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In the MIT bag model we calculate the masses of all colorless N-quark states, for N = 3, 6, 9, 12, 15,
and 18, with the quarks in s», states of the bag. For fixed N these states belong to only one SU(6)
irreducible representation. We give SU(6) mass formulas for these states. Several candidates for the lightest

N = 6 states are already available. Especially in the AN channel the lowest three predicted states seem to
show up in the data.

I. INTRODUCTION

In the naive quark model' one was able to explain
many features of the hadrons. Relations between
mass differences within SU(S) multiplets could be
derived. However, it was impossible to say any-
thing sensible about the masses of the individual
hadrons. In particular any indication about the
masses of the exotic mesons (q'q'), the exotic
baryons (q'q), and the dibaryons (q') was lacking.
One of the reasons was our ignorance about the
interactions between the quarks.

In the last few years this situation has changed.
It is now generally thought that the quarks are
colored and that the interaction between the quarks
is mediated by colored gluons. ' ' A particular
version of this gluon-quark model is the MIT bag
model, '' ' in which colored quarks are confined
to a certain region of space, called a bag. In the
simplest version, in which the bag is taken to be
a sphere, one was able to reproduce rather well
the masses of the colorless s-.wave qq mesons and
of the q' baryons, using in the case of three flavors
only five physically interpretable parameters.
Without introducing new parameters one can cal-
culate in this bag model also the masses of exotic
states, like the s-wave q'q' mesons' and the s-
wave six quark dibaryons. '

The results of these exotic-meson calculations
were quite surprising and pleasing. The lowest
states formed a nonet of scalar mesons, the light-
est one being an isoscalar at +650 MeV, which is
obviously the long known, but still quite puzzling
e meson. The isovector and second isoscalar
mesons are degenerate and have a mass of about
I.I QeV. These states are probably the 5 and S*
enhancements around the KK threshold.

The results of the dibaryon calculations were
also quite interesting. It was shown that one must
expect some six-quark states with relatively low
mass. These states must show up as resonance

in NN, AN, and ZN scattering, and in the AA, =N,
ZA, and ZZ channels. Especially significant are
the predictions of a AA bound state with a binding
energy of about 50 MeV and of possible NN
resonances.

Experimental verification of these predictions is
quite important, because the existence or non-
existence of these states will be quite an important
test of the applicability of the present form of the
MIT bag model to exotic states.

Although these six-quark states and in general
the colorless N-quark states (X=3, 6, 9, . . . ) occur
as resonances in scattering processes like Pd,
P'H, or Ad, they are different from nuclear states
like 'He, He, or hypernuelear states like AH,
because they are single hadron states. They are
unaccounted for by the spectrum of resonances
and bound states arising in standard potential
model or shell-model calculations. '

In this paper we will consider all colorless N-
quark states, where the quarks are in the s, i,
states of a spherical bag. These hadrons have thus
all positive parity. Since all particles should be
color singlets and since the color symmetry is un-
broken, the old mass formulas' " obtained from
specific assumptions about the breaking of flavor-
spin symmetry are not affected. The difficulty in
applying these mass formulas was that one had to
determine the coefficients for each flavor-spin
multiplet separately from the experimentally known
masses of the hadrons. The MIT bag model offers
a way to calculate these coefficients for the color-
less N-quark states, which will belong for fixed
E to only one flavor-spin SU(6) irreducible repre-
sentation. Because the allowed states must be
totally antisymmetric with respect to flavor, spin,
and color, the color-spin tensor operators occur-
ring in the spherical-bag mass operator can be
expressed in simple flavor-spin tensor operators.
We then can identify the contributions of the dif-
ferent SU(6)-breaking tensor operators, the co-
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efficients being known functions of the bag radius.
In order to satisfy one of the boundary conditions

in the bag model, the mass of a particular state
is found by minimizing the expectation value of the
mass operator with respect to the bag radius R.
As this radius does not vary too much between
different members of the same SU(6) multiplet, it
is possible to choose only one R value for an entire
multiplet without introducing significant numerical
inaccuracies. This way we obtain for fixed N mass
formulas, which suffice to obtain the masses of all
the s-wave N=6, 9, 12, 15, and 18 quark states,
without introducing any new parameters.

At this point we would like to stress the import-
ance of the prediction of several NN resonances,
because these predictions could at present be
checked experimentally, if their width (about
which we cannot say anything sensible) is not too
large. We expect NN resonances in the 'S, chan-
nel at T„b=0.61 GeV, in the 'So channel at T„b
=0.79 GeV and two (almost'? ) degenerate resonan-
ces in the 'D, and 'D, channels at T»=1.04 GeV.

In the hyperon-nucleon (A&V and Z??) channel
many resonances are expected. In the experiment-
al data (only available for the lower energies} sev-
eral enhancements can be seen next to the reson-
ance IJ, seen" at 2127 MeV. The resonance H is
certainly not a six-quarks-in-one&ag state, be-
cause it can quite naturally be explained in the
ordinary potential picture. "

In the Y=O channels (AA, :"??, AZ, and ZZ) we
expect an I=0 'S, bound state about 30 MeV below
the AA threshold. The first resonances in the I
= 0 and I = 1 'S, channels are found at E=2.35 GeV
and E=2.39 GeV. The Pauli principle forbids the
I =0 resonance at E = 2.35 GeV to decay in the AA
channel, it can only decay in =¹

II. CLASSIFICATION OF THE N-QUARK STATES

of the Hamiltonian. The permutation symmetry of
the states we will describe with the help of Young
diagrams. '~' " The states contain N quarks, so
the corresponding Young diagrams contain N box-
es. Because of Fermi statistics the N-quark
states must belong to the totally antisymmetric
irreducible representation (irrep) of SU(18), des-
cribed by a Young diagram of only one column
and N rows.

