
P.HYSICAL REVIEW D VO LUME 17, N UMBER 10 15 MAY 1978

Canonical quantization of non-Abelian gauge theories in the axial gauge
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Physics Department, Yale University, New Haven, Connecticut 06520
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We explore canonical quantization in the axial gauge, with special reference to the problems of (i)
additional gauge fixing; and (ii) the infrared infinities which occur in eliminating the dependent variables.
We show that the freedom inherent in (i) permits the removal of (ii), resulting in a Hamiltonian with no
explicit infinities, generating the proper equations of motion. This does not me'an, however, that all

matrix elements of the Hamiltonian will be finite. In particular, the bare-vacuum-expectation value of H
still contains an infrared divergence.

. I. INTRODUCTION

The Coulomb gauge in non-Abelian gauge theo-
ries has been coming under attack recently, prin-
cipally on charges of ambiguity' and of discontin-,
uity' in the time evolution of the potentials. It is
still not clear whether these apparent difficulties
render the Coulomb gauge inappropriate for the
formulation of non-Abelian theories, or whether
they can in fact be used somehow to achieve a bet-
ter understanding of the physical phenomena in-
volved. ' If one inclines to the former view, then
one is led almost inevitably to consider the class
of so-called linear gauges, ~,4~=0 with n, space-
like, since only for them does the source of am-
biguity pointed out by Gribov fail to make an im-
mediate appearance. It is the purpose of this
paper to examine the ca,nonica, l quantization of
non-Abelian gauge theories in the axial gauge,
A3=0.

The gauge A;=. 0 in non-Abelian gauge theories
was introduced by Arnowitt and Fickler' because
the constraint equations were thereby considerably
simplified. Shortly therea. fter, the problem of
quantization in the axial gauge was studied brief-
ly by Schwinger, ' who commented that his proce-
dure was incomplete for two reasons (i) The
Hamiltonian density contained a, nontrivial infin-
ity, and (ii) the gauge was not completely spec-
ified, since the freedom still existed to make
gauge transformations independent of z. In fact,
these two problems a.re related because the in-
finity is proportional to the generator of the trans-
verse gauge transformations, Q,'(x, y).

More recently, Mandelstam' observed that the
condition for finiteness of the energy density is
violated by the bare vacuum:

Q;(x, y) i 0)b„,c 0,

lim U(x, t) =1
ill ~ ~.

and considering what happens as ~x~ proceeds to
infinity in the z direction. However, there seems
to be no compelling reason for imposing this boun-
dary condition other than for convenience, espec-
ially since the gauge transformations and the po-
tentials they act on are not observable. Instead,
we shall impose bounda, ry conditions on the field
strengths and fermion currents,

lim E',„=0,
I xl ~~

lim J' =0,
I xl ~~

(1.la)

(1.1b)

where, as usual,

In the Abelian case this problem is easily solved,
but i,s much less tractable in the non-Abelian ca,se.
Mandelstam conjectured that there is a close re-
lationship between rendering the energy density
finite and understanding confinement. '

The approach in this paper will be somewhat dif-
ferent. Instead of imposing Q;= 0 as a condition
on the states, we shall make it into an operator
equation. This represents a, constraint on the
system which one does not ordinarily have the
freedom to impose. However, in this case, the
additionai'freedom comes precisely from the abil-
ity to' fix the gauge further by making transverse
gauge transformations.

Before proceeding, a word about boundary con-
ditions: If the general gauge transformation is
represented by a matrix U(x, y, z, t), then the
transverse subset is given by those independent of
z: U, =U(x, y, t). One can eliminate these altogeth-
er (and hence also the possibility discussed in the
preceding paragraph) by imposing the boundary
condition

and set about to construct a modified vacuum state
for which the energy density would be finite, and
which consequently would represent an infinite
improvement over the perturbation theory vacuum.

and

ga +gyabc~b ~c
V V g V

O'„= Py„-,
' vP.
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Here the f'" are the structure constants of the
gauge group of the theory.

Since the Hamiltonian density [cf. Eq. (2.8) be-
low] contains the terms

z(E' E'+ B' B')+A»J»,

(is„y'- m)g= —gA'„y'(-,'X')g.

The canonical. momenta are given by

.(2.3)

(2.4)

these boundary conditions are motivated by the
desire to avoid infrared infinities in the Hamil-
tonian.

One can deduce from Eq. (l.la) that A; must
tend to a pure gauge transformation as ~x~ tends
to infinity. Hence, one would expect that by means
of a gauge transformation, A; could be made to
vanish as ~x~ tends to infinity, and that thereafter,
only gauge transformations tending to one at in-
finity mould be allowed. However, in the axial
gauge the plane z - ~ is disconnected from the
plane z-.—.-~. Thus, for certain F',„, it may hap-
pen that A'„ tends to different gauge transforma-
tions as z - +~.' It would then be impossible to
make A; vanish at both z = ~ and z = -~ while main-
taining the axial-gauge condition. So, especially
in the axial gauge, one must be careful about con-
cluding too hastily that no further gauge fixing is
necessary.

