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I give an interpretation of permanent color confinement which allows the existence of 2 single-particle state
carrying any color representation, but forbids the existence of a scattering state with two or more separated
particles each carrying a nonsinglet color representation. I show that the Haag in-field expansion of the
Wightman field has a- form consistent with this interpretation in all sectors of the second-quantized
nonrelativistic harmonic oscillator. I replace the usual in-fields by the confined in-fields which, by
construction, have nonvanishing matrix elements only between the vacuum and one-particle states. I propose
that the occurrence of the confined in-field is the sine qua non of confinement in terms of asymptotic fields;
and that the Haag expansion of the Wightman field in normal-ordered products of confined in-fields for fields
carrying confined degrees of freedom, such as color, and ordinary in-fields for other fields, such as normal
hadron fields, will be a useful tool to study confinement in relativistic theories, such as quantum

chromodynamics.

I. INTRODUCTION

The apparent failure to detect fractionally char-
ged quarks has led to the hypothesis that quarks
and other color carrying objects are permanently
confined in hadrons; in particular, the confinement
hypothesis includes the notion that free fractionally
charged quarks do not occur in nature despite
the presence of fractionally charged quark fields
in the theory of hadrons [for example, in quantum
chromodynamics' (QCD)]. What is the physical
interpretation of ¢(f)10), where ¢ is a fractionally
charged quark field and f is a test function, in
such a theory? If this state has finite energy,
which I will assume, then it represents a col-
lection of objects with a total charge which is
fractional. In addition, if the quark field carries
a nonsinglet SU(3) ., [or SU(3),, for short] rep-
resentation, then the above state represents a
collection of objects in a nonsinglet SU(3), rep-
resentation, and, further, a properly chosen
polynomial in the color-carrying fields (the quark,
antiquark, and gluon fields in QCD) applied to
the vacuum will produce a state in any nonsinglet
SU(3) representation. These observations seem
to go against the possibility of permanent con-

. finement of color; however, I will now give an
interpretation of color confinement which is con-
sistent with these observations.

I propose to interpret permanent confinement of
color to mean that the macroscopic separation of
color-carrying objects into freely moving par-
ticles, as in a scattering state, is absolutely
forbidden, so that all color in a given state is
localized in a single particle, but that any SU(3),
representation can occur in this way. Then a
state such as ¢'(f) |0) consists of a superposition
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of systems, each of which contains a fractionally
charged color-carrying single particle (a quark
in this example) together with some collection

of hadrons, each of which is an integrally charged
color singlet. ; .

The color-carrying particles might conceivably
have anomalous kinematic properties (be some
sort of jellylike object), but I will assume that
they have normal single-particle kinematic prop-
erties, i.e., that they have a definite mass, in-
trinsic spin, etc. I emphasize that there must
be single-particle states carrying every SU(S)C
representation (without many-particle states of
these color-carrying particles) as well as the
usual single- and many-particle states of hadrons.

This interpretation of confinement is consistent
with the failure to detect quarks or other color-
carrying objects, because no quarks or other
color-carrying particles could be produced in the
laboratory from an initial color-singlet state,
and, considering cosmic-ray experiments, since
there is at-most one color-carrying particle in
any state of the universe, the flux of color-car-
rying particles incident on the earth’s atmosphere
is at most one per unit area per unit time, and
most likely it is zero.

The presence of single-particle quark (and other
color-carrying species) states would seem to
imply the existence of quark in (and out) operators,
and, via repeated application of the quark in-field
to the vacuum, to imply the existence of many-
quark states in direct contradiction to the in-
terpretation of confinement just given. This ob-
jection seems so convincing that until recently
I believed that the interpretation of confinement
just given could not be valid.

I suggest that this objection can be answered by
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noticing that although repeated application of the
quark in-field to the vacuum must lead to many-
quark states, such states need not be created by
repeated application of the quark Wightman field®
to the vacuum. In particular, the asymptotic
limits which allow construction of the quark in-
field as a limit of the quark Wightman field in the
Lehmann, Symanzik, and Zimmermann® (LSZ)

or Haag and Ruelle* (HR) sense will not have their
usual form because the vacuum expectation values
will not have the required clustering properties,®
so that it may be impossible for the quark in-field
to be extracted from the quark Wightman field.