To get some of the important quantum numbers
of these states we consider the decomposition of
SU(18) in the old-fashioned (flavor-spin) SU(6, FJ)
and SU(3, C)

SU(18}m SU(6, FJ}3SU(3, C).

The physical states must be SU(3, C) singlets. The
corresponding Young diagram for the SU(3, C)
part of the state, therefore, is rectangular and
contains 3 rows and B =??/3 columns. Because the
state must be totally antisymmetric, the permu-
tation symmetry of the SU(6, FJ ) part of the
state is described by the associate diagram of the
diagram describing the permutation symmetry of
the color part of the state. This associate dia-
gram thus has three columns and 8 rows. This
uniquely detertnines the SU(6, FJ) irrep [ g] to
which the colorless states belong. They are given
in Table I. At this point we should note that in
SU(n) the irrep described by the rectangular Young
diagram with x columns and Y rows is the complex
conjugate irrep of the irrep described by the Young
diagram with x columns and (n-y) rows. We see
this property clearly reflected in Table I. Next
we consider the decomposition

SU(6, FJ) DSU(3, F)3SU(2, J).
For the relevant SU(6, FJ) irreps [p] the decom-
position

In the MIT bag model' ' we will consider multi-
baryon states with baryon number B, described
by a wave function of N =3B quarks, all in sly2
states of the bag. These states have an SU(2, J)
classification for the space-spin part, an SU(3, F)
classification for the flavor part (assuming only
3 flavors), and an SU(3, C} classification for the
color part. Because of generalized Fermi sta-
tistics the N-quark states must be totally anti-
symmetric. We therefore can place up to 18
colored quarks in these states of the bag. Be-
cause

SU(18) DSU(3, F)S SU(2, J)3 SU(3, C),
a classification of the states with the help of the
group SU(18) is quite useful. This does not mean
that we consider SU(18) a good symmetry group

TABLE I. The SU(6, FJ) irreps [p] of the colorless
N-quark states.

3
6
9

12
15
18

[56]
[490]
[980]
[490*]
[56~]
[1]

in the different SU(3, F) irreps n together with
their spins 4 is given in Table II. For the content
of SU(3, F) irreps we refer to Ref. 16.
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TABLE II. The decomposition of SU{6,EJ) irreps in flavor and spin. The states are or-
dered according to increasing mass. It will turn out that the states (27, 2) and {10*,3) in [490],
(27, -), (8, -), and (1,T) in [980], and (27, 2) and {10,3) in [490*]are degenerate as long as
there is no mixing (see'Sec. VI) ~

P —1

+=2

g-4

B=5

'[56] = (8, -)$ (10,-)
[490]= {1,0)63(8, 1)6 (8, 2) (10, 1)Q3 {10~,1) {27,0)

6 (27, 2) (10*,3)Q3 {35,1)Q3 {28,0)

[980]= (1 T)Q) (1
2

(9 (8
2

(B (8 p)$ (8
2

)(p (10,
2

(10
2

9 (27, -)8 (8,
2

) 8 (1,y) (g (27, y) (27, ) )9 (35,
2

)

g (35*,—) (64, -)
[490*]= (1, 0)6 (8, 1)9 (8, 2)9{10,1) {10*,1) (27, 0)

9 {27,2) (9 (10,3)8 (35*,1)Q (28*,0)

[56*]=(8, ~ )(10*, T3)

Another useful decomposition" is determined by

SU(6, FJ}DU(1, Y)3ISU(4, IJ„)3SU(2,J,),
where J„(J,) is the total spin of the nonstrange
(strange}quarks, I is the isospin, and 1' the hyper-
char ge. The decompos ition

[p,l=g(Y, (~) J.)

is given in Table III. Here (v) denotes the
SU(4, IJ ) irrep. They are given by their dimen-
sion and if necessary an extra index. This de-
composition is necessary, because when we cal-
culate the SU(6, 1 J) breaking we shall consider the
nonstrange and strange quarks contained in a state
separately. The decomposition of the group
SU(4, IJ„)in isospin S'U(2, I} and nonstrange spin
SU(2, J„)

SU(4, IJ'„}D S U(2, I )8 SU(2, J„}
is the nonstrange analog of the flavor-spin decom-

TABLE III. The-hypercharge, SU{4,IJ„), and strange
spin content of the SU{6,EJ) irreps. For [490*]and
[56*] the decompositions are the same as for [490] and
[56], except that the Y eigenvalue changes sign and {v)
becomes {v*).

[56] =(1, (20~), 0)(B(0, (10),2)(B(-1,(4), 1)$(-2, (1),q)

[490]=(2, (50), 0)(B(1~ (60), 2)(B(0, (45), 1)$(0, (20)), 0)

(B(-l, (20~), 2)Q(-l, (20i), 2)(B(—2, (10),1)

(B(—2, (6), 0) 6)(-3, (4), 2)(B(-4, (1),0)

[960]=(3, (20 ), 0)(B(2, (45), —)(B(1,(60), 1)(B(1,(36), 0)

(B(0, (64), 2)(B(0, (50), —,')6)(-1, (60).1)(B(-1,(36), 0)

(B(-2, (45), ~)(B(-3, (20,), 0)

position in flavor and spin. We get

(~}=Z(I,J.) .

