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It is shown that both canonical and path-integral quantizations of an electromagnetic field coupled with

point charged particles can be carried out in the Ao = 0 gauge by the usual rules without fixing the gauge
completely and eliminating the longitudinal degrees of freedom. A Coulomb interaction potential is obtained'

as an effective potential either by separating the longitudinal-mode variables in the Schrodinger differential
equation or by integrating all longitudinal-mode quantum fluctuations in the Feynman path integral. There is
no Faddeev-Popov ghost or infinite gauge volume factor in our path-integral treatment.

I ~ INTRODUCTION

Recently Gribov has pointed out the very inter-
esting phenomenon that for non-Abelian gauge
theories the transversaliiy condition V ~ A., =O

does not actually fix the gauge completely. ' His
observation of the gauge-fixing degeneracy has
cast some doubts on the validity of the Faddeev-
Popov quantization rule. ' Thus we have to re-
consider the quantization of gauge fields and find
a different procedure which mill not be troubled by
the gauge-fixing ambiguity.

In this paper we will discuss a new approach
to quantize gauge fields without following the
"recipe" of Faddeev and Popov. ' Although we con-
sider here only an Abelian gauge field, the basic
idea and techniques devel. oped here can be applied
to the quantization of non-Abelian gauge fields
without facing additional fundamental obstacles.

'Qfe consider the quantization of an electromag-
netic field coupled with nonrelativistic point
charged particles. We choose the, vector poten-
tial gauge where A.p vanishes for all time. By
this choice, gauge freedom is not completely elim-
inated, because we still can perform time-inde-
pendent gauge transformations. We will demon-
strate that both canonical and path-integral quan-
tizations can be carried out by the usual rules
without fixing the gauge completely arid eliminating
the longitudinal modes associated with the gauge
freedom.

Before presenting our formulation, we want to
emphasize that the path integral we use here is
quite different from that used by Faddeev and
Popov' as well as 't Hooft and Veltman. ' We will
call the path integral they used "Feynman history
integral, "4 w'hile ours will be called "sequential
Feynman path integral. " Although the formal
expressions of these two integrals look the same,
they actually have very different properties. In
the formulation of Feynman history integrals, one
normally expands A„(x) as J d4k a„(k)e'~:" and

performs the functional integration over the Fouri-
er coefficient a, (k)'s. Consequently, the differen-
tial operator

z.„(x,y) =-(a'g„, —a.a,)d(x- y},
which appears in the quadratic part of the action
functional

S =-4 d'XI
p 4 QV

d xd yA" xK„„x,yA. "

is singular and cannot be inverted to obtain the
Feynman propagator. ' On the other hand, in
Feynman's original formulation, the path integral
is defined as the limit function of a sequence of
integrals. ' The trajectories involved in the se-
quential path integrals are polygonal curves re-
sembling the paths of a particle in Brownian mo-
tion. Consequently, the quadratic operator in-
volved in the sequential path integral for gauge
fields is not a singular differential operator; in-
stead, it is a matrix operator whose inverse is
well defined and can be computed compactly.
Thus, by resorting to the original definition of
sequential path integrals, we will never encounter
the troublesome singular operator K,„(x,y).

The content of this article is organized as fol-
lows: In Sec. II, we discuss the classical dynam-
ics and the normal-mode Legrangian in the Ap= 0
gauge. Because we do not fix the gauge completely
the Lagrangian contains many longitudinal modes
which can be characterized as zero-frequency-
mode particles, analogous to the translation mode
of a soliton Lagrangian. ' We discuss the canonical
quantization in Sec. III and the path-integral quan-
tization in Sec. IV. Remarkably, we obtain the
Coulomb interaction potential as an effective po-
tential ei:ther by separating the longitudinal-mode
variables in the Schrodinger differential equation
or by integrating all longitudinal-mode quantum
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. fluctuations in the sequential' Feynman path in-
tegral. Our result is consistent with the usual
Coulomb gauge quantization. However, we do not
have the fictitious Faddeev-Popov ghost or the
infinite-gauge-volume factor' in our path-integral
treatment. Additional remarks are made in Sec.
V.

as a "weak" consistency condition which is valid
only for the actual motion. '

For the purpose of field quantization it is con-
venient to express the Lagrangian in terms of
normal-mode coordinates. We consider the field
in a large box of volume 0= (2L)' and expand it
by Fourier series:

II. CLASSICAL ELECTRODYNAMICS IN THE Ao——0 GAUGE

We consider a system of the electromagnetic
field c'oupled with some nonrelativistic point
charged particles. We choose the gauge where
A, =O for all time. Then the Lagrangian assumes
the following form

A(x, t) =Qq- (t)y- (x),
kX

(2.10)

where

(2.11)

cos(k x), 1=1, kv0

y, (x) =(2/0)'t'x 1/u 2, k=0

sin(k x), X=-l, kc0

+ z rplara ~

where

j(x, t) =pe, r,6'(x —r,(t)).

