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Topological excitations in the Abelian Higgs model
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A lattice version of the Abelian Higgs model is studied in arbitrary Euclidean dimension. Using an exact
duality transformation, the theory is rewritten in terms of its topological excitations. The dual form of the
theory specifies in a simple way all the allowed topological excitations as well as their interactions. The
combination of the scalar Higgs field and the Abelian gauge field produces excitations found neither in the
pure gauge theory nor in the pure scalar theory (XY model). In three dimensions, for example, we find
finite vortex strings terminating on monopoles, as well as closed vortex loops. Implications of these
singularities for the critical behavior of the theory are briefly discussed.

I. INTRODUCTION

In recent years, there has arisen a growing
awareness of the importance of topologically
stable solutions of nonlinear field theories. In-
deed, topological excitations have been shown to
be of central importance in the physics of fluids
and so l id s

p elcm entary par tie les, ' 3nd cosmo logy. '
The existence of these excitations follows from
very general features of the theory, in particular,
its internal symmetries and its space-time di-
mensionality.

These excitations can have profound effects
on the behavior of the theory. In the first place,
since they are collective excitations of the orig-
inal fields of the theory, they can appear as real
concrete objects. An example of this is vortex
formation in superfluid He which may be regarded
as a tropological excitation of a theory with a global
U(1) symmetry. ' In the second place, these ex-
citations can, under certain circumstances, induce
phase transitions. Examples of this phenomenon
are the phase transition of the two-dimensional
XY model, ' the Ising-model interface phase tran-
sition, ' and the confinement mechanism in three-
dimensional compact photodynamics first de-
scribed by Polyakov. '

In this paper, we will analyze the topological
excitations of a locally U(1)-invariant theory which
may be thought of as a lattice version of the Abe-
lian'Higgs model. Our approach will be to use an
exact duality transformation which will allow us
to write the Abelian Higgs model as a function of
its topological excitations. In this dual form of
the model, the partition function will be expressed
as a functional of certain integer-va]ued fields
which represent topological excitations of the
original scalar and gauge vector fields. In this
way, we will be able to express both the form of

the excitations and their interactions. In a later
paper we will describe the effects of these ex-
citations on certain correlation functions of the
theory, and will discuss possible phase transi-
tions arising from the presence of these objects. '

Our interest in this model has several sources.
First, the theory represents a kind of hybrid of
the models discussed in Ref. 8. In particular,
it is a combination. of the simplex numbers s = 1
(XY model) and s = 2 (compact photodynamics)
theories. Since these two models have qualitatively
different topological excitations, it is interesting
to see the form of the excitations which emerge
from the hybrid theory. From a less formal. and
more physical point of view, the model. is inter-
esting for at least three reasons. First, when.

properly treated, the model has much. in common
with models of spin-glasses which are currently
of great interest to solid state physicists. ' Sec-
ond, in their seminal paper on topological sin-
gularities as elementary particles, Nielsen and
Olesen" considered the Abelian. gauge field coupled
to a charged', scalar field in a Higgs-type poten-
tial. The symmetry of our model is the same as
theirs, except that our vector gauge fields are
compact. As we shall see, this modifies their
results in an interesting way. A third motivation
follows if we recall Polyakov', s result for com-
pact photodynamics in three dimensions. ' He
showed that the point monopoles of that theory
produced confinement in the sense that the ex-
pectation value of Wilson's loop integral fell like
e ", where A is some minimum area enclosed
by the gauge loop. It is interesting to ask how
this result and its interpretation is changed when
the gauge fields are coupled to matter. The sim-
plest such theory is the one we will study in this
paper.

In the next section, we will introduce the model
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and show that in a naive continuum limit it be-
comes the Abelian Higgs model in which the radial
degree of freedom has been completely frozen.
In Sec. III we introduce an exact duality transfor-
mation which lets us wr ite the model in terms of
certain integer-valued fields. In Sec. IV we show
how to identify these integer-valued fields as the

topological excitations of the original theory by
introducing a slightly modified form of the Abelian
Higgs model for which this identification is rea-
sonably straightforward. Some comments about
our results and some comparisons with related
models are presented in Sec. V.

II. THE MODEL

Consider a hypercubical lattice in d dimensions. Associated with each site j of the lattice is a two-dim-
ensional spin S(j) =e'""'. (For notational simplicity we will not indicate the vector nature of the lattice
vector j.) Associated with each link of the lattice is another spin U„(j)=e'e~"', where a link is defined by
lattice site j and a direction p, . These spins interact according to the lattice I agrangian

2= —P S(j )Ut (j)St(j —P)+ —g U„(j)U„(j+ iJ.)U~ (j + v)Ut (j)+ H. c. ,
P

where the first sum runs over all links of the lattice and the second sum runs over all plaquettes. The
partition function (generating functional) of the theory is

z = ~e, (q) vx(q)e~

~~ „(j)~x(j)