These decompositions are given in Table IV.

{1) = (0, o)

(4) = (-,'.—.')

(6) =(1,0)8(0, 1)

(10) = {1,1)(0, 0)

(2O, ) = (-.', —.') {&.2)

(202) = {2,0) (9 (1,1)6
{36) =(-' -')(-' -)8

(o, 2)(o, o)

(45) = (2, 1) (1,2) Q (1,1)E9 (1,0)E9 (0, 1)

(50) =(3,0)(2, 1)g
(6o) =(-,', —,')(-, ', —,')6

(1,2)(1, 0)e(0, 3)$(0, 1)

(64) = (2, 1)EB (2, 0)g3 (1,2) 2 (1,1)E9 (1,0) E9 (0, 2) Q (0, 1)

III. THE HAMILTONIAN IN THE BAG MODEL5

The MIT bag model provides us with a method to
calculate the masses of the various N-quark
states. In this model the hadron is an extended
object (bag} to which the quarks are confined. The
bag is taken to be a sphere of radius R and the
quarks are placed in s&/2 states. Inside this bag
the quarks can move freely, except for a weak one-
gluon-exchange interaction between the color
charges (-gl.'„/2) and between the color magnetic

TABLE IV. The isospin and nonstrange spin content
of the SU(4, IJ„) irreps (v). In this specific decomposi-
tion the contents of (v~) are identical to the contents of
(v).
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moments (-gX'„o~/2). The eight generators of
SU(3, C) in the irrep 3 we denote by a'„/2 with a
=1 to 8. They are normalized such that TrX2 = 2.
The three generators of SU(2, j) in the J=—,

' irrep
are &r„/2 with k = l to 3 and Trc~' =2. The mass
operator of an N-quark system is given by

M =E~ +Eq +E~ + Eg

Here

A) ~ Aj =

and

~a r Oa j-

The energy E~ associated with the bag is

E =—BR
4w 3 Z
3 R ' (2)

where B is the bag pressure and Z, is associated
with the zeropoint energy. ' The rest energy and
kinetic energy Ez of the quarks in the bag is

We use i and j for the particle indices of the
quarks. The indices n and s more specifically re-
fer to the nonstrange and strange quarks. N; is
the number operator for the quarks i. The energy
eigenvalue of a quark in a spherical bag is (see
Table V)

a, (R)/R = a(m, R)/R,

where m; is the mass of the i th quark. The en-
ergy E„due to the color-magnetic interaction be-
tween the quarks is

E =- Q~Mg (Bt( 1) ( )
The energy E~ due to the color-electric interaction
between the quarks is

ec 2—ZE~ (R)++ E (R)~ (5)
i $)j

The gluon coupling constant g appears in e,
=g'/4m. The functions M;, (R) =M(m, R, m, R) and

E;, (R)=E. (mR, m, R) are functions of the products
of R and the quark masses m; and m& (see Table
v).

The bag radius R is determined according to one
of the boundary conditions in the model by minimi-
zing M with respect to R. This should be done for
each hadron separately. In order to have a useful
mass formula expressed in flavor-spin tensor
operators, we take an average R, for each entire
SU(6, FZ) multiplet. For a particular state we have

M(R) =4—v BR~ ~Z g ~ a(( ) f(R)
3 R ' R R

where f(R) contains the R dependence of E„and
E~ coming from the functionsM;j and E;;. Min-
imalization gives

R. =(4vB)' Ã a —Rmlft
L

i

Zo+ -R

As long as the functions e „M;j, and E&j are about
linear we may approximate:

Be-a, (R)-R ' =a&(0) =a(0) .aR

In the bag model the nonstrange-quark mass m„ is
chosen to be zero. ' So we have a(0) = a(~)

TABLE V. Average radii for multibaryon multiplets and values of functions n„M~j, E;j,
M=M +M~ —2M„s, and E=E +E~ 2E~.

((A,~o)')
R (GeV )

&n

&s
M~

M~

Ess
Ens
M
E

0
5.22
2.043
2.914 9
0.177
0.1127
0.140 6
0.278 4
0.409 1
0.334 8
0.008 43
0.017 99

12
6.70
2.043
3.211 3
0.177
0.098 1
0.1310
0.278 4
0.441 5
0.346 6
0.013 18
0.026 69

24
7.57
2.043
3.393 5
0.177
0.090 5
0.125 6
0.2784
0.459 2
0.352 8
0.016 25
0.031 96

60
8.39
2.043
3.570 0
0.177
0.083 9
0.120 8
0.278 4
0.474 8
0.358 2

0.019 27
0.036 94

96
9.02
2.043
3.708 5
0.177
0.079 1
0.1173
0.278 4
0.486 3
0.362 0
0.021 66
0.040 73

144
9.60
2.043
3.838 1
0.177
0.075 1
0.114 1
0.278 4
0.496 3
0.365 3
0.023 88
0.044 17
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=n„(R) =n„. The same we have for f(R). So a
reasonable average value for the radius of a. whole
multiplet is found by minimizing the bag mass for
a system of nonstrange quarks, taking an average
value for the color-magnetic interaction term:

R = (4va} '~4[-Nn„- Z, +-,'n, M„„((~'o)2)]'"

where ((a'o} ) is an average value of+ (A'o), ~ (X'o),
in an SU(6, FJ) multiplet. In this case the
color-electric part does not contribute. Since we
work in the neighborhood of a minimum, the R
dependence of M(R) is not too strong. The masses
of the hadrons obtained with R,„are only slightly
larger than the masses obtained with the radius
coming from the minimalization procedure. The
differences can easily be estimated and are & 20
MeV. Of the five parameters, m„ is fixed to be
zero and B, Z„n„and m, are made to fit the

light hadron mass spectrum, under the condition
that we have one radius for the baryons involved.
The parameters are: B' =0.146 QeV, Z, =1.89,
n, =2.12, m„=0, andm, =0.285 QeV. As was al-
ready noted above n„(R), M„„(R), and E„„(R)are
independent of R since m„=0. The values of R,„
and the values of the functions n &, M;;, E;~, at
R =R„are given in Table V.

Using the total-quark-number operator ¹N„
+N, and hypercharge operator Y= (N„—2N, )/3,
we can rewrite (3) as

2a„+n, (n, —n„)
3R

It also useful to separate the summations in (4}
and (5) into three parts: a summation over all
quarks, a summation over only the nonstrange
quarks, and a summation over only the strange
quarks. Then we may write

E„=-4' M„, &'0';. ~'v &+ M„„-M„, ~'0, ~ A,'o, + M„-M„, ~'a, ~ X'v,
g&j n~ & f12 S~ &S

2

(8)

and

E~-—E„, 3N+ ~]'~ +E„—E, 3N + ~g ~2 + Es E N+
tl~ 1 2

(9)

IV. EVALUATION OF THE COLOR-MAGNETIC AND

COLOR-ELECTRIC TERMS

We will make use of the permutation symmetry
of the states to replace the sums of the color and
color-spin tensor operators in (8) and (9) by more
useful sums of Qavor, spin, and flavor-spin ten-
sor operators. We introduce the following permu-
tation operators:

for SU(2), P~q =2 (1+o;.o, ),

for SU(3), I'„=-,'(-', +~i -&,) .

The three summation ranges in (8) and (9) we will
consider separately.

A. The sum over all quarks

The states can be labeled by quantum numbers
belonging to the groups

SU(3, F)8 SU(2, J)@SU(3,C).

Xc ~ X,. =-1--,o, o& —&X; ~ A. , ——,(X o); ~ (X o), ,

—(X o); ~ (Aco), =1+-,'o, .o, +-,Af X~

—2(&'o); .(~'o)~.

Ilefore proceeding we introduce the 35 SU(6, FJ)
generators A, with a = 1 to 35. For the irrep [6)
these can be found as the direct product of the
generators and the unity operators in the irrep 3
of SU(3, F) and the irrep J= —,

' of SU(2, J). These
35 generators, normalized to TrA, '= I, are
—,'(X„I811), (I//6 ) (1@o,), and —,'(A~So, ) with n =1
to 8 and k =1 to 3. The quadratic Casimir opera-
tor C, for SU(6, FJ) has in the irrep [p] the eigen-
value C, (p. ) and is given by

CB=QA; A, ,

where

A, A, =Q (A, )((A,), ~

The wave function is antisymmetric with respect
to flavor, spin, and color, so

This implies that

2 Q A; ~ A,. = C, —NC,(6) = C, —~~' N .

This gives Using the explicit expression for A, we find
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2 A, .Af = —3'O, ~ of +-,'A, , ~ Af
&f

+-2(z~o ); ~ (A~a), .
This implies that we may write

Q A; ~ Xq =- Q (1+ 2A, ~ A~),
i&f ]&f

-Q (Xco), ~ (Xco).=Q (1 —2A( A, +-', o, o,
f&f

+u~ x,").
Next we note the relations

go, o, =2P--.'N,

g A., y, = 2C, —2NC, (3) = 2C, —aN,
j&f

Trr~'=2, are the three SU(2, I) generators in the
SU(2, I) irrep with I= , . -We next introduce the
15 SU(4, IJ„)generators @ with 6 =1 to 15. For
the irrep (4) of SU(4) they are normalized such
that TrB,'=1 and are given by ,'(T—,S 1), —,'(1o, ),
and —,'(r~I81o, ) with I, I =1, 2, 3. The quadratic
Casimir operator for SU(4, IJ„)has in the irrep
(v) the eigenvalue C~(v) and is given by

c
n» n2

Therefore,

2 B, B2 =C~-NC~ 4 =C4- —N.
n n2

Using the explicit expression for B we find

2 Q Bi ~ B2=—,
' Q [ci ~ em+xi ~ &2+(To)i ~ (m)2].

where n1& n2 n1& n2

C3 =I'2 =4' X] ~ &f

is the quadratic Casimir operator" in SU(3, F),
which has the value"

c,(n) -f'= ', (p'+pq+q-')+p+q

n1 &n2 n2

+@N -Cn 3 n 4 y

A, g ~ X O'
2

This implies that we may write

(g+ 2 B, ~ Bm)

(14)

the irrep n =D(p, q). The equivalent expression
for Eq. (10) for color operators, applied to states
which are color singlets, gives

n1 &n2

(2 —2B, Bmi —',cr, o2+2r, ~ r, )
n1 n

2

=gN„—N -C +-J +4I (15)