(2.1)

(2.2)

k c ((Mw/L, ~m/L, /7l /L)
~
f, m', n = 0, 1, 2, . . .J .

(2.12)

For each k and X there are three normal-mode
coordinates. If ktO, the vector qk~ can be de-
composed into a longitudinal component plus two

transverse components:

(2.3)

(2.4)

(2.5)

This Lagrangian has no Lagrange multiplier and,
consequently, each component of A can be varied
independently and regarded as a dynamical vari-
able. From the definitions of E and B and the
Euler-Lagrange differential equations one obtains
the following equations of motion:

v B=O, vxE= B,
VXB=j(x, t)+E,

m, r, = e,[E(r„t) —r, x B(r„t) j .

q. (t) = kq~(t)+ C,-(k)qr'(t)+ i,(k)qr'

-=9 (t)+ i-'(t), (2.18)

e((k) i)(k) = 6„., i;(k) k = 0, t = 1 = 2. (2.14).

The vector potential A(x, t) can also be decomposed
into a longitudinal part and a "transverse" part
(which also includes three k= 0 modes):

A(x, t) =A~(x, t)+ A~(x, t), (2.15)

The remaining Maxwell equation

V E (x, t) = p(x, t) =Q e,6 (x —r, (t)) (2.6)

A ~(x, t) = g kq~ (t)P- (x) . (2.16)

cannot be derived by the usual variational prin-
ciple from the Lagrangian in Eq. (2.1). Gauss's
law will be implemented by other means.

We choose the initial field configuration which
satisfies the condition

V ~ A(x, t,) = —p(x, t,) . (2 7)

Then the equation of motion in (2.4) and the charge
conservation relation

(2.17)

If we consider a time-independent gauge trans-

formationn

A'(X, t) = A(x, t) + VA(x), (2.18)

only the longitudinal-mode coordinates will be
changed:

In general, A~ and A~ are not orthogonal to each
other, but they have the following properties:

v A'=0, v x A'=O.

V ~ j(x, t) + p(x, t) = 0 (2.8) q~ (t)' =q~ (t) —sgn(X)kA (2.19)

imply the relation

A(x, t) —V ~ A(x, to) = -p(x, t)+ p(x, to) . (2.9)

Thus the field configuration evolved at a later time
also satisfies the Gauss law requirement. In
Dirac's terminology, Gauss's law is implemented

therefore q~ 's are usually regarded as the "re-
dundant" variables associated with the gauge de-kX.

grees of freedom. However, in the treatment
proposed here, we will keep all longitudinal-mode
variables and regard them as dynamical variables
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to be quantized.
We can write the Lagrangian of Eci. (2.1) in

terms of the normal-mode coordinates,

i. = mal(q-„, )'+'(j-„)' —P(j~)']+-,' gm, r.'
kX Q.

+g'.r.(t) Zi~q-'(f)+(1-"(f)]e- (r.(f)). (2.20)
a RL

t

The corresponding Hamiltonian can be constructed
as follows:

2

+22 Ii.(0-'.E(4;;(')+t(„-;(')le-„,(~.(0)

(2.21)

Notice that there are no quadratic binding poten-
tials for the longitudinal modes. They are the
"zero-frequency modes" of our dynamical system.

The fact that the longitudinal modes appear in
the gauge fieM Lagrangian as zero-frequency-
mode particles is quite analogous to the soliton
case where the translation mode is the zero-
frequency mode of the normal-mode Lagrangian in
the one-soliton sector. ' Both kinds of the zero-
frequency modes originate from the degeneracy
of the classical solutions with respect to trans-
formations of some basic symmetries. The basic
symmetries involved are. translation invariance
in the soliton case and gauge invariance in the
gauge field cases. In both cases the zero-fre-
quency modes cannot be trivially decoupled in the
normal-mode I.agrangian and treated as com-
pletely free particles like the translation modes
of a polyatomic molecule. In Sec. IV we will dis-
cuss how to handle the longitudinal modes as zero-
frequency-mode particles using the sequential
Feynman path integral.