1
x exp ~ g cos[b,„X(j)—8„(j)]+pP cos, , &,„, . . . , &, . . .~,.b.,9,(j)

where & is the totally antisymmetric symbol in d dimensions, and 4, denotes a discrete difference, e.g. ,
6 X(j) = X(j) —X(j —P). Note that the term proportional to P is just the usual action for the pure gauge

field theory on a lattice.
This Lagrangian is invariant under a local U(l) rotation:

S(j ) - R(j ) S(j ), U„(j ) -R (j —p) U (j ) R(j )

or, in terms of the angles,

(3a)

(3b)

where R(j) =e' "'. This is just a compact version of the local symmetry of scalar QED.
To obtain the correspondence with the Abelian Higgs theory, we temporarily restore the lattice spacing

a. The lattice Lagrangian then becomes

1a' 'P coos[ac„a(j) —S.(j)]s—cos
(~ ~

s„„,, s, . ..o,a,(j) (4)

Define 6), =aA, and consider the naive con-
tinuum limit a-0. We use the replacements 2 ~ " 4I(d- 2)!j'

where

a&
p, P

Expanding the cosines to second order yields
a, constant term plus

We would like to expose the relationship of this
expression to the broken-symmetry phase of the
Abelian Higgs model, whose Lagrangian density is
conventionally written (in the Euclidean continuum)
as
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where

F„„=B„A.„—B,A

D, P =(8,—ieA„)(([),

and we take the potential

V(x) —= —(x —R')'.
4

riting (t) = pe'", the Lagrangian density becomes

2= —,
' p'(8 „X—e A, )'+ & (&,p)'

+ V(p')+ ~ F„,'. (6)

We expect that the field (t) will suffer spontaneous
symmetry breakdown, and the ground state of the
theory will have (p') =R'. We may formally freeze
out the radial vibrations by considering the limit

Then (9 p) =0, and the Lagrangian sim-
plifies to

&= —.R'([].X —A.)'+ 4e'

where we have rescaled the potential A, - (1/e)A, .
The correspondence with the naive continuum lime«

it of our original expression Eq. (6) is now ap-
parent, and we should identify v=f(.", P=[(d —2)!/
e] .

Now, one might think, because our theory pos-
sesses the gauge symmetry Eq. (3), that it is a
trivial theory since, choosing A( j) = -X(j) I we
apparently have the theory of a free vector boson
of mass pl = eR. However this is not correct,
since y is an a,ngular variable and consequently
need not be single valued. Thus A= -y cannot
be a true gauge transformation in general, since
a multivalued gauge function A may well induce
physical singularities in the field strength F „.
Alternatively, if we choose to admit such singular
gauge transformations, then A „ itself takes. on the
significance of an angular variable, i.e. , A. „be-
comes compact. In this case, its equation of
motion is

in his discussion of the d = 2 XY model. '
The naive equivalence which we have demon-

strated between our lattice theory and the con-
tinuum Abelian Higgs model does not guarantee
that the continuum limit of the lattice theory is
the Abelian Higgs model when that limit is taken
via the renormalization group. Another way to
say this is that the large-distance behavior of our
theory and the continuum Abelian Higgs model may
not be the same, at least not for all va, lues of v
and P. This possibility is also associated with
the following important observation: From Eq.
(5).we see that the phase of the lattice Higgs field
y(j) retains its identity as a phase angle in the
continuum, since ]!(j)- y(x). On the other hand,
the lattice gauge angle 8,(j) becomes aA (x) as
a- 0, so that the finite range of 8„(j) is mapped
into an infinite range for A (x). So even in this
naive limit, the-.gauge fields in some sense are
no longer compact. Hence it is not clear that the
theory will still retain the full effects of the multi-
valued gauge transformations alluded to earlier,
and so, one might fear that the topological exci-
tations associated with the compact nature of
8,(j) will disappear. This could well lead to a
difference in the long-range behavior of the lattice
and continuum theories. We will comment fur-
ther on this problem in Sec. V.

III. THE DUALITY TRANSFORMATION

We now discuss the dual form of our model
in various dimensions. In what follows we will
always assume periodic (spherical) boundary
conditions. Other boundary conditions may induce
a background field which in certain cases can
change the physics. This will be discussed else-
where. '

A. Two dimensions

In two dimensions, the partition function, Eq.
(2), is simply

Z= SX(j)8~ (j)expI+nc„cs[C,X(j) 8 (j)]
(H+ m') A „=0 (mod 2v) . (10)

The singularities allowed thereby are, of course,
the topologica1. excita, tions of this theory, just as
monopoles arise in Polyakov's discussion of com-
pact photodynamics for d= 3, or for that matter,
just as vortices arise from the solution of

]( = 0 (mod 2 w)

+ liens[8, „c„s„(j)]I.
Using the Four ier expansion

CO

eis COS Z ~ I (~) 8 jj)Z
n

«00

we .obtain

(12)

(13)

z= g II I„
& ( t)l 8t,.