This implies then that

C~ = ~N(18 —N)

and, therefore,

(A. o);.(X o)& =N(N 10)+ ~ J +—4C~ . (13}
&f

8. The sum ranges over all nonstrange quarks

The states can be labeled by quantum numbers
belonging to the groups

U(1, Y) 481 SU(4, IJ„)8 SU(2, J,)@ SU(3, C) .
The wave function for the Nn nonstrange quarks is
antisymmetric with respect to nonstrange spin,
isospin, and color; therefore,

12 12 12

C. The sum ranges over all strange quarks

The states again can be labeled by the quantum
numbers belonging to the groups

U(1, Y)S SU(4, IJ)SSU(2, J,)@SU(3,C) .
The wave function of the N, strange quarks is
antisymmetric with respect to strange spin and
color. Therefore,

p~s pC'—
12 12

This gives

-- —-o .gC C
2 3 1 2

(Xco), ~ (A.co-), =3-—,'a, o, .

Therefore, we get

This gives

~i *~2= v H'i 'om 2Ti 7'2 a(r&)g'(«}2 ~

-(A,co), ~ (X o), =~+go, ~ c, + ~r, ~ r, ——,'(m), (ro), .
Here —,'v& with k=1 to 3, normalized such that

+ -'N —2J
S1 &S2

(& o), ~ (A. cr), = —,N, ' —N, —'-, Z,' .

In the same way we obtained Eq. (11)we get

(16}
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Q X, ~ A. 2
= 2C 3 (C, n) —

~ !V„,
n) &n2

X, ~ X =2C (C, s) —-' V, ,
Sy &S2

where C,(C, n) and C, (C, s) are the quadratic
SU(3, C) Casimir eigenvalues for the nonstrange
and strange quarks. These do not vanish, but the
color irreps of the nonstrange and strange quarks
must be the complex conjugate of each other, so
C,(C, n) =C,(C, s). Using Eqs. (14) and (16), N„

3 N+ Y and N, =-', N- Y. We then find

Q(405, 8) =3[T' ——,'Y'+J„'-J,'] —[C, +J']
+~«[J, —~C«+kY +$C«],

Q(189, 27) = —,'[I' ——,
' Y —J„'+J,'] —[C, —J']

+-[J, ——'C +-'Y +&C ]

—+~" [J, ——,
' Y ] + —,

'
C«,

Q(405, 27) = —;[T'——,
' Y' +J„'—I,'] —[C, +J ']

—-', [J,'--,'C, + Y'+v'C, ]

J, —2C«+ —,'Y =
2 N(N-18)+ , (N-—9)Y. (18) Q (280, 8)= Q(280*, 8) = 0.

This equation and Eq. (12) result from the fact
that we consider decompositions of totally anti-
symmetric states in SU(18), which contain an
SU(3, C) color singlet. They enable us to calcu-
late the quadratic Casimir eigenvalues for
SU(6, FJ}irreps and SU(4, IJ„)irreps occurring in
the decomposition of SU(18).

V. THE MASS OPERATOR AND SU(6+J) TENSOR

OPERATORS

Because of conservation of spin, isospin, and
hypercharge the mass operator M must transform
as a spin and isospin singlet with Y =0. It there-
fore can be expressed in irreducible SU(6, FJ)
tensor operators M(p, , n) transforming as the I = Y
=0 member of the flavor multiplet n with 4=0
contained in the flavor-spin multiplet [p,]. Thus,

M= M(i!, n) .
p, n

In this version of the bag model these operators
M(p, , n) are quadratic operators constructed from
the SU(6, FJ}tensor ope'rators A, which transform
as members of the SU(6, FJ) irrep [35]. The mass
operator therefore has parts transforming accord-
ing to

[35]Ii [35] =[1]8[35],8 [35],+„189]

[405] 8[280]6[280*],
where s and a mean the symmetric and antisym-
metric combinations. From the tensor operators
A, we can make quadratic combinations Q(p, , n)
transforming as the I = Y =0 member of the flavor
multiplet n with J = 0 contained in the flavor-spin
multiplet [ p, ]. They are"

Q (1, 1}= 1, Q(189, 1)= [C, —J '] —&o C„
Q(405, 1}=[C,+J ] —«C«,

The mass operator for the N-quark states in the
bag model, therefore, can be rewritten as

M= my. , nQ p. , n
p, n

where m(p, , n) are constants calculable in the
model. Using for convenience the specific opera-
tor combinations, occurring in the 0's, we can
write

M=m, +m, [C, —J']+m~[C, +J']+m, Y

+m«[J, ' - -,'C«+-,' Y'] +m, [T' ——,
' Y']

+m, [J„'—J,']+m, J,'+m, Y'.

Different from the mass operator containing only
the contributions M( p, , 1) and M(p. , 8)" are the
contributions - J, and- Y'. These tensors come
in with the M(g, 27).