In the remainder of the paper, our strategy will
be as follows: Starting from the Lagrangian, me
arrive at the Hamiltonian by following the usual
canonical rules augmented with a cavalier inte-
gration by parts. We then proceed to eliminate
dependent variables by imposing both A;= 0 and
a further gauge condition which has the effect of
fixing the transverse gauge transformations as
well. The resulting Hamiltonian is a more com-
plicated function. of the independent canonical
variables than the naive axial-gauge Hamiltonian,
and violates manifest transl. ation invariance in. the
z direction. However, we are able to justify this
form of the Hamiltonian by showing, first, that the
correct equations of motion are generated, and
second, that the explicit. infrared infinities in the
energy density have been. eliminated, with one
exception. The remaining infinity is due to our
failure to fix the gauge transformations depending
only on time, and this can. be removed via a re-
definition of the dependent variable A.;.

II. CONSTRUCTING THE HAMILTONIAN

The Lagrange density is

Not all of these will be independent, however,
once we fix the gauge.

Using the canonical definition

3C= P w,'. A;.+if'g- 2
+b J

With

~a &a + ~ ~a gy aQbcb~cj j j 0

(2.5)

(2 8)

and integrating once by parts, we find, with the
aid of the constraint equation

3 -
. . 3

g &,. z,'. = g(J')'+ gf'—b' A;.w,
b.

,
j=l j=

I

the following expression for X:

(2.7)

3

+ gt(in &+ m)g+g g J~A' . (2.8)

This is not yet in canonical. form since me have
to specify which variables are to be eliminated by
means of the constraint equation (2.7).

III. AXIAL GAUGE

We begin the process of gauge specification by
setting

A3= 0.

It is then convenient to rewrite the constraint
equation (2.7) as

2

pa Ja+ (g ~a +byabc~c) b — a
j j jj=l

(3.1)

(3.2)

1t
2

00

z'o (z') — dz'(ra(z')

dz'&(z —z ')v'(z').

We can then partially rewrite the Hamiltonian in
terms of canonical variables:

Following Schwinger, ' we adopt the symmetric def-
inition of the inverse derivative:

Fa F~a+ ggc A va
4 ~V

+ g(is,y' m)g,

from which follow the equations of motion

y vva
guava gyabcpv ubgc

(2.1)

(2.2)

2

3C= — m'm'+ —F' F1
2 j j 2 30 30

a a+ 4F).F]j+2F3.F3j

+ it'(in. &+m)P+g PJ,'.A;. ,
j-1

(3.4)
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lim E;a = s k Q;, (3.5)

where F;, is given by Eq. (3.3). It is already pos-
sible, however, to see that further gauge condi-
tions are necessary. To begin, with, from Eq.
(3.3) we have

00

dz'o'(z '),

'which violates Eq. (1.1a) unless Q;= 0.
Furthermore, we can .use the fact that

(3.6)

L
dh'dz "dz f(z')e(z — z') (( z—z")g(z") = kL dz'f(z') dz "g(z")—z dz'dz "f(z') iz' —z" ig(z") (3.7)

-L «L -L

lim aLQ;(x, y)Q;(x, y)
L-+ oo

(3.8)

to see that the term zEB+» in the Hamiltonian
density will, when integrated on z, contain the
infinite piece

~2„„=0, (3.14b)

but the explicit forms of the f„or the X„will not
be needed in what follows.

Using Eq. (3.12a), we can expand our variables
in a series in f„:

unless Q;=0. This infinity is nontrivial in the
sense that it will show up in the equations of mo-
tion.

Our method of enforcing the condition Q;=0 is
as follows: In the spirit of the axial gauge, we
construct a linear functional of A, :

v(x, y, z, t) = Q v(")(x,y, t)f„(k),

where v stands for any of the relevant fields,
and

(3.15)

(x, ya, t} J deaf (a}d;(x,y, z, t} (3.9)
V = dZ „ZVZ (3.16)

Here f,(z) is an arbitrary real integrable func-
tion of z:

dzf, (z) =-)(, & ~. (3.10)

Now 42' can be made to vanish by making a gauge
transformation independent of z, leaving A; un-
disturbed. We therefore impose the condition

C,'(x, y, t) = 0. (3.11)

In order to continue the canonicalization of H, we
must identify the momentum conjugate to 4, and
solve for it using the constraint equation (3.2). It
is convenient to imagine that f, is one of a set of
complete orthonormal functions Pj,

Qa ~ ) &a(a) 0n
n=O

(3.17)

where the X„are defined by Eq. (3.13). The o""'
are given by

2
&a(n) J a(n)+ ~g &a(n)

At the present level of gauge fixation, we regard the

A,' ",n 10,and the corresponding m~ ",as independent
variables. However, since A "=4;=0, we must
solve for )T,"a) from Eq. (3.2). As we have already
pointed out [cf. Eq. (3.5)], Eq. (3.2) together with
the boundary condition (1.1a) implies that Q;= 0.
From Eq. (3.6), we can represent Q; as

„Z „Z' =QZ —Z',
n=O

(3.12a)
where

~a(}cP ~ c ~c(m&)va(ma) (3 16)nmgm2 j j
g=g m&, m2

dzf„(z)f.(z) = 6... (3.12b) c„= dz f„(z)f (z)f (z) (3.19)

which in addition have the property of being inte-
grable:

is totally symmetric in the indices (nm, m, ). From
(3.12a) we have

dz f„(z) =- )(„&~.