In Sec. II, I study a soluble nonrelativistic model
with confinement in the lowest sector, and, in-
cidentally, develop some properties of this for-
malism. In Sec. III, I introduce the confined in-
field and give the form of the solution of the model
of Sec. III in all sectors. In Sec. IV, I make con-
jectures about asymptotic operator structure in
relativistic theories with confinement.

II. ASYMPTOTIC OPERATOR STRUCTURE OF A SOLUBLE
MODEL WITH CONFINEMENT IN THE LOWEST SECTOR

To examine the possibility of having single-
particle states without the associated many-par-
ticle scattering states, I consider a nonrelativistic
harmonic oscillator in second-quantized form.
The spectrum of this model has a unique discrete
vacuum state, a continuum of single-particle
states which can be labeled by the momentum, a
countable infinity of'continua of single-particle
bound states of two of the quanta of the basic
Wightman field which can be labeled by the dis-
crete quantum numbers of the bound states of
two quanta in the harmonic potential together with
the total momentum of the bound state, and anal-
ogous sets of states which are single-particle
bound states of three or more of the quanta of
the basic field. There are no states with two or
more freely moving separated particles in a scat-
tering state in this model. All the states of this
model correspond to the color-carrying single-
particle states of QCD. Particles analogous to
the usual hadrons are absent.

a(®, E) = a,,(5) 5(E - e(p))

-

In terms of the charge (analogous to color, but
Abelian here) carried by the Wightman field,
there are single-particle states carrying charge
one, two, three, etc., (analogous to the single-
particle states carrying color) and, aside from
the vacuum, no states with charge zero (analogous
to the normal hadrons). -

I will show that the Wightman field in this model
has a Haag expansion® in the asymptotic field for
the state with the quantum numbers of the Wight-
man field together with the asymptotic fields
associated with each type of bound state” labeled
by the number of quanta of the Wightman field
contained in the bound state together with the in-
ternal quantum numbers of the bound state. I
will exhibit the cancellations which remove the
possible contradiction between the Haag expansion
for the Wightman field and the absence of many-
particle scattering states.

' The Hamiltonian and charge are

\

H=@m) [ 29 9E, 0 - FuE, 0

+(0/2) [ @xayil (R, 087G, )

X (x-y)2F, Du&, 6 @.1)

and
Q= [ x & 00,0, 2.2)

where zp(E,t) is a nonrelativistic Wightman field

in three-dimensional space which satisfies Fermi
equél-time anticommutation relations. The spec-
trum of this Hamiltonian has been described ‘above.
The equation of motion for  is '

i0Y(X, 1)/0t = @m) 19 Y(x, 1)

sk [ @WE,0G -, 09, 0.
| (2.3)

The in-fields in the model are 9,,, ;,(x,?), where
n is the number of quanta of ¥ in the bound state
created by ¢}, ;, and « is the set of internal quan-
tum numbers of this bound state. The Haag ex-
pansion of ¥ in momentum space has the form

+ [ @qd nd s (-5 - Fr DB ~eF,) - eF)+ @, 2@ oy Fo) aly @ Flan )

+ [ @%@ 0@ =T+ @) 6 ~ £ () @)ool F) aly(@ g, P - - - | (2.4)

where
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U, t):depdE a®, E) exp|—iEt+ip - X), ' (2.5)
V@ 0= [ dpa @ expl-ie®)t+ib T, e@=F/@m), digm=ti, (2.6)
brayin@ = [ d% Gy @) expl=i 1, B) 1435 -5, @

and ¢;, and ¥,,, ;, are the asymptotic fields for particles with charge one and two, respectively, « labels
the two-body states in the harmonic potential, and the fs are amplitudes to be determined from the oper-
ator equations of motion. The subscripts on the f’s refer to the associated asymptotic fields; for example,
fi;12'has one ¢, and two a;,’s, and f;,,, has one a], and one a,, ;,. The a’s have free (anti)commutation
relations

law®), al,@], =@m)26F - ) ; (2.8)
and
I-aza, in(i;); a;ﬂ, in(a) ]-= (277)-3 6413 5(5 - a); (29)

where [A,B],=AB +BA. Other (anti)commutators vanish. The equation of motion for a is

[(0%/2m) = E]a(p, E) - (Zn)Skf d®qdF d®rdGd®sdH 6(p+q—T —S)0(E+F — G ~H)
‘ x a'(@, F)[V,25(f - Yla(T, G) a(8, H) =0 . (2.10)