To see which tensors contribute in a particular
SU(6, FJ) irrep, we have to consider the Clebsch-
Gordan series

[56]8 [56*]= [1] [35]S [405]3 [2695],

[490]3 [490*]=[1]8[35]8[189]3 [405]S [2695] 3 ~ ~ ~,

[980]8[980]= [1]3 [35]S [175]8[189]3 [405]8 ~ ~ ~ .
The irrep [35]appears only once in all these prod-
ucts. Therefore, the matrix elements of the op-
erators Q(35„8) and Q(35„8) must be proportional
as can be seen in Eq. (18). In principle, we then
are left with a mass operator with 8 nonzero co-
efficients. However, there is some symmetry
left, due to the simple form of the bag Hamilton-
ian. The operators C„J', I', and J„' coming
only from E„appear in the bag mass operator in
the specific combinations C, +-', J' and T'+-,'J„'
[see Eqs. (13) and (15)]. The resulting mass
operator then has the following structure:

Q(35„8}=Y, Q(35„8)=J, ——', C«+s'Y +vC«,

Q(189, 8) = 3[T ——,
' Y —J„'+J, ] —[C3 —J ]

——«[X, ——2C«+kY'+$C«],

M=a, +a, [C, +-,'J ']+a2Y

+a [(T' ——,'Y )+-,'(J —J )]+a J +a Y'

(19)
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TABLE VI. The coefficients for the general mass formula csee Eq. (19)).

ap

0.9337
2.2091
3.4789
4.8003
6.1666
7.5766

ai

0.0571
0.0414
0.0352
0.0305
0.0276

ap

-0.1896
-0.1613
-0.1297
-0.0992
-0.0680

0.0148
0.0146
0.0144
0.0142
0.0140

-0.004 22
-0.004 92
-0.005 23
-0.005 48
—0.005 64

a5

-0.000 24
-0.000 19
-0.000 16
-0.000 12
-0.000 09

Moreover, in the product [56]8 [ 56*] the irrep
[189] does not occur. Therefore, the matrix ele-
ments of fl(189, n) disappear between states be-
longing to the irreps [56] or [56~] for n=1, 8, 27.
This gives

(56ic, - J~( 56) =-,',
(56iJ„'-J,'is6) =(56iT'--,'Y'+ Y-';is6),
(56iI, 'i56) =(56'-,'Y' —Y+-', i56).

In the relations for the irrep [56~] Y has to be re-

placed by —Y. The mass operator for the B =1
and B =5 states, therefore can be simplified to

M=b +b, J +b Y+b (12 ——,'Y )+b Y . (20)

Up to the term - Y' coming from the M(405, 2I)
contribution in this specific case, this is the
familiar SU(6) mass operator. "

Having performed the summations for the color-
magnetic and color-electric interaction terms in
Sec. IV we may collect all terms to yield the fol-
lowing mass operator:

M= —BR —~+N " ' — ' " Y+—' M»[N(N 10)+4(C —+—'J2)]

—'
(Mn. -Mn8)[.-'&O'- N. -C, +4(i'+3~n')]+ —'

(M., -M„,)(2N, '- N, —-',J,')

+~ (E„„—E„,)[ 2 N„(12 —N„) -C4]+—' (E„—E„,)[pN, (6 —N, ) —2J, ].
M can be rewritten in combinations occurring in (19). The coefficients are

s, = —BR' ——' N " ' +—'[N(N —10)(3M»+ —', M„)+N(18 —N)(6M+54E)],
4P 3 ZP 2(X& + (Xs (X

&ca, =—M, "+—'
l(~ N-'l)(M»™..)+(N-9)(~M+ e E)]~

&.=2R(M-™»)i a, =-—'
(—,'M+2E), a, =—' (2M- ~E),

where M =M +31„—2M„, and E = E„„+E„-2 E
Using the values of the functions n&, M;&, and E;&
in Table V, we are able to calculate the coeffici-
ents a, to a, in Eq. (19) for B =1 to 6 and b, to b,
in Eq. (20) for B =1 and 5. They are listed in
Tables VI and VlI.

VI. NUMERICAL ANALYSIS AND DISCUSSION

The bag parameters B, Z„n„and m, were
determined to give the best overall reproduction

bp

bg

b2

b3

b4

1.054
0.762

-0.181
0.020

-0.0013

1.062
0.717

-0.192
0.035

-0.0020

TABLE VIII. Numerical results for 8 =1 (see text).
All masses in GeV.

bp b& b2 b3

1 1.054 0.0762 -0.1805 0.0197 -0.0013
5 6.221 0.0368 —0.0783 0.0187 -0.0015

TABLE VII. The coefficients for the mass formula for
8 =1 and 5 [see Eq. (20)].

N
A

Z

M $

0

0.939
1.111
1.150
1.300
1.227
1.379
1.529
1.676

0.939
1.116
1.186
1.323
1.260
1.401
1.538
1.672

0.939
1.116
1.193
1.318
1.232
1.385
1.533
1.672
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(Gev)

3.0—
28, 0

~78 0

28, 0

35~1

35, 1

35, 1

35, 1
~27' 2

10,3

~27qc 27 2
27, 0

2. 5
c ~ 27~2—10,3

~27
~ 2

27, 0
27, 0

10F 1

10, 1

8~2~27 f) ~ 8
hE

~10,3 ~27, 2

~7,0 10F 1

~10,1
8, 1

8, 1

EE

8, 2 AE

10, 1

".7 ~ 0

Nh

~8 ~ 1
* 1,0

NA

2.0

S=O
3 1/2 3/2 &/2

S = 1 S=-2

FIG. 1. The masses of the 8 =2-baryons, for S =0, —1, and —2. The states are characterized by the flavor repre-
sentation that they dominantly belong to and their spin. Nearby thresholds are represented by dashed lines labeled with
the name of the corresponding channel.