[(2n) I j'~'
n t

~O~
fl

(3.14a)

For example, harmonic-oscillator wave functions .

have these properties. In that case we would have

Q X„f„(z)= 1,

which implies

c ~=6

We then have directly from Eq. (3.17)

(3.20)

(3.21)
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oV Va(o) ~a()s '(( gs(n&&b(n) ~ y (+ps(n)+ V &a(n))
'

& V &a(n)
2 2 l l n 2 20- n n~

(3.22)

Note that &)s@" does not appear in the first term on the right-hand side of Eq. (3.22) because A;(s&= 0.
Therefore we can solve for»,"s& from Eq. (3.22) by defining the inverse of &, in the same way that the in-
verse of &, was defined in Eq. (3.3).

I et us examine the form of the term ,F3+—s,in the Hamiltonian. If we define

(3.23)

we find that

ga& m )g (3.24)

Furthermore, we define a matrix g„by

g (~)=Jr .f.(&),
n

(3.25)

gmn
=— d~&m ~ n ~ = -&nmy (3.26)

where the antisymmetry of g is established by integration by parts and the use of

1&m g (z)=s—,'&(,
z~+

which follows from Eq. (3.23).
The Hamiltonian density integrated over ~ now takes the form

2 2'

~(& y f) L ~ &&a(n)&a(n&+ L (& &&s(n)&a(n)+ L&a((&&&a((&&+L ~ Ia ))(pn( s) n(+~ pa(n)pa(n)
1 l 2 ~ 2 2 2 2 . 2 4 ~ kj fg 2~ Sg

n j=J,

( a()n&)( a m ))+ (i &(Z~ V+ m)(i +g QQ J ( a)Qn( a)n

ns tnt nt j=l n

where we have made use of

(3.2V)

~(o) y &a(n)n~
&0 n~

to replace g„by
~m

gnm-&nm-
~

~no.
0

In Eq. (3.2V), »s'o& is a dependent variable whose functional form is obtained from Eq. (3.22), and
"g (io.'~ V+ m)g" is shorthand for

(3.1V')

(3.28)

We now show that, as expected, the infinity which was present in the (E„) term of H [cf. Eq. (3.8)] has
been eliminated by the additional gauge specification. We have

gnm &em —&mm

g'nm8'nm —
&,

Q&m&gnm —
&

+g'nmgno+ " s" Q gnog'n(&i
n 0 n ~0

(3.29)

but

«.«.f.( )~(gg.(~,)g.(~,) f. (~.),
n n
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Eg g

dz' dz" +
I -I

dz I dz" — dz'
2 -L

L Z

dz" — dz' dz" I5 z' —z"
g1 -L

(3.30)

where we have cut off the z' and z" integrals at +I. in order to display explicitly the infinity that would have
been present in the absence of ga(&ge fixing. From Eq. (3.30) we find

gd„d„„.=x x (-t).—', —,
' j dz, dz, f (z,)(z„,—z, )f„(z,), .

and putting this into Eq. (3.29) we have
OO

Z', = — dx,dx, f (x,) ——f, (x,) ~x, —x,
~
f, (&,) — f,(x,) (3.31)

dy

x ]'(x,y', f), (3.32)

and therefore integration on y will produce the in-
finite term

in which the explicit infinity has canceled. It does
not necessarily follow, however, that all matrix
elements of 8 are free of infrared singularities.
This point is illustrated in Appendix C.

The alert rea.der will have observed that although
the (F,o)' term in H has now been rendered finite,
a new infinity has popped up in the [v2&o&]' term,
since ~,""is of the form

V,v(&o'0&= (a function of canonical variables),

which is the analog of Eq. (3.22) in this case. Put-
ting this into the Hamiltonian will eliminate the in-
finity in the (&),"")'term at the cost of producing
another one in the (v,"'")' term. At this point only
the gauge transformations depending on time wil1.

remain.
Bather than exhibit all of this' explicitly, which

will only complica. te the Ha, miltonian considera, bly
to no particular advantage, letus short-circuit the

problem by considering hencefor th the simpler case
of two spatial dimensions. Then the Hamiltonian
of Eq. (3.27) contracts to

\

3&x(y ))) &g xa(n)va(n)+ ) vtt(0)va& 0)

where

t

The reason for this is clear: Although we have
restricted the gauge sufficiently to eliminate gauge
transforma. tions depending on y a,nd z, we still
have to contend with those depending only on x and

t. It is, furthermore, clear that the elimination
of gauge tra.nsformations depending on x will simp-
ly be a replay of the procedure of eliminating those
depending on y. That is, we impose the condition

t;(x, t) =f dz dz tt ( , X) z(d, x, Xtz) = D,

where, for convenience we can take, for example

It will then be possible to expand the fields in a.

double series:

„& &(x, y, t)= gv'" '(x, f)f (y),
I

and, if we integrate Eq. (3.22) over all y, the left-
hand side will vanj. sh, leaving an equation of the
form

+ & ~P a(rr)y a(n)+ & ~ ~(m)T a(gg')
32 . 32 2 rnm'

n m, m'

+ zzq )(f O( )d + 'm)qtt+ g g J tt(n&~a(n)

(3.33)

where the vestigial subscripts on A„n.» and J2
have been dropped.