The terms shown in (2.4) suffice to give the exact solution for the f’s present in (2.4). Substitution of
(2.4) into (2.10) followed by re-normal-ordering of the in-fields gives the following exact equations:

[(2m) (T, + T, - @2 = (2m) (T2 +T,° = @) - k V2, 12(G Ty, T) = f1,02(Q T, 1))

- @TP RV, 25(T, - Q) -V, 2(F, - D]=0  (2.11)
and .
[(2m)(@ = D) = By o(D)+ (2m) @ = KV 2] f1,,4(@; 1) =0 . (2.12)

Clearly f,;;2 must be antisymmetric in its last two arguments. No perturbation solution of (2.11) in powers
of k exists, because of the singular nature of the inhomogeneous terms, whose singularities reflect the
(confining) rising harmonic potential. The solution for f, 2 is

fl; 12(6; ;19 ;2) = —% (277)3 [5@ - ;1)‘— 6(& - ;2)] . ) (213)

This solution satisfies (2.11) for a general V.
Note that (2.13) has cluster decomposition violating singularities at q=r, and q=r,. The x-space form
of (2.13),

F(X7y,¥2) = =% [6(x = 7,)6(7,) - 8(x - 7,)8(7,)], (2.14)
where
F(X;7,,¥,) = (27)° f d%qd® v, d® v, f,,,2(Q; Ty, T,) exp[—iQ * X+ 4T, * ¥, + 0T, + Y, ] (2.15)

is the Fourier transform of f,, 2, of course also violates the cluster-decomposition properties of theories
without confinement, since F does not become small where its arguments are separated by a large distance.

To make clear the way in which models with and without confinement differ, I consider nonrelativistic
models with an arbitrary V(;() replacing the harmonic potential kx®. Then the equation for the partial
Fourier transform

R Ty To) = f B fr,12(@; 71y T) explei [§ - 3, +T) - X]} | (2.16)
of f,,2 is
[-m 2+ VE)][FK; Ty, Ta) = F(X; Tpy 1) | = (4m) 2T, = T,)2[f(X; Ty, Tp) — F(X; Ty Ty) ]

+220)% V(&) sinl F, -F,) 7). @.17)



The solution for f,.,2 found above corresponds to
fX; Ty, T,) = @)% sin[$(F, - T,) -X]. (2.18)

For theories without confinement, the boundary
conditions on the Haag expansion require the /
- — gsymptotic limit of the Wightman field to
be the in-field:

lm | @®'DE - X', - ), 1) =0, (X, 1)

= =

(2.19)
where
a)(?(,t)=(zw)~3fdspexp[-ie(;)mﬁ-?;] (2.20)

is a solution of the free Schrddinger equation.
Since the asymptotic limit (2.19) applied to the
solution (2.13) for f,.;2 or (2.18) for f does not
vanish, indeed the asymptotic limit applied to
-Q,9,,(x, 1) just reproduces this term, the in-field
boundary conditions rule:out the solution by itself,
for a theory without confinement. In such a theory,
there is a continuum of scattering eigenfunctions
of the homogeneous equations obtained from (2.11)
or (2.17) by dropping the last term of the right-
hand side, and a superposition of these added to
(2.13) or (2.18) allows a vanishing contribution
to the (- - ) in-field limit and a nonvanishing
contribution to the (¢ -«) out-field limit, thus
giving scattering. By contrast, for the harmonic
potential or any other confining potential these
homogeneous equations do not have a continuum
of scattering eigenfunctions, so that (2.13) or
(2.18) is the only available solution.

The solutions for f,.;, are the harmomc@scﬂlator
eigenstates conveniently described in x space:

f1;2a(&;;)=f1;2a(a_ é;y 0); (221)

Fa@ =" [ @4/,,20@ 0 exp(-id %), (2.22)

(cm™ 24 kR2) Fo®) = () F3 (R) (2.23)

€)=, +ny+ny+ e, e=2(/m)'?, (2‘.24)
and

E,,(t)=€(n)+ (4m) "2, ' (2.25)

where a=ﬁ=(n1,n2,n3), n; integral, labels the
two-body states in the harmonic-oscillator po-
tential.