In ordianry quantum mechanics, wave functions
are considered to be vectors in the Hilbert space
X spanned by the eigenfunctions of the Hamiltonian
operator. However, if we consider an arbitrary
state vector ~4), the electric field observed might
not satisfy Gauss's law. Thus Dirac proposed
that a weak equation like Gauss's law should be

'imposed as a subsidiary condition on the state
vector'

tV ~ h(x) —p(x)]~4~)=0, ~4„)(=36~(-Z . (3.3)

This condition can also be expressed as follows:

—.g k sgn(&) g-, (x)
8

k~ X kX

ag kgb

The solution of this differential. equation is

where

f((q,'„),(r,)) =-
exPlb Q . q„.',

kfo, X

(3.6)

Now. we would like to examine how the Hamiltoni-
an H defined in Eq. (3.1) operates on the wave
function 4 „.

First we consider the kinetic energy operator
of the longitudinal modes

r'e, = 'Q —', pe-.y,~(r.) e,
k+, )t

III. CANONICAL QU ANT-IZATION

By the usual rule of making the canonical mo-
menta into linear differential operators one can
easily construct the quantum-mechanical Hamil-
tonian and the electric field operator:

52
(&/&q-„',)'+Q —

2
(s/&i-„;)'+

2
((1 -„',)'

k)L kX

2

4+
~ ~

M

infinite self-energies
of the point charges

~ b

Here we have used the following relation:

(3 )

$(x)= 7)(x) =fjfp-y „(x)[$(s/sq. ~)+(s/s&r)] (3.2)

1
z ~~ 4~~(r.)41,(rb)

1 1
4vr

(3.8)

dbk cosk (r, —rb)
(27))'
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Thus we obtain the Coulomb interaction potential
as an effective potential produced by the operator
T~. The self-energies of the. point charges are
time independent and will be subtracted away in
the subsequent definition of the Hamiltonian H.

The operator H, is not manifestly gauge invariant
because it contains the gauge-dependent longi-
tudinal-mode coordinates q~ . However, using

kX

the relation

f= e, g kq~ (t). (r,)f
km, )t

=- e,A~(r, )f, (3.9)

one can verify that all longitudinal-mode coordin-
ates cancel in the operation of H, (f4'):

tt.(fet')= I-)t'p, ' —e.—[(tt. :A(r.))eqt((r. ) rt. ]re.*A'(r.)I(frt')

—~, —e, Ar(r, )
f

'a
(qp',

-=s/sr, ) . (3.10)

Consequently, one can define the following gauge- invariant effective Hamiltonian:

H —= g — ' " +g —,'[-h'(8/Bq ) +~ (q-„) j+g 2
. + — Z q"„4™„()

a a
(3.11)

such that

(3.12)H(f@') =f(4-„;'fP.BH. +'(iq, ), f. .) t) .

This is the main result of our canonical treatment. Several remarks may be made:
(1) Equation (3.12) and the Schr'odinger equation Hqlt= ih(B/Bt)qlt imply that a state vector ~tip~) which in-

itially belonged to the subspace K~ always evolves within the invariant subspace K„.
(2) Our effective Hamiltonian is consistent with the usual Hamiltonian obtained by the Coulomb gauge

quantization. However, quantization in the A, =O gauge looks more attractive because the rule of cori-
structing the Hamiltonian operator H in Eq. (3.1) is simpler and more natural.

(3) The quantization rule

T{~ -—(s/sq~), ){r -—.(s/aqr )
kX j kX kX g, kX

(3.13)

is equivalent to the following canonical commutation relation for the Heisenberg field operators:

(3.14)

IV. PATH-INTEGRAL QUANTIZATION

In this section we discuss how to quanhze the electromagnetic field in the A, =O gauge by the sequential
Feynman path integral. We will coricentrate our effort on handling the integrations of the longitudinal- .

mode variables.
Given a classical Lagrangian L(Q, Aj, (r„r,J) in Eq. (2.1) one can formally write down the quantum-

mechanical Green's functjon @s a path integral over all values of the coordinates at each time, subject to
the boundary conditions of the initial and final configurations:

ACp r" ~ lp

tt({A"(x)) {r),t'; {t)'(x)) {r') t')=. ttt)(x t)lf f xtr (t) exp — ttt ({A,t)) {rt„r))
A' a r'a gl

(4.1)

However, as Feynman and Hibbs noted before, it is much easier to evaluate the path integral after trans-
forming the problem into normal-mode coordinates. ' Such a transformation gives us

p ll

tt({q ), {r,'), t"; {q.'), {,'), t )."=tt, , = ll '' ttr(t)'ll f "". ttq. (t) exp —, f dtr. ({q. , q. ),'{r„r,))
a r'

Q kX

(4.2)
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where 1,(fq», q»), (r„r,t) was given in Eq. (2.20)
and

solitons. ' As we discussed in Appendix A of Ref.
6, this path integral can be rigorously evaluated
with the following result:

A'(x) =Q(kq~'+ qr')(t)- (x) (4.3) K ([J- ];q-, t";q-, t')

A" (x) =g(4'-"+ q -'")0- (x)
k}i,

(4.4)

where
are the initial and final field configurations, re-
spectively. The path integral in Eq. (4.2) can be
handled more easily because the coordinates-of
different normal modes do not mix with each other
in the quadratic part of the normal-mode Lagran-
gian.