In the next section. , we shall demonstrate that
the Hamiltonian of Eq. (3.33) correctly repro-
duces the equations of motion given by Eqs. (2.2)
and (2.3). Since there is still an infinity contained
in the (v'(") term, there will be a corresponding
infinity in the equations of motion which is entirely
associated with the definition of A,. We shall then
show that the final freedom to make gauge trans-
formations depending. on time allows us simul-
taneously redefine Ap and to modify the Hamilton-
ian so that the infinity completely disappears.

IV. EQUATIONS OF MOTION

The purpose of this section is to verify that the
correct equations of motion follows from the Ham-
iltonian Eq. (3.33). These equations (not all of
which are actually equations of motion) fall natur-
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ally into three classes:

(i) equations of motion for the canonical vari-
ables,

(ii) constraint equations for A„
(iii) equations of motion for the dependent vari-

a.bles.

[A""'(y f) ~""(y' f)]=i5"&" 5(y —y'). (4.l)

From Eq. (4.1) it follows directly that

[&a(o)(y) Ad(m')(yv)] m' 5ad5(y yv)

g f adcAc(m' (&yv)&( y y v)

We shall tackle each of these in turn.
Of course the basic commutator that is sup-

posed to generate all of these equations is and
(4.2)

[ (&a( n)( y) Ad(m)(yv)] 5ad5mng 5(y yv)

+igf'"'5(y -y') P c...A" ('(y) - —g c„...A™)'(y)
0 m~

(4.3)

i
[e,a" '(v')]=-( " '(v')v( —v""(v')v V"' av — &v)(v""(v),&*' '(v"))

4X0

1

+ f abcf bdeAe(m&(yv)&(y yv) C Ac(m( &(y)n0?n
0 m

where e(y —y') =
& [9(y —y') —8(yv —y)] as in Eq. (3.3).

The commutators of Eqs. (4.2) and (4.3) can now be used to evaluate [X(y),Ad™(yv)]where 3C is given

by Eq. (3.33). Integration on y then gives the commutator of H with A:

+i g T „,&,(I '"''(y')+ ,'igf'd' P T—„„,c„ fv""''(yv) A™('(yv))
I I 1

n ne?? e )ny

&igf adc m P T c (&a(n' )(yv) Ac(m) )(yv))
0 ny n'

~ mg

f"V"' Z v.. ~ . &v — &v)(o"" '(v) a""'(v')v(*'"'(v)]
4X0

What we want is something that looks a good deal simpler:

[H, A"(y')] = -iAd(y') = -i[wd(yv)+ &,Ado(y') ——,'gf de'fA'(yv), At(y'))].

(4.4)

(4.5)

Equation (4.4) will be the same as Eq. (4.5) [when projected onto f (z)], if we identify the quantity A, as

1x
d(m)(yv) m dy dy &d(0)(y)

2 XO I

I))
t

Z Od(n'&(yv)

ga(n' )
y ~c( m~ )

y (4.6)

or, restoring the z' variable via Ado=+, Ado' 'f, (z'),

T„„,c„,.
1

&!(v',v')=- g v..v""'(v')V. (v').—
v~

av - &v) v""(v)
mp n 0

I OO

a(n' )
y gc( my)

y
yd

(4 7)

A couple of.remarks are in order: One sees in
Eqs. (4.4), (4.5), and (4.6) the appearance of anti-
commutators where classically one would have the
product of dynamical variables. This is of course
a consequence of the Hermiticity of the Hamilton-
ian, which guarantees that, e.g. , A will be a Her-
mitian operator. In general, however, we shall not

worry about the order of the operator factors in
the equations of motion; we shall be satisfied if,
ignoring order, they agree with the classical equa-
tions (2.2) and (2.3). The particular operator or-
dering that emerges from our formalism then de-
fines a particular quantum realization of the cia.s-
sical system governed by the Lagrange density of
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Eq. (2.1).
Also, in the definition of A„Eq. (4.7), we see

the expected infinity in the equation of motion.
It occurs in the (I/)7, )za'" term, since from Eq.
(3.32), )(a(c& already contains a factor of 1j)d', .
The resolution of this problem will be deferred
to the next section.

