
(g» 1) it is convenient to introduce a monopole
creation operator M'(r, ),

M'(r )=exp i g rf&„(link)1(link)
links

(5.33)

This operator has the effect of translating the
phase of every link by an amount p„. Thus it also
shifts the magnetic Qux on each box by E„. Acting
on the vacuum of the samll g phase it creates a
state with a monopole with position V.o.

Let us consider (0 ~M'(r) ~0) in the weak-coupling

IVI onopo I e

I

/

/ z
rQr ]

/

/
/.

/

~Loop

FIG. 36. A loop and the Qux of a nearby monopole.
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strong-coupling perturbation expansion gives the
result

(0~M'~0)=l —,g [I —cosE(box)]
1

64g

(5.36)

This result shows that for g» I the system looks
like a monopole condensate with a finite monopole
density. In the large-g phase the loop integral
C~ has the asymptotic behavior

C„-exp(—area, ) .

We can now understand this result as an effect

due to the monopole condensate. In fact monopoles
near the loop will change the phase of the loop
integral in about m per monopole (Fig. 36). In the
phase where the monopoles form a condensate,
they will change the loop's phase wildly or, what
is the same, they will randomize the loop integral.
The total effect will be to make the loop integral
fall off very fast. Thus, the phase in which mono-
poles form a condensate is the disordered phase
of the system.
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