For a given set of the particle trajectories
(r,(t) ~a = 1, 2, . . . , n), the path integral in Eq. (4.2)
contains the following subintegral:

q»

g II all

dt d J-»(t)g, (t; )J-„,(7),
ft t'

a.(t; ~) = (t" —r)(t t')/(t—' —t'), if t & w

(t" —t)(v —t')/(t" —t'), if t & v .

(4.8)

(4.9)

where

~ gll

x exp —' dt[-,'((f'~ )'
kX

+J.,p)q. (t)]I,

(4.5) J-„),(t) = Q —' sgn(&)(I)-„,(r.(t)}.
a

(4.10)

This result is valid for an arbitrary "external"
force applying to the zero-frequency-mode parti-
cle. In our case the external force is determined
by the positions and velocities of the charged
particles through Eq. (4.6}. One can rewrite the
force J» in the following form:

J- (t) =—g e,& ' r, (t)(t - (r,(t)) .
a

(4.6) U'sing the relation

This is precisely the path integral of a zero-fre-
quency-mode particle subject to an external force
J»(t}. This type of path integral was also en-
countered in quantizing the translation mode of

(4.11)

one can integrate by parts both integrals of Eq.
(4.8) and obtain

C

1 2 $ ] gtt

d7 J»(t)go(t; 1.)J-„,(7) = dt ~ ) g e,(t)~,(r,(t)) —„,——, g e, dt's;, (r,(t)}t'

(4.12),I

ftt

dtJ- t q~" t-t' +@~' t" -t' t" —t' = ' - r, t" q~" — - r, t' q~'
gl a

Thus after the integration by parts,

1 ~„~, sgn(X)
i~ 2 t" —t' ix ))I

(4.13)

(4.14)

Now one can take the product of all longitudinal-mode subintegrals and rewrite it in the following form:
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II &,([J„-,];q,", t";q,', t')
kA, X

r

~~
~

H

k~
~2I

~

~ eX
~

~
~I

~
~

~

«i
II ~ lL

I ~ ~~
a

~ ~a~1 i 1 ~„~, ~ e, sgn(X)
[27(ih(t" —t')]' " h 2(t" —t') ) ~ k), h

dttt, (r.(t)))

&&f(4-„'„"],7r!'))f'(fq,'] (&.'])

1 1
x exp ———

A 2 k
kX

I

dt g e, (t)I~(r, (t))
I a

'(4. 15)

where the function f is the same as that defined in Eq. (3.6). The exponent of the last multiplicative factor
in (4.15) is proportional to the eigenvalue of T in the differential equation (3.7). If one also drops off the
infinite self-energies of the point charges, one can replace the last exponential factor by the following
factor effectively:

(4.16)

Thus the Coulomb interaction potential is obtained as an effective potential by integrating all longitudinal
mode quantum fluctuations in the path-integral expression of Eq. (4.2).

In general a Feynman path integral is a quantum-mechanical Qreen's function which governs the time
evolution of an arbitrary Schrodinger wave function by the integral equation

+(I '-"84'-"],Ir ], t")= II dr.'dq-' dq-„'&~-t +(4 ],8 '], (r:],t')
a~ kX

(4.17}

=f(k-„],P.'])+'(fq„],(, .'j, t') .

From Eq. (4.15), one finds that the Green's function K,„,, contains a factor of f ((q~~'), (r,']) which cancels
the f factor of O', Substituting the result of the path-integral evaluation of K, , into Eq. (4.17) and inter-
changing certain integration orders one obtains

(4.18)

As we discussed in Sec. III, the initial wave function must also satisfy Gauss s law of Eq. (3.4) and assume
the explicit form of Eq. (3.5):

+-=f(4;;"3,P ])II
P II

kX
~II

dr dq- +1 t

x exp — dtLeff q ~q ~ a~ a q

q)) [27)iX(t" —t')]'" [8 2(t" —t') i) q)). dd. h J,, (4.19)

where

1..« = P —,
'