&
(n) cl (j)ils (j) e (LI x(jp) „in(jc) ic 8(j)[„e„xm(j) —8e(j)]I).,(n(y), m„(~))

(14)
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~,.r „[4(i)-n(j}l=o. (16)

In two dimensions, this means simply that the
gradient of p(j) —n(j) vanishes, so &t)(j) —n(j) is
independent of j, and it is easy to see that without

loss of generality, we can choose it to be zero.
Thus the partition function becomes (up to an

overall constant) exactly

Z= g gI„„,(P)I, , „„.,().
{lr (j))

The origina, l, continuous angular fields have been
replaced by integer-valued fields on the dual
lattice. A p'rimary virtue of this Fourier analysis
is its simplicity in the low-temperature limit,
p, K»1. Keeping the leading terms in this limit
and neglecting field-independent constants, Z
becomes

where the first product sign denotes the fa.ct that
we have one I„&,.&(P} for each plaquette, and one
I „&,&(&&) for each link. Carrying out the angular
integrations, we obtain the constraint equations
on the integers m, (j), n(j):

(1} n,m.(j)= 0 1

(2) m, (j) &„„n„n(j)=0.
The first equation is exactly as in the d = 2 XP
model; its general solution is a curl

m. (j}=~..&.P(A,

where g(j) is an integer-valued scalar field which
is naturally defined on the vertices of the dual
lattice'. (The dual lattice is obtained by shifting
the original lattice by half a lattice spacing in
each direction. ) Inserting this into the second
equation, we find that

resentation, and vice versa.
We have argued that the expression in Eq. (18)

is a quantitatively good approximation to the full
partition function, Eq. (12), at low temperatures.
But it is also qualitatively useful outside the low-
temperature domain. First we note that the sym-
metries of the full partition function and the quad-
ratic approximation are the same. This means
that the topological excitations implied by these.
two forms are the same (see also Sec. IV). Sec-
ond, Eq. (18) is useful for at least a qualitative
determination of the critical properties of the
system. Whether the theories defined by Eqs.
(17) and (18) (or their analog in higher dimen-
sions) lie in the same universality class is not
clear. But experience with similar models,
notably the XY model, suggests that quadratic
forms such as (18) are a good guide to at least
the most general features of the phase transi-
tions. This point will be discussed further in Ref.
9. For these reasons we shall often restrict our
attention to the simple quadratic approximations
rather than the full theories. This should raise
no conceptual difficulties: Higher-order terms
can always be included in a straightforward way.

We now want to write Z in a form which displays
explicitly the topological excitations. This can
be done by using the identity valid for arbitrary
f (z),

(19)

This. allows us to replace the sum over integer-
valued fields by continuous fields plus sources,

+ 0(.-, ()-
)) (18)

+ 2 w(P (i ) t)(i )) .

where we set m' -=)&/P.

Next, we may carry out the P(j) integrations,
and we find

(20)

This is a useful low- temperature representation
for Z for two rea, sons. First, the'quadratic terms
are most important for p, K» 1, quartic andhigher-
order term. s are effectively less important by an
extra factor of P ' or &&

'. Second, this observation
implies that it is reasonable to try to expand the
Lagrangian in these terms. This should provide
us with a systematic algorithm for exploring
smaller and smaller values of K and p. Note also
the fact that K and p appear in the denominator
of the coefficient of the quadra, tic term. This is
a. typical effect of R duality tra, nsforma, tion: High

temperatures of the original representation are
mapped into low temperatures of the dual rep-

Z = Z, g exp .-(& 4»' g p(j ) D(j —k; m') p(Iz)
{wjl jy k

(21)
where Z, is a massive-spin-wave partition func-
tion [i.e. , it is Z with all P(j) =Oj', and D(j -k; m )

is the lattice Green's function in two dimensions
satisfying

[ ~„(j)'+m'jD(j a;m')=6, .„. (22)

We will show in Sec. IV that the integers p(j) may
be thought of as the vortices of the original fields,
so we may describe the system represented by
this partition function as a theory of massive spin
waves plus vortices. This is analogous to the
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well-known result of the Kosterlitz-Thouless
treatment of the d = 2 XY model, ' which is a, cer-
tain m'= 0 limit of our result. The contribution.
of the vortices to Z can be thought of as that of
a, gas of charges interacting through a short-range
potential. Note that these vortices do not interact
with the massive spin waves whose partition func-
tion is Z,. This is a result of retaining only the
quadratic form of Z, Eq. (18). Higher-order
terms will induce interactions between the spin
waves and vortices.

. The occurrence of the mass m leads to signifi-
cant differences from the two-dimensional XF
model (m = 0). The long-range, Coulomb (log-
arithmic) potential of the XF model is replaced
here by an expon. en.tially decreasin. g potential

(28)

and, equally important the self-energy g =—D(0; m')
remains finite in the infinite-volume limit. In
the d = 2 XY model, the volume divergence of the
self-energy gives rise to a neutrality condition:

the only allowed configurations of vortices are
those with total overall vorticity zero. In our
case, on the other hand, there is no neutrality
condition for this (Yukawa) gas of vortices.