of the light (B=1) baryon masses, using one R
value for the entire multiplet, as well as reason-
able values for the K, K*, ~, and P meson mas-
ses. The model proves to be sensitive to varia-
tion in B, whereas the other dependencies do not
seem to be very critical. Comparison with the
values obtained by the MIT group' shows that a,
has become a little smaller and Z, a little larger.
The second para. meter shift causes the masses to
be somewhat smaller correcting for the fact that,
since we do not minimize for each state separately,
our masses tend to be slightly above minimum
values. The mass spectrum of the B =2 to B = 6
baryons does not exhibit significant shifts, when

changing from one set of parameters to the other.
In Table VIII the coefficients b, to b4, following

from our parameters, are listed (A), together
with the values, which we found by treating these
coefficients as independent parameters and deter-
mining them directly from the baryon spectrum
(B). The resulting masses for both sets of co-
efficients are given together with the experimental
values. Comparison gives an indication about the
applicability of the mass formula and its MIT bag
analog. The calculations were carried out under
the assumption that the spherical-cavity approxi-
mation remains reasonable for higher B systems.

The computation of coefficient b4, occurring in
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( Cev)
B ~ 3

4.0—
64—3'2

54 3
' 2

364—'2

4]35—'2
27,—1

2 '2

364,—'2

-35—1'2

364—'2

Q 135—'2
527I'2

27—3'2
78,—'2
127—'2
310—'2

+135—'2
35,—'2
2 7 5

I 2

27 I
3

13S, —'2

35 I

2

27 3
'2

127 I'2

58—'2
—8,-'

'2

18,—'2

I = 1/2

S=O
3/2

S=-1
1/2

EEN

3/2

S = - 2

5/2

FIG. 2. The masses of the B =3 baryons for S=O, —1, and —2.

the term b, Y', which for instance breaks the
equal spacing in the decuplet, gives the correct
sign and order of magnitude as compared with the
result in column B of Table VIII. The value of b3
determining the Z-A splitting, is too small, which
seems to be inherent to the bag model. ' The agree-
ment with the experimental spectrum is fairly
satisfactory.

For B =2, 3, 4 states the mass operator is diago-
nal with respect to J, Y, and I. Mixing occurs
between different flavor multiplets with the same
J, Y, and I, when a particular flavor state is a
linear combination of some (8„,J,) states. Since
the contribution of the SU(3, I') quadratic Casimir

C, in the mass formula is much larger that the
contribution of J„, J, (a, &aI, a, ), the mass opera-
tor is almost diagonal in flavor. In Figs. 1, 2,
and 3 the masses of the multibaryon states with
B =2, 3, and 4 and S=O, -1, -2, have been plotted
together with the important thresholds. The states
are denoted by their quantum numbers S, I, J, and
the flavor multiplet they (mostly) belong to. In
Tables IX to XII a complete list of the multibaryon
masses has been given. The states that partici-
pate in mixing are supplied with a letter (a, 5, c)
that indicates the uncertainty induced by this mix-
ing. Apart from these uncertainties, there are of
course the ones due to the bag modeL The almost
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(Gev) TABLE IX. Masses of the B =2 baryons in GeV. The
uncertainties induced by the mixing are a ~ 10 MeV,
10&b &20 MeV, and 20&c&30 MeV.

Mass (GeV)

5.2-

5 0-

4.8-

28' 0

28, 0

35, 1

-35' 1

10, 1

28, 0

35, 1

2 7 f 2

27, 0

28
35
27
27
10*
10*

35
28
27
35
10
27
10*
27

8
10*

8
27

2.79
2.49
2.34
2.24
2.34
2.16

2.69
2.91

52
2.63 a
2.38 a
2.42
2.51
2.49 a
2.29 a
2.34 a
2.21 a
2.38

s=A s=-1 S=-2

FIG. 3. The masses of the B =4 baryons for S =0,
-1, and -2.

complete lack of data means that we can not say
much about the absolute mass scales. This is
mainly due to the fact that the hadron mass rather
strongly depends on the volume term in FB, which
may be too simple a picture to maintain for higher-
mass states. The relative positions seem to be
more reliable as they depend on the color inter-
action. '

Next we will discuss some of the predictions.
NN system: We find one resonance at E, =2.16

GeV (T„b= 610 MeV) in the 'S,-'D, wave, one in
the 'S, wave at E, =2 24 GeV (T„b. =790 MeV) and
two (almost?) degenerate resonances: one in the
'D, and one in the 'D, - 't", waves at E, =2.34
GeV (T~b =1040 MeV). There is some experi-
mental evidence" for an enhancement at 2.38 QeV,
which could be due to the degenerate 'D, and 'D3
resonances. The bag model does not tell us any-
thing about the width, but in the above experiment
it is about 200 MeV.

YN system. In the AÃ channel we find an (8, 1')
resonance at 2.21 GeV, an (8, 2') resonance at 2.29

27
35
28
27
10*
27

8
35
10
10*

8
27
27

8
8

27
1

10*
27
35
10*
28
27
27

8
35
10

8
27

27
35
28
27
35
10

35
28

28

2.70
2.81
3.04 a
2.62 a
2.66
2.65 a
2.45 a
2.76 b

2.51 b

2.51 b

2.39 b

2.56
2.63 b

2.43 b

2.35
2.54 a
2.20 a
2.82
2.82
2.94 a
2.69 a
3.16 a
2.74 a
2.78 b

2.57 b

2.89 b

2.64 b

2.52 b

2.71

2.95
3.06
3.29 a
2.87 a
3.04 b
2.79 b

3.19
3.41

3.54
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TABLE X; Masses of the B=3 baryons. See caption of Table IX.