At this point, we are able to check the constraint
equations on A,. They are

A =03

which implies

dz, cr"(") „z, —
= Qf dz, z(z —z,)f„(z,)z""'

'n

dz, e(z —z, )(xa(z, ) = F,",(z) (4.11)

' as required.
To check Eq. (4.9) we observe that T,„=0, and

therefore from Eq. (4.6)

z, A", =-,' Q f dz, d, z""')'„(z,)(z, —,(f„(z,) —f (z)
m, n

~3Ap =+30

A""=0
which implies

(4.8)
g((( o & a(o) + &gf a()c Q T c (ga(a'& Qc(nz(&)

tl ~ tl f mj

so that Eq. (4.9) will be satisfied provided

f al(c g T C (Oa(n' & gc(ln))

'Z, A, =df "f dzf, (z)A'(z)A,'(z) —z '".
(4.9)

n, n', m

=f'"f dz)', (z)(A'(z), A,'(z)j

To check Eq. (4.8), we observe that the z depen-
dence of A, is isolated in the first term on the
right-hand side of Eq. (4.7). Hence

Now

Q&(„d f (z)= «'d, Qf (z')f (z)
m

d
dz —6(z-z )A

=0 (4.10)

which, together with Eq. (3.17), allows us to write

n, m

But X c„p 5 p, and A""=0. Thus the X terms
of A, do not contribute, and we have for the right-
hand side of Eq. (4.12)

)"' ~z A""' -V'Z' z'"""Inmp mn'
n, m n'

f((ac g T & gc((n) &a(nz )j
tl ~ tl b m

= left-hand side,

as required.
Having verified Eqs. (4.8) and (4.9), we return

to the equations of motion for )(a( ' (m c0). The
analogs of Eqs. (4.3) and (4.4) are

[))'""(y),)T" '(y')]= f"&" '(y')&(—y.—y') (4.13)

( )
a (n

( )]
~ fabp vb(zna (yz)6(y y ) fabcfbaa Qc J+c(llz )(y) ( )(8)(zny ))~(y yz)

2
m2 0 m]

(4.14)

From these follows

[H ))(( zn)(y )]=Spy nal)(y )+b Qd „F(((n&(y'
n

&a(n')
~

c(mj )
~ &e(m) ~i

T & fabaj&a(n' ) (yz) &b(nz& &(yz)]. f aM
tltl tl m m I 4X

n, n', m& p

2
2

+ fabcf ba(( g T
8Xp

(4.15)
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Here d „ is a matrix defined by

—f (z)=gd „f„(z), d „=-d„.
. n

What we expect is tha, t

[ff &Td(m&(yi)] &&d(m &(y I)

= -i[(V, Fd, )(m& gad(m)

+ ~&. f d(&a{&a(m() Ac(ma ))&

. (4.16)

Since

(g ~)(m& gd y (n)

we see that Eqs. (4.15) and (4.17) will agree pro-
vided tha. t

{&c(m ) A'c( m2 &)

is the same as the la,st three terms on the right-
hand side of Eq. (4.15). Showing this is a straight-
forward matter of inserting the three terms that
make up A a) in Eq. (4.6) and verifying that they
agree term. by term with the. releva, nt part of Eq.
(4.15). The only difference is that from Eq. (4.6)
we obtain the nested anticommutator

We still have to look at the equations of motion
for the dependent variables m"" and F30. In. prin-
ciple this is straightforward: We simply differ-
entiate Eqs. (3.2) and (3.22) with respect to time,
and substitute therein the expressions for A and i
that have been derived in Eqs. (4.4) and (4.15).
In practice, this gets a little messy. For com-
pleteness, we sha. ll show in Appendix A that m""
and F30 obey the correct equations of motion. . We
also should check the equation for g; but g has
been left relatively unscathed by the addition. al
gauge fixing and we therefore deem it appropri-
ate to leave verification of the equation of motion
of the quark field as an exercise for the interested
reader.

Finally, we observe that the conceptual device
we have employed throughout this section, namely
the replacement of the variable z by a. discrete
index n with the help of the basis functions {f„(z)],
can now be dispensed with, in the sense that we
can reformulate the theory in terms of the original.
A'(z) and )('(z), which will, however, obey uncon-
ventional commutation relations. If we assemble
the information contained in Eqs. (4.1), (4.2), and
(4.13), we can, first of all, derive

[~""(y),z""(y't)]= —«(y y')f'"—
{{&a(n'&(y) Ac(m&&(y)j &e(m)(yl))

whereas Eq. (4.15) contains

{&a(n' &(y) {Ac(m~)(y) &e( m)(y )]]I

[zc(0)(y) z (0)(y )]
2

2

+ f abcqc4z'0 (4. 18)

Thus the quantum equations of motion do not- pre-
serve AQ intact. Instead, the various operator
factors that make up A; arrange themselves on
either side of m' in a particular way. Neverthe-
less, the quantum equations do have the correct
classical form when operator orderings are ig-
nored, which is all that we have a right to demand.

where

c f@cz(z':=-'f "("a&)--', '.(4.19)

is the total charge. Restoring the z variable by
summing on n as in Eq. (3.15), we obtain the fol-
lowing set of( commutation relations:

[))'(y z) 7('( y' z')]= —«(y - y')f '"[&('(y z)f (z') - z'( y' z')f (z)]+ f '"Q'f (z)f (z')
0 0