Note that our solution makes plausible the as-
sumption of Calla, n et al. ,

" that the d= 2 Abelian
Higgs model can be approximately described by
an ideal gas of vortex points (instantons). Specif-
ically, this will be a good approximation when
the density of instantons is sufficiently small so
tha, t the mean separa, tion between them is large
compared with the range m ' of the interaction
potential. This will be true at sufficiently low
temperatures when e ~" is smal. l. Note that the
ideal gas assumption may also be reason. able at
higher temperatures since the strength of the
interaction effectively decreases like K.

The short-range nature of the vortex-vortex
interaction, and the lack of neutrality are also
crucial for a, discussion of the possible phases
of the system. We will deal with these questions
elsewhere. ' We turn now to a discussion of the
topological excitations which one finds in the
three- dimensiona, l case.

B. Three dimensions

In three dimensions, we have (suppressing site labels)

Z= 6y60, exp 2cos E „g&)~+ 8 +Keos + g —0,
P

llr (())z. (~) j„()xae.exp[!n„„e.„,~„.~,e.+m. (~.q e.)]
«&~v, m„)

(24)

Performing the y integrations, we obtain the
constraint

(25)

Since the divergence vanishes, rn, is a, curl of
another field Az,

62@ Qp pQ +p Ag e (26)

A~ is defined on. links of the dual lattice as dis-
cussed in Ref. 8. Performing the 8 integrations
gives the second constra. in.t

(27)

(29b)n, „=e „„~(A,—a, 8) .

Now, recall that the functional sum in Eq. (24) is
over, all distinct sets of n „and. m, which satisfy
Eqs. (25) and (27). But fixing $n, „,m, J does not
un. ambiguousl, y define A~ and S. A~ is defin. ed only
up to a gradient, i.e. , m, is unchanged by the
replacement A~-A~+ 4~A. n, „wiH be unchanged
also if, at the same time, S- S+ A. Thus the
dual theory possesses a gauge invariance similar
to the original theory except that the fields A~ and
S are discrete and in, teger valued rather than. con-
tinuous. In terms of them, we have

or, in. terms of A~,

e„,&,(2 e,„„n,„-A, ) = o. (28)

The curl being zero, the quantity in parentheses
must be a, gradient of another field, S, defined on
the vertices of the dual lattice

(29a)

or

where the sum is understood to be over n 's and
m's satisfying the representation Eqs. (26) and
(29).

As before, we may replace the sum over integer-
valued fields with an integration over continuous
fields plus a sum over certain sources:
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Z= 5~„„6m I, „(z ~s) PI, ~z ~exp z2wK „v „+L m
(K~„p L ~)

(31)

We recall the representations Eqs. (26) and (29b) for n, „andm„. Inserting them into the exponents, we can
write the exponential as

QK, „n„+L m = Q K„,e,„,(A~ —&~S)+L„i„,„&SA~

= Q (e„„,K„,—e,~ &pL, )A~ +(e„„~4„'K„,)S

= Q X~A~+.QS, (32)

where we have used periodic boundary conditions and summation by parts. We may now formally rewrite
the partition function as

Z= p J SASS Il, l. ..„„,,„(pt)). , „,(e)exp +2xe(S A + SS)
(J'j. Q)

f llA, ll 2 exp P = (A S„S)'——(e„„e,A, )' + 2(S,A„+ PS')
1

4p x x 4& fJA P

(33a)

(33b)

where the last form is, up to overall constants,
the quadratic approximation, accurate for P, rc» 1,
as discussed in the last subsection.

The integration and summation variables have
been changed from (m, „,n, ) to (A„S)and

(K „,L,).to fJ'~, l2)), respectively. In making this
change we must recognize that the real degrees
of freedom of the theory are the m's, v's, K's,
and L's. The gauge invariance of the theory in

terms of its dual variables discussed above re-
quires, in the usual way, that we specify gauge
conditions when integrating and summing over
the A' s, S's, J's, and Q's in order to avoid over-
all divergences from extraneous summations.
This is indicated by the pr imes in the last equa-
tion. Note also that the gauge choices mus't be
made in tandem: For example, if we choose
A, = 0, we must also fix J,= 0. That all of this
formal manipulation, in fact, leads to the cor-
rect result can be seen by going back to the ex~

pression Eq. (24), and choosing a gauge in the
summation before introducing the sources. A
complete discussion of the procedure for the
d= 3 XY model (an m2 =0 limit of our theory) is
given in Ref. 8.