Mass (GeV) Mass (GeV)

7

2

5
2

64

27

27

]0+

27

27

10

27

10+

35

35+

3.70

3.50

3.87

3.72

3.82 a

3.57 a

3.66 a

3.52 a

3.46

3.63

3.89

3.78

3.79 b

3.73 b

3.66 b

3.82 a

3.82 a

3.68 a

3.67

3.75 a

3.57 a

3.93 b

3.68 b

3.61 b

3.51 b

3.78 a

3.64 a

3.46 a

4.19

4.12 b

3.87 b

3.98 b

3.98 b

3.84 b

8
2

2
5

7
2
5

3
2

10

10*

35~

27

27

35*

10+

35

35*

27

10

3.79

3.90 b

3.72 b

4.07 c

3.83 c

3.76 c

3.76 c

3.65 c

3.94 a

3.94 a

3.80 a

3.62 a

3.79

3.79

3.86 c

3.68 c

3.58 c

4.05 c

3.80 c

3.63 c

3.52 c

3.76 b

3.58 b

4.29

4.15

4.04

4.23 b

3.99 b

3.92 b

4.08 a

4.08 a

3.94 a

3.93

4.01 a

3.83 a

4.19 b

3.94 b

3.87 b

3.77 b
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TABLE X. (Continued)

Mass (GeV) Mass (GeV)

35

27

35*

27

4.04 a
3.90 a

3.72 a

4.38

4.24

4.16

4.34 a

4.09 a

10

35

4.18 a

4.04 a

3.98

4.15

4.48

4.28

TABLE XI. Masses of the B =4 baryons. See caption of Table IX.

Mass (GeV) Mass (C V)

28*

35*

27

10*

10

35*

10

28*

27

10*

27

35*

27

10

4.89

4.86

5.03

4.91

4.99

5.16 a

4.85 a

4.97

4.79

5.04

5.04

5.13 a

4.94 a

5.29 a

4.98 a

5.00 b

4.85 b

5.08 b

4.90

4.81 b

4.95

5.18

5.26

5.43 a

5.12 a

5.14

5.13 a

4.98 a

10

27

27

35

28*

27

35+

10*

27

10

28*

27

10

10

5.21 b

5.03 b

5.03 b

4.94 b

5.06

5.11 b

4.96 b

4.90

5.04 a

4.80 a

5.40

5.57

5.26

5.34 a

5.15 a

5.19

5.25

5.23 a

5.08 a

5.11 a

5.02 a

5.15

5.70

5.47

5.35

5.27

5.35

5.20
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TABLE XII. Masses of the 8 =1 and 8 = 5 baryons.

Mass (GeV)

a0

10

10

10

1.227

0.939

1.379

1.150

1 ~ 111

1.529

1.300

1.676

10*

10*

10*

6.18

6.29

6.18

6.40

6.29

6.25

6.50

6.34

GeV, and a (10*,1') resonance at 2.34GeV. Estab-
lished' ' ' ~ is the AP resonance at the Z+n

threshold (E= 2.13 GeV). Because this state can
very well be explained in potential theory" being
the YN equivalent of the deuteron, it certainly is
not one of the states mentioned above.

In the existing experiments three other energy
regions show to be interesting. A region around
E =2.14 QeV just aboue the ZN threshold, where
there is weak evidence for another reso-
nance. "'" " This could be the above-mentioned
(8,1') resonance. Another region around 2.25
QeV, where a resonance is found by Shahbamian"

at 2.26 QeV. The Berkeley data'" also show a
peak at 2.24 GeV. This is probably the (8, 2'}
resonance. The third region is around 2.33 QeV,
where both the Berkeley ' and Dubna" data show

peaks (statistics. lly not significant). We would like
to assign this effect to the (10*,1') resonance.

Of course additional information about J is
needed to decide these questions.

YY and:- N system. 'The most remarkable pre-
diction is that of a bound (1, 0') state at 2.20 GeV.
Furthermore, there are the I = 0 states at E =2.35
GeV (8, 1') and at 2.43 GeV (8, 2'} and the I =1
states at 2.39 GeV (8, 1') and 2.45 GeV (8, 2'}.

For AA this means a bound state about 30 MeV
below threshold in the 'S, wave. The (8, 1'}reso-
nance should appear in the 'S,- 'B, waves of:-N
and possibly ZZ. Because of the Pauli principle
the isoscalar J =1' state cannot decay in the AA

channel.
A possible candidate for the (8, 2'}I =0 state is

the AA resonance at 2.37 QeV reported by Shah-
bazian eE al."and Beillere et al.

If the above arguments are correct, we see that
our lowest states are consistently 40-60 MeV high.
This would mean that the AA bound state may even
be 90 MeV below threshold at 2.14-2.16 QeV.

Note added in Proof In the P.P system a spin
singlet state with mass 2.39 GeV (width 100 MeV)
was reported in %. Grein and P. Kroll, Wuppertal
Report No. WUB77-6 (unpublished), which coincides
with the enhancement at 2.38 QeV in deuteron
photodisintegration experiments. " These states
could be the degenerate 'D, and 'D, -'G, resonances,
predicted at 2.34 GeV.
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