[A'( y, z), »'(y', z')]= i6'"5( y —y') [6(z —z') —(1/X,)fa(z')]+ —f ' fc(z')A'(y, z)«(y —y'),
0

[A'(y, z),A'(y', z')]= 0,

(4.20)

(4.21)

(4.22)

[~'(y, z), 4.;(y', z')]=a ' (-'&')(,4.,(y', z')«(y-y'),f.(z)
(4.23)

where n is the I.orentz index and 2. is the color index of the quark field. In. terms of these variables, the
Hamilton, ian. takes the form

II= pypz 2m' y, z m' y, z + 2
—4' y, z —A.' y, z +g y, z 2a-&+m y, z +gJ' y, z A' y, z

dydz, d. ,~ (y, z,)i., z, ~~ (y...), (4.24)
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where

1
(x'(y, z) = o'(y, z) ——fb(z)0

and

dz'o'(y, z') (4.25)

8
&'(y, z) =g&;+ s

&' —2gf'"(A', & ). (4.26)

dz'a'(y, z')

Note that it follows from Eqs. (4.20)-(4.23) that

ed to render A~0 finite as I. —~. In other words,
the simple expedient of subtracting the infinity
from H leaves the equations of motion satisfied,
but with a new A.,"that differs from the old one by
the amount needed to make it finite. Thus the new
Hamiltonian, Eq. (5.3), generates the correct equa-
tions of motion and is finite besides.

One can understand the connection between this
result and the time-dependent gauge transforma-
tions in the following way. First let us introduce
a matrix description of the dynamical variables

is a c number.
V = 2X'e', (5.6)

U. THE FINAL INFINITY

Because of the 2m""t"" term, the Hamiltonian
contains the piece v' = U(t)v U '(i), (5.9)

where v' stands for either A.' or z'. A purely
time-dependent gauge transformation is given by

H= ——,LQ'Q',
g2

4 x,' (5.1) where U(t) is an appropriate unitary matrix.
Then

where Q, is given by Eq. (4.19), which is infinite
a,s the cutoff I. tends to infinity. Likewise, the.
quantity A~0 which appears in the equations of mo-
tion contains the term -(1/X, )(1/&,)v"", which
has the infinite piece

0
(5.2)

Suppose we simply subtract the infinity from H:

H'=H+ 4H) (5.3)

&H = ——~ LQ'Q'.a

4 z,

It will be shown in Appendix B tha, t the commuta-
tion rules

(5.10)v'= UvU '+ [Uv ', v'].
(

Now the original Hamiltonian commutes with U,
and so

i[H, v']= UvU '. (5.11)

(5.12)

so we can eliminate the infinity in A„Eq. (5.2),
by choosing U= e " o' and hence

It is therefore necessary to add a term to H i.n

order to generate the second term on the right-
hand side of Eq. (5.10). The transformation prop-
erty of A0 is

[Q', A'(y, z)]=if'"A'(y, z),

[Q', nb( y, z) ]= if"'z'(y, z)

(5.5a)

(5.5b)

2 tf

Uv' — '
A

2Z02 2

So we- must find ~H such that

(5.13)

are valid. (The reason these are nontrivial is be-
cause of the unusual commuta, tion rules satisfied
by A and z. ) Given Eq. (5.4), we see that the
changes in the equations of motion are But

i[nH, v ]=,V[Qd~', vb~b]V '.ig '1.
0

(5.14)

and

1
g&d g Lf abd(Q &b}

. 4x'0

1
Lf adbJQ Ab}

4 Z'
0

(5.6a)

(5.6b)

[Qd~d, vb~b]= —.'([Q', vb](~d, ~b}

(v b
Q }[1dgdb])

[Qd Vb](~d ~b} if dbcVc(~d ~b} 0

Comparison with Eqs. (4.17) and (4.5) tells us that
these changes can both be produced by adding to
A0 the quantity

by the antisymmetry of f. Therefore the right-
hand side of Eq. (5.14) is

, v([x', x'](v', Q'})v '

~- I.q'.
2~

(5.7)

But from Eq. (5.2), this is precisely what is need- fdbcV(b c(V b Qd})V-1
0
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Since [Q'Q', v']=if"b/Qd, v'"Iand [Q'Q', U]=0, we
see that the appropriate choice for H is

2

~H= ''QQ4x'0
(5.15)

which agrees with Eq. (5.4), and therefore allows
us to understand the ad hoc modification of Eq.
(5.3) as a particular choice of the last gauge free-
dom at our disposal.

VI. CONCLUSIONS

It has been. the aim of this paper to understand
the canonical quantization of non-Abelian gauge
theories in the axial gauge. The twin problems,
first noted by Schwinger, of infinities in the Ham-
iltonian and additional gauge freedom, have been
played off against each other to produce the final
result of a Hamiltonian free from explicit infrared
singularities, which generates the correct equa-
tions of motion.