We wil. l show in the next section that the J„'s
and Q's may be rega, rded as the topological ex-
citations of the original theory. But if they are
to represent real excitations, then any config-

I

uration of J~'s and Q's must be gauge invariant.
From Eq. (32) we can write J, and Q in terms
of E„„and L, from which it is apparent that

~ ~ (j)= Q(i), (34)

which ensures that any configuration of J's and
Q's will have a gauge-invariant meaning (see also
Ref. 8).

How can we understand the appearance of these
topological excitations ~ Recall what is already
known about certain related theories. Had we
sta, rted with no gauge potentia. l 6r„we would be
dealing with the pure XY model which, for d=3,
has topological singularities given by closed vor-,
tex loops, represented by a conserved topological
current J,. Had we begun. with the pure gauge
theory, compact photodynamics, we would have
found the in.stantons to be magnetic monopoles Q.
The topological singularities of our Abelain Higgs
model are a, combin. ation. af these two types,
namely, closed vortex loops and open strings
terminating on monopoles. Notice that there are
no free monopoles. That this is the correct in-
terpretation is shown in the next section.

We now want to consider the quadratic form of
Z, Eq. (33b) and carry out the Gaussian functional
integraL The gauge choice S=0 (and i)) =0) is
particula, rly simple. We have

I

1 ~ 1 e
1z= exp 'P ——A ' ——(e, A A )' = SA exp g ——((e, x A )'+ 'A '.]+ 'Sxs, A I

=Z, p exp Q-4))')(:J~(j)D, (j —0; m') j„(k)-i. I
(35)
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D„(j-k;m') -=5, +,' D(j —k;m'),

( a,'+ m') D(j —k; m') = 5„.
Thus

(36)

Z=Z, Q exp Q-» ' Z„(j)Z,())e . Q(j)Q(k))Plj,A

I

&& D(j - k; m')

. where

Q(j) =- ~ ~ (j)
This appears to be a theory of a massive "vec-

tor" particle in the presence of certain topolog-
'

ically induced sources. [Remember that d=3,
so the angular momentum corresponds to 0(2).]
Having evaluated the Gaussian integral, we see
that the interactions between the topological ex-
citations are short range since

~-Ig Im

D(j; m') . as Ij I
—~.

mij(

This is to be contrasted with the XY model in

(38)

where we have restored the lattice site indices
in the last line. Here, Z, is the partition function

'for the massive vector field with no topological
excitations, and D, (j;m') is the three-dimen-
sional lattice Green. 's functions defined by

three dimensions in which pieces of the vortex
rings interact via a power-law potential.

Before turning to four and higher dimensions,
it is amusing to note the following relationship
between the topological excitations of the two-
and three-dimens iona l theories. Two dim ens ions
may be thought of as a slice through three dim-
en.sions. In the d = 3 XY model, the topological
excitations are vortex rings. The intersection
of a, ring with a pla.ne is two poin, ts, or a vortex-
antivortex pair. This immediately leads to the
neutrality condition for the d= 2 XY model. - In
the d= 3 Abelian Higgs theory, we have, in addi-
tion to closed rings, open, finite vortex strings
terminating on monopoles. Slicing through a lin. e
with a plane, we have a, single-vortex penetration.
with no compensating antivortex. %e therefore
lose the requirement of overall neutrality in the
d=2 theory, as discussed in the last subsection.

C. Four and higher dimensions

In. four and higher dimensions the analysis
proceeds in essentially the same way as in three
dimensions, only the indices are more compli-
cated. Since four dimensions occupies a. special
pla, ce in our view of space-time, we will discuss
this case explicitly.

For d= 4 the pa.rtition function has the form
(again suppressing site indices)

Z = 5y50, exp —cos & &,„~& ~„4,0, + ~ cos 4,X —0,
p

II &.„„()))&„(»)J exec. exp ( P le„„»„„„»„e,e.e e»,(e.x —e.)
QVt & P, ~

Integrating over y and 0, implies the following constraints:

(1) ~.m. =O,

The divergence condition requires that m, be a curl,

m, = —,
' q„8n,A, B (A 8= -AB ) .

Then the curl condition becomes

This requires that the quantity in parentheses be a gradient

(39)

(4Oa)

(40b)

(41)

(42)

So,

$ .egg, V g, V Qg 2 ~%/Pa ~POP, V (43a)

(43b)

which is analogous to Eq. (29) for the three-dimensionaL case. As before, ambiguities in the definition
of the integers A z and S~ may be understood as a gauge symmetry:
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Sq- S~+ A~,

A ~-A g+ 4 A~ —~~A

Following the arguments of the last subsection we may write the partition function as

(44)

g —
6 p~@[ (1/2)Q +6 ~$yj 4/2)6fyP&ykP A&y„,m j

1

(„),) '~ )(P) I„),) ~ „()))exp 2)Tzg —,
' J„A~+ Q, S,

PfJ' c
(45)

Note that this implies that Q, is conserved:

&, Q, =O. (46b)