[(qr- )' —h'(qr )']+ —,
' g m, r,'

gX a

inal-mode variables Eq. (4.19) can be written as
follows:

(4.21)

+ Z e.r.(t) q;;(t)4-„,(r.(t)) —I'.((r.(t)])
(4.20)

In Eq. (4.19) each integral of J dq~~ is a Gaussian
integral whose value is equal to one and also is
independent of the choice of the particle trajec-
tories fr, (t)j. After the integrations of all longitud-

+((- ](-$t)=~
apkgX

where

dr' der'Z(e"'
kX

x +'((q-„,]' Fg t')

(4.22)
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in the Fourier expansion method is infrared di-
vergent:

aqua (t)
dv' e '"" "

g.'(t; )=
J 2. .. (4.25)

& exp — dt L~~~

(4.23)
I

is an effective Feynman path integral which does
not contain any longitudinal-mode variables.
These equations summarize the result of our path-
integral trea, tment.

The effective Feynman path integral we obtained
in Eq. (4.23) is actually identical to the path-in-
tegral amplitude written by Feynman and Hibbs
in Eq. (9.44) of their textbook. ' In their treat-
ment, the Coulomb interaction potential V,(gr, (t)))
is obtained by imposing the Coulomb gauge con-
dition and solving the time component of the vector
potential classically. In our path-integral treat-
ment, the Coulomb interaction potentia1. is ob-
tained as an effective potential by integrating all
longitudinal-mode variables.

The result obtained in this section is also con-
sistent with the previous result of the canonical
quantization treatment. Equation (4.21) implies
that the Schrodinger wave function which initially
satisfied Gauss's law at t' also satisfies Gauss's
law at all later time. Furthermore, if one begins
with the effective Hamiltonian in Eq. (3.11), one
can also deduce the same effective Feynman path
integral in Eq. (4.23).

In the present approach a correct evaluation of
the Feynman path integral in Eq. (4.5) is crucial to
the success of the whole scheme. In pa.rticular,
the kernel g0(t; r) given in Eq. (4.9) has played a
very important role in obtaining the instantaneous
Coulomb interaction potential. As we discussed
in Appendix A of Ref. 6, this kernel can be con-
sidered as the continuum limit of certain inverse
matrix elements:

(4.24)

where o~ is an (A' —1) && (R —1) Zacobi matrix.
Using the method invented by Montroll one can
directly compute- (a„'),~ and verify the compact
expression of Eq. (4.9). On the other hand, if one
evaluates the path integral in Eq. (4.5) by expand-
ing the trajectories as f dve'"'a(v) and integrating
over the Fourier coefficients (as one normally
does in the Feynman history integrals), one would
not obtain the same formulas as our Eqs. (4.7),
(4.8), and (4.9). In particular, the kernel obtained

This has been known as the "zero-mode problem"
in the soliton quantization. " In our opinion, this
infrared-singularity problem is actually created
by the manipulations introduced in the Fourier
integral expansion method of path-integral evalua-
ti.ons.

V. CONCLUDING REMARKS

We have demonstrated that both canonical and
path-integral quantizations of an Abelian gauge
field can be carried out in the A.,=O gauge by the
usual rules without fixing the gauge completely and
eliminating the longitudinal modes. In the present
approach, the problem of the gauge-fixing degen-
eracy or uniqueness seems to be an irrelevant
question. Thus the quantization procedure de-
veloped here can be generalized to the non-Abelian
cases without facing the dilemma of the gauge-
fixing ambiguity pointed out by Gribov. ' Never-
theless, in the non-Abelian gauge field cases, we
will face certain technical difficulties which might
be very difficult to solve. In the canonical quanti-
zation approach, the analog of Gauss's law dif-
ferential equation in (3.3') cannot be easily solved
in the non-Abelian cases. In the path-integral
quantization approach the longitudinal-mode vari-
ables can no longer be integrated compactly as in
the Abelian case, because they also couple with
the transverse modes in the cubic and quartic
terms of the Lagrangian. Maybe these couplings
can be handled perturbatively by the zero-mode
Feynman rule developed in Ref. 6. (Conceivably,
no Faddeev-Popov ghost will emerge in such a
type of path-integral treatment. ) We will investi=
gate this interesting problem later.

1Vote added. After the completion of the present
paper, the author was informed that the problem
of field quantization in the A0= 0 gauge without
complete gauge fixing was also discussed in the
recent work of Willemsen. " However, he did not
exhibit the Coulomb interaction potential which we
obtained in both Eqs. (3.7) and (4.15). The recent
work of Senjanovic" also deals with the same kind
of problem.
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