Sorg.e things of a formal nature, remain to be
.done. In the first place, at the end of Sec. III we
switched abruptly from the full (3+ 1)-dimensional
problem to the simpler (2+ 1)-dimensional one.
It is hoped, however, that our arguments that'
none of the essential points have been lost in so
doing haye been convincing. If not, the reader
is invited to go back to the end of Sec. III and work
out an expanded version of the calculations of
Secs. IV and V.

In the second place, when one chooses a gauge
that sacr ifices the manifest expression of certain.
symmetries, one must check the commutation
rules of the relevant generators to be sure that

the symmetries are there, albeit in disguised form.
In our case, we have left the Poincard group in an
apparent shambles. Not only have we lost mani-
fest Lorentz invariance, but the axial-gauge con-
dition Eq. (3.1) violates rotational symmetry and
the function f0(z) that we were forced to introduce
destroys translational symmetry as wel. l. Thus
many commutators need to be checked, and, since
the generators are bilinear in the fieMs, the com-
mutators will tend to be more complicated than the
ones encountered in Sec. IV. It is possible that
one may have to add certain extra terms to the
generators similar to the "t~" term that Schwin-
ger found in the radiation gauge in order to exhibit
these symmetries, but one may hope that no seri-
ous violence. has been done to the underlying Poin-
care invariance of the theory.

There is also the phenomenological question of
whether the additional gauge fixing results in mod-
ifications in the predictions of the theory. It is
unlikely that anyone would want to use our Ham-
iltonian to develop a conve~tional perturbation
expansion, but it is possible that the infrared pro-
perties of our Hamiltonian may be -able to be under-
stood, and may provide some insight into the long-
distance behaivor of quantum chromodynamics.
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APPENDIX A

In this appendix we wish to verify the equations of motion for m"" and F»..

&a(0) +pa(0& ~d pa(m)+ ( e'ab
&ncf&b(m&) ~c(mb))

Om - 32 2~ Omgm2 L ) 0 (Al)

F30 QJ3 +gF30 AQ+ 2 F32 /F32, Aa

Turning first to the verification of Eq. (Al), we have. from Eq. (3.22)

V &a(0) +fabc (&c(n&+ V ~c(n) +f cde& ~e(m) )gd(m2)) b(n )
2 2 0 nmlm2 00- n

(A2)

+ ( y gabe +f a+bcgc( )) n+g b(n) ~ d y ( b) m+f+baaed( m()~e(ma&C
tl 2 nm 32 Plllty m2

tn

g Ja(n)
n

Now the (-&(„5"v, ) term is

gy pa(0)++~ y ga(n) y ~ d ya(m)+ y fade&d(m(&~ ( a&& em+f ade))d(m)+e(m&
2 0 n 0~ Om 32 0 0)n~m2 0

0 m
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which is equal to

eXPeCted termS+ (g/A, ) V, g )(„J""' (g/),,)fada V (»d(m&A™)

where "expected terms" means v, [right-hand side of Eq. (Al)]. We observe that

(a) -(g/)&.,)f' v, (&(' 'A', ')+ (g/)&,)f"(v,A "')&('"' = —(g/a, )f' (v,» })A',( ),

(b) fabc g &c(n) b(n)

n

( ) (gs/) )fabc (fbdeAc(n) d(in&)Ae(ms) fcdeAe(m&)Ad(ms) b(n))
I

(gs/)( )C Ac(n)Vd(m&}Ae(ms} (fabcfbde+fadbf bee)

(gs/) )C Ac(n)&d(ma)Ae(ms}f bcdfoeb
0 nm ~m2 0

(d) (g/) )fabc +Ac(n)d Fb(m) (g/)( )fabc g Ac(n)(ds) Ab(&) 0
nbm

by the symmetry of d' and the antisymmetry of f
Puttmg all of these back into Eq. (A3), we obtain

Vs&'r' ' = expected terms+ 5'[J] —(g/)&. ,)f' A', (
()Vs»") +gc„, ,f 'A' s&(' i}),'

where

6."[J]-=(g/A. ,)v, J'"')~„—(g'/x, )f' A'" J'"}—(g/)( ) J',("})&.„.

(A4)

(A5)

+6"'[J]. (A6)-

Now we must use current conservation in the form

J&ia fabcAc Jpb 0tl (A7)

%e integrate on z, and use the boundary condition
Eq. (l.lb) to obtain

But

d(n) p dc b~c(m2) b(m j) d(n) ~ d(n)
2 & + g&nm, m2J W —0' —g p

[cf. Eq. (3.18)], and, using A.„o'(")=0, we have

fadeAe(n) d(n) dade T e(n') d(n)

I

which vanishes because T„n is symmetric. There-
fore)

V, ir'(c) = expected terms+ (g'/)&. ,)f'"A","}J,'"}

+g v(&„&A&,), '(A10)

which, since v = VsF», is the same as Eq. (A2).