The interpretation of these topological singu-
larities is given by a simple genera, lization from
three dimensions. In the pure gauge theory in
four dimensions, the singularities Q would be
monopol. e loops, i.e. , "world lines" of monopole-
antimonopole pairs. In the XY model in four
dimensions, the currents J„would be conserved,
i.e. , ~,J„=0= ~,J, and would represent closed
orientable surfaces (spheres and spheres with .

handles). In addition to these closed surfaces, -

the model considered here has excitations which
are slices through these surfaces (or windows on

the surface) which are bounded by the monopole
loop. In three dimensions current lines terminate
on. monopoles, and in four dimensions a surface
terminates on monopole loops. If we think of one
dimension a,s time, these topological excitations
represent the following events: At some time a
monopole-antimonopole pair is created. As they
separate, they are' connected by a, string. At
some later time, the pair comes together and
annihilates. Because the string itself'has dy-
namical degrees of freedom, one also has events
in which a string loop is created, evolves, and
annihilates. This latter event sweeps out a closed
surface in space- time.

In the quadratic approximation the partition func-
tion in the S,=O gauge is

z= P f le�„expjP——[(e, „6 4 )' m'&„']

+pjJ, A. , (47)

One can show from this form that the antisym-
metric tensor &,', represents a massive spin-1

where the prime indicates that we must fix a.

gauge, and the integer values sources (which are
the topological excitations) satisfy

(46a)

field. As before, we could carry out the Gaussian
integration. The result is an expression similar
to Eq. (35). It has a factor &, representing the
partition function of a massive spin wave with two
polarization indices. This is multiplied by the
partition function for the topological excitations
described above, whose elements interact through
a Yukawa-type potential of range m '.

I

IV. THE DUAL FIELDS AS TOPOLOGICAL EXCITATIONS

In this section, we explore a periodic Gaussian
Abelian Higgs model primarily in order to motivate
the interpretation of the integer-valued sources
which arise in the formulation of the dual theory
as topological singularities of the original theory.
A similar periodic Gaussian model but analogous
to the XY model was introduced by Berezinskii"
and Villain. " For that system, the periodic Gaus-
sian model was shown to be a good low-temperature

. approximation to the XY model (which, when ex-
pressed in its dual representation, reproduces ex-
actly the quadratic approximation to the dual form-
ulation of the full model) and to be a convenient veh-
icle for describing the topological excitations of
the system. Our periodic Gaussian model possesses
precisely the same characteristics vis a vis the
Abelian Higgs model. (Other authors who have also
considered analogous periodic Gaussian models
include those of Refs. 8 and 16.)

The periodic Gaussian model arises by ap-
proximating the cosine as

e~ "'"= e' ~ exp (x+ 2))'n)', (48)
P-

Fl= 2

and allowing x on the right-hand side to range
over (-~, ~). (Villain, " in fact, generalized this
to allow the coefficient of the quadratic t;erm to
be temperature dependent in a certain way which,
he argued, might be useful at both low and high
temperatures. The form given here is valid at
low temperatures. See also Jose et al.")

Consider, for example, the two-dimensional
case. The partition function for our, periodic Gaus-
sian model is
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z= Q f ilx5e„exp ——Q(a, y —8, +Rwa, ('
(a, b)

x exp —— q„„h„0„+2mb

(49)

where we are to sum over integers a, and b. The
periodicity of the original problem does not re-
quire summing independently over both 6 and a,.
Indeed, even if we choose a gauge to define the
functional integrals over y and 0„summing in-
dependently over a, and b would re'nder Z defined
in Eq. (49) infinite. In fact, this infinity is not
directly connected with the local gauge symmetry
of the original model. Even the periodic Gaussian
analog of the d =2 XY model contains a similar
(although somewhat simpler) summation redun-
dancy. In the present case, the redundancy can
be eliminated by noting that we can first shift
0„-0,+ 2', and then redefine b.-b —27t&„„4„a„.
Thereby a„completely disappears from the prob-

I

lem, a.n.d so without loss of generality we can
set a, —= 0. However, our formal manipulation. s
can be carried through regardless of this redun-
dancy, and so we shall pot now place any specific
constraint on the sum over a„and b. The tilde
over the summa. tion sign reminds us that such,
a restriction is required in principle. Later in
this section we will eliminate the summation re-
dundancy in. a different way to show that when d
= 2 it is not necessary to explicitly make F,„
comp. act. Because of the local gauge in.variance,
the expression above is also infinite, due to the
integrals over y and 0„and a gauge choice must
be made to render it finite. But again, for the
formal manipulations we are concerned with, we

.can ignore this infinity and imagine dividing at
the end by the infinite volume of the gauge group.
One may of course choose a, gauge from the begin-
ning and after carrying out analogous manipulations
one will be led to the same conclusions.

Next we introduce the Fourier transform for
each exponential using

exp ——(x+27(n)' = (,„, dy exp — y'+iy(x+2tn) .2mP)'"
OO

(50)

Then we have (up to multiplicative constants)

1Z= g ~

bt„6s 6X 60, e pxP ——t„'+it,(&„x—9 +27('a ) exp P- —s'+is(e„„&,8„+27('b) . (51)
{a 5)"

tt t 2P

Carrying out the integrations over y and 0, yields
the constra, ints

JJ ~(n„t,(j))~(t.(j )+ «„„n„s(j),) .. (52) xexp Q-i27((b+ e,„b,,a, )(j( (54)

[Notice that there are many redu'ndant 6 functions
in this set of constraints. Thus Z is proportional
to some infinite power of b(0). This just reflects
the fact that we did not specify the gauge and
represents once again the infinite gauge volume. ]
These constraints are satisfied as follows: The
first condition implies that t can be written as
a curl

(53a)

Then the second condition. is equivalent to

L„(s+ (t() =0, (53b)

so that s (j)+ (t((j) must be independent of the lattice
site j. Without loss of generality, we may choose
s+ (t(= 0, and so, up to an overall (infinite) factor,
we get

Thus the source of the (t( field is the integer

p=& „b, a„+b. (55)

[Compare these expressions with Eq. (20). ] If
we think of a„as the "integer" part of the gauge
invariant 4~ X —0~ and of b as the circulation
of the vector potential, then we see that P repre-
sents the vorticity of the original fields.

As mentioned earlier, it is redundant to sum
over both a„and b. It is interesting to note, in
particular, that by shifting 0„-0~ + 2mc~, we may
choose c~ such that E„„4~c„+b=0. This elimin-
ates b from the summand in Eq. (49), and thus it
is unnecessary to make the gauge field compact in
two dimensions to obtain these vortices as topolog-
ical. singularities. This can be understood by
remembering that in two dimensions the pure gauge
fields have no dynamical degrees of freedom. In
higher dimensions, on the other hand, additional
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nontrivial excitations result from the compact na-
ture of E „, as we shall see. (Note in addition,
that even after eliminating b, it is still redundant
to sum over all a„. In particular, since the sum-
mand depends only on P we must not sum over

a„'s which differ from each other only by a gra-
dient. )

We will now sketch the similar construction in
three dimensions. For d = 3 we write the periodic
quadratic partition function as

z=
«a, 5)„}

6y68, exp -p 2 (&~X —8„+2ma„)' exp '-g —(e», &~8, + 2mb~)'
1

(56)

As before, the sum over all values of both a„and
b~is redundant as indicated by the tilde. However,
in this case, w'e cannot eliminate b„since an
arbitrary shift of 6)„-0„+2rc„gives b~ - b~

+ &»„„c„. One cannot always find a set of c„

to cancel b~, because the second term is diver-
genceless whereas the first term, in general, is
not. As before, we carry along this redundant
summation for now. Next, Fourier transforming
gives

1
u e p Q ~ + ~( ~X ~+ ~) p Z s~ +is~(~»u I v +2vf'~)

(57)

Performing the integrations over X and G„gives the
Dirac ~-function constraints

II &(&„&,(j))&(f„(j)+~,„&,8, (j)) . (58)

This implies, first, that t, is a curl, t, = &,p
+ A„

and, secondly, that s~-A~ is a gradient, A~
—s, —= &,S. Note also that the 5-function con-
straints (58) are redundant. As before, the
ambiguities in tne definition of A~ and 8 may
be understood as a gauge symmetry &~-A~
+ ~, A, S -S + A. Thus we have

I

g= Q &A &$ exp Q- — (e 6 A~)
«'f ~)t~

xexp g ——(A~ —h~ S)'1
2P

x exp( i 2m[a, e„,&„A„

+ b~(A~ —6~ S)]), (59)

e2fri (J') A)t + QS )

where

(60a)

x
=—b~ +&~„~&„a,

@= ~xbx. (60b)

where we have dropped an overall infinite factor
from the redundant & functions, and the prime on
the integral indicates that we must fix a gauge when
integrating over ~~ and S. We can now perform
summation by parts to write the last factor in the
form [cf. Eq. (32)]

Note that the relation Q= h~ J~ follows, as ex-
pected for gauge invariance. We are thus led to the
physical interpretation that the current J, is the
(suitably defined) integer part of E~„plus the
curl (vorticity) of the "integer part" of the angle
6 X —8, . its divergence Q is the monopole den-
sity.

Similar considerations in higher dimensions mo-
tivate the general interpretation of the various

. integer-valued sources as topological excitations
of the original fields.

V. COMMENTS

Using an exact duality transformation, we have
identified the topological excitations of the 1.attice
Abelian Higgs model, and have shown what their
interactions are. We have some comments to make
about these results:

(1) To better understand these excitations, it
may be useful to compare our model with related
models. This has been done to some extent in
the text. Here we summarize these comments. To
begin with, note that the familiar XFmodel is
an m-0 of our model. This can be understood in-
tuitively since, for P» tc, the energy is minimized
for a vanishing field strength (E„„=6 8, —b„8
= 0). This means that 8„ is a pure gauge (of the
form &~ &) and so, shifting X-X —A, we recover
the partition function for the XY model. In this
limiting case (en=0), there are several striking
differences from the finite-mass case.