J'")Z -Z g g'(n)
0 n n 2

gfabc(Ac(n) J b(n) Ac(n)Jb(n))

Putting this back into Eq. (A6) produces the de-
sired result. Next we turn to an examination of
Eq. (A2). We start with

t&'= gJ" +Vs&'&' gf'~(A—'&(b+A' jrb)

=gJ"+v, (v, ~, -gf'"A'I'„)
+gf' (o'-gJ,')A', -g(V, J' —gf'"A'J'), (A9)

where we have used the known values of ~ and A. .
Using current conservation, Eq. (A7), we find

o -g s Js+ s(Vs ss -g ss "A)

We wish to verify that

[qa Ad(y &
& i)] jfadcAc(~i & i)

and

[qa &d(yi & i)] Sfada&a( i &.i)

We have

APPENDIX 8

(a2)

[q', A'(y', ~ )]= —,'f"' dvd~(A'(y, z), [w'(y, ~),A'(y', s')]],

which, from Eq. (4.21), is
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[()' Az(y', z')]= 'if' '—
.Jdydz[A (y'z) i( tl(y-y')[5(z -z') —((l Z)f ( )z] (zgfy )fzz f('z)A'(y', z') z(y' —y)).

(B4)
The two f,(z) terms vanish by Eq. (3.11), so we have directly

[Q', A~(y ', z ')]=if~'A'(y', z '),
as required.

Next, using Eq. (4.23), we find that

B~-=dy dz J;(y,z), 7f"(y', z')

OO

f~'f, (z') dy'dz «(y'-y )J',(y', z").

[Q', 7rd(y', 8')]=a~ - g f"' dy d8([ )([y, z), r~(y', 8')],A'(y, z))

-2f"' dydsf[A'(y, ~),v"(y', ~')j, v'(y, ~6

We note that in the [)]',7f] commutator, those terms containing f,(z) will vanish by Eq. (3.11). We are left
with

[Q{( y (y
f g f)]- Bd~ jf{(b([gab(y y g y)

In the last term

+ f 'f"' Jdy dz Z(y .—y)[A'(y' , z), z'(yz)) f (z')+ (ZI,Z)f (z )f "dz'z''(y', z).
0

J

�de
vb(y', z) = Q X„)fb{")(y')= Q )).„))b[")(y')+ dy" e(y' -y'")pb(y") —Q &„)T"")(y'),

tl n40 n80

where

pz(y")=-'g dzfz"[z'(y', z),A'(y, z)) —g Jdz d (y)z. ',
Therefore,

[i)';z (y', z')]=if z { zy') 8~i+ f f "Jdydzz(y' — y()[A)y z( z))yfz(z')
0

as required.

+ g~g
f""f'" dydz z(y' y)lz'(yz)A'(yz)-)f (*') ,Zf (* )f,"'f dy«z(y'-y-)dl(y, z)

0 0
(

-&yetb&b( y &y)

APPENDIX C

In, his discussion of color confinement, Mandel-
stam' points out that in the axial gauge, the ex-
pectation value of E,' in the bare vacuum contains
an infrared infinity. The question arises as to
whether the infrared infinities that we have re-
moved from H coincide with this infinity or not.
It suffices to examine the issue in the Abelian
theory, for which the relevant term in the energy
density is (z,(z,)z,(~,)}= z(~, —~,), (C2)

L «|«.&(s -~i)&(~ -~,)J.(~,)~.(~,), (Cl)
~l

where J, is the usual fermion charge density &PAL.

In the bare vacuum [which is translation invariant
as far as the fermion fields are concerned, des-
pite the introduction of f,(z) in the gauge-field part
of the Hamiltonian] the expectation value of Jg,
has the form
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where, for simplicity, let us take

+(5)= ~(5. —k) e(k.+ h) (h.») (C3)

ergy per unit volume. However, explicit calcula-
tion shows that as L-~,

L
A = dzBC'(z)

I
(C5)

for the normal axial gauge, and again for the mo-
dified axial gauge, Eq. (C4), which we shall de-
note by A~. In both cases we can use the identity
of Eq. (3.7),

(C6)

to writeA=B+C (and likewise A„=B„+C~),
where B or B~ comes from the first term on the
right-hand side of (C6) and C or C~ comes from
the second term. By translation invariance, one
expects that A or A„will contain a divergence
proportional to L. This will still give a finite en-

This form of I' is finite at ( =0 and provides an
. absolute infrared cutoff. To the extent that the
real I deviates from this ideal form, the conclu-
sions to be reached below can only get worse.

The modification brought about by the additional
gauge fixing described in Sec, III is for the pur-
poses of K' to "replace J, in Eq. (C1) by

I
J,(z) =J,(z) f,—(z—) dz 'J', (z ') . (C4)

0 -I

Let us now calculate

8- 2)oL

while C grows only as L. Thus

A- 2)oL',

which is the divergence in the energy density noted
by Mandelstam.

In the modified case, as discussed in Sec. III,
we have

However, one also finds that

C u- 2&oL'.

This extra divergence comes entirely from the
cross terms

d"d. , dz, ~.. z, ~Z(.. .).f.(z, )

Thus

A~" 2&oL'

so the divergence which was present in A is still
there in A„, although its location has been shifted. "
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work I learned of a somewhat differ'ent treatment
of the same problem by Y.-P. Yao in. the Abelian
case [J. Math. Phys. 5, 1319 (1964)].
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