First, as we mentioned in Sec. IIIA, in two di-
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mensions the self-energy of a vortex grows, for
small ~ like -lnm, so when m =0 single vortices
at low temperatures are no longer allowed. On
the other hand, a vortex-antivortex pair has finite
energy even for m=0, so in this limit the only
finite-energy configurations are those which re-
spect overall neutral. ity. In addition, the inter-
action between vortices is no longer short range
when m'=0. Indeed the potential grows logarith-
mically as the separation between vortices in-
creases. It is attractive between a vortex (say
P &0) and an antivortex (p& 0) and binds them at
low enough temperatures.

In higher dimensions (d~ 3), there are no mono-
poles or monopole currents [the Q
in, for instance, Eqs. (33) and (45)j at m = 0, and
the topological current density J&„... , is con-
served. The short-range interaction between top-
ological excitations in these dimensions also dis-
appears when m=0, and is supplanted by a power-
law potential.

It is -also worthwhile to compare our model with
the pure gauge theory. For example, in three di-
mensions, the pure gauge theory has topological
singularities which are isolated monopoles. When
the gauge fields are coupled in a gauge-invariant
manner to the Higgs matter fields, the medium
attaches a vortex string to the monopoles. Thus
monopoles can no longer exist in i.solation, but ap-
pear only as monopole-antimonopole pairs at-
tached by strings.

(2) Notice that, by the exact duality transforma-
tion, we have succeeded in establishing an equi-
valence between theories. The original partition
function is expressed in terms of phases X (j) and
gauge fields 8„(j), whereas the transformation re-
expresses the same quantity in terms of continuous
' spin waves" ( P( j);4„(j),S(j );. . . ) and topological
excitations (p( j);J„(j),Q(j );. . .). [Recall Eqs.
(30), (33), and (45).] The two languages provide

' exact alternative descriptions of the same theory.
This is one of the most intriguing aspects of the
duality transformation, and it is interesting to ask
whether a similar transformation can be found for
a non-Abelian symmetry.

(3) In Ref. 9 we will describe what we expect the
phases of our model to be, but we wish to make a
few comments here. First we note the resemblance
of the Abelian Higgs model to the theory of spin-
glasses. " A naive model of a spin-glass has the
Hamiltonian

H = Q J(i, j) S(i) S(j),
where S(i) are spin vectors coupled by a, random
variable J(i,j ). In the simplest version of the
model the spins are Ising spine S(i) = +1, and

J(i,j') is a nearest-neighbor coupling which has
some probability p to be ferromagnetic J(i,j)=+J
and probability I -p to be antiferromagnetic J(i,j)
= -J.- Consider in particular the case P= 2. Then
the theory has a local discrete invariance:

S(k) ——S(k),

J(k, j)- J(k, j),
for some fixed k, and j a nearest neighbor of k.
The local gauge invariance of electromagnetism is
quite analogous; it is a continuous, U(1) or R„
generalization thereof. Given the similarity be-
tween the models, one might expect some relation-
ship between the phases of the two systems.

Second, we note that the behavior of the expecta-
tion value of the Wilson loop integral, " L'

—= ( exp(i f &"dx")} changes dramatically when the
Higgs fields are added to the pure gauge theory.
We find that for all temperatures and all dimen-
sions„, I"- e" for large loops, where P is the
perimeter of the loop. This is to be contrasted with
the pure gauge theory in which 1' is sometimes falls
like e, and sometimes. like e, the difference be-
ing used as a signal for aphase transition. This result
is perhaps not unexpected, and follows from the fact
that 1" represents a quark" loop whose charge is
equal to the charge of the Higgs particle. Loop
integrals associated with fractional charges have
a quite different behavior. ' We also remark that
the different behavior of I" in the pure gauge theory
and in. the Higgs theory can be related to the dif-

ferent topological excitations of the two theories.
See Ref. 9 for a further discussion of these points.

Finally, we return to -a point mentioned in Sec.
II, namely, the behavior of our theory in the con-
tinuum limit. The question we raised there was
whether in the continuum limit defined by the re-
normalizaion group the theory would retain all the
interesting topological excitations we see on the
lattice. One possible answer is that there are
different phases of the models which have different
continuum limits. In particular, we believe that for
d~3 and fixed m', there are two phases as a func-
tion of K for finite K At high tem.peratures (&

small) we expect to find large-distance behavior
which is strongly affected by the topological ex-
citations, and therefore an appropriate continuum
theory in which the excitations survive, while at
low temperatures we expect these excitations not
to be as important for the large-distance struc-
ture, and to disappear in the continuum theory.
This point is also discussed in Ref. 9.
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