The exact solution for ¢ for terms of the form
(2.4) is

WX, ) =¥, 1) - Q% 1)
+ Z fdax'Fi(ﬁ—_i’)zpin(;',t)

Xz 12 (3E+X7), 1), (2.26)
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where @, = [ @x 9! (X, 1)9,X, t) and ¥,; ;, was called
P24, 1n @bove. With this solution,

W, 0 10>= 93,0
but
W&, O (F,2)10>= 0 (X, 01 - Q,)

0>+0, (2.27)

L, 010>

F O FEE -Vl LGG+Y), 010>,
n

(2.28)
The first term on the right-hand side of (2.21)
vanishes. Thus while the Wightman field y' applied
once to the vacuum creates a single-particle state
with @ =1, y" applied twice to the vacuum does
not create a scattering state with two separated
Q=1 particles, but rather creates a single-par-
ticle @ =2 state. This situation conforms exactly"
to the interpretation of confinement given in Sec.
I Equation (2.28) shows that ¢f; w(X,1) creates
a single-particle two-body state whose center of
mass is at §, and that F’g& —y) serves as the
amplitude or wave function for the two constituent
quanta to be at x and y. The Pauli exclusion prin-
ciple does not seem to be included: however the
vanishing of the equal-time anticommutation rel-
ation (ETACR) for ¢ (in particular, the coefficient
of ¥,z ;,) requires

Fy(®)+ Fy(-%)=0, (2.29)

which gives the Pauli principle. Thus the Tz runs
over the odd states only. The canonical ETACR
for [9, ¢], is satisfied to terms of the type A,. The
ETACR for [, 9], is satisfied to terms of the
type A + AJ A, provided

D &) FA3)=6&x ) - 6&+7),

i, odd

(2.30)

which holds because of the completeness relation
for harmonic-oscillator wave functions,® using

Fy aa®) = 5[ F3(X) - F5(=%)) (2.31)
and the fact that ¢J; ,, creates a Q=2 state, so that
F3, 0aa 1S normalized to two

[ @5 P, 00 P, caa® =203, 5, (2.32)

The terms of theform® A, + ATA, calculated above
suffice to determine the terms of the form AJA,
+AlA, inthe Hamiltonian and the charge operator.
The result is

H=@m)? [ @ xFE - Q) T, & 1)

fdxzpz,“n(x Dbag, X, 1)

n,odd

" 4m)'1fd3xv¢zﬁ'm(x,t)-Vz/)zi,in(;, n o (2.33)
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and
Q= [ Pyl & 001 - @) v, 1)

+ZZ

i, odd

Note that the first term, which I call H;, in (2.33)
has the properties that

H,10)=0, Hp)y=e® P HilP1Pe)i=0,
(2.35)

f A Y3 10, Doz, X, 0) - (2.34)

where -
|5 >in=a§n(5) l0) s
. Iﬁu 52 Yin= ain(ﬁl)ﬂn(ﬁz) [0) s

which again agrees with the interpretation of
confinement given in Sec. I

In this model, there are no analogs of normal
hadrons, and thus no scattering states of any kind,
so that lpﬁa. in= Zpﬁa. out*

The qualitative features of the harmonic os-
cillator hold for any particle-conserving.model
with confinement. .

III. CONFINED ASYMPTOTIC.OPERATORS AND SOLUTION
. IN ALL SECTORS OF PARTICLE-CONSERVING
NONRELATIVISTIC MODELS WITH CONFINEMENT

In Sec. II I showed that for a model with con-
finement, the in operators ¥, and y!, are replaced
by (1-@,)¥;, and ¥],(1-@,) to order 4,+AlA,
and A]+AJA,, respectively. These replacements
were derived from the operator equation of motion
for the Wightman field, and guarantee the inter-
pretation of confinement given in Sec. I. Now I
introduce “confined in operators”

ana, con-ln(E’ t) = A0¢mx, in(}-;’ t) ) (3 1)

‘ and

U, conin > 1) = Bl (X, DA, (3.2)

where

Q= [ @G, 0,0 ‘

= in Z j dsx w:wz, in(E?t)d)na,m(;y t) ) (33)

n=1 ]

and
Ay=(sinmQ)/(1Q) (3.4)

1is the projection onto the vacuum. Note'° that

A02 = AO’ (Z/)con-in)z: (wzon-in)z =0,
, (3.5)
b No= Doy, =0,
and $ny, con-in A0 Phy con-1a haVe nonvanishing matrix

elements only between the vacuum and the state
¥la,1a10>. By construction, the confined in oper-
ators create at most one particle with confined .
degrees of freedom and thus guarantee the inter-
pretation of confinement given in Sec. I. In mod-
els, such as the nonrelativistic harmonic oscil-
lator discussed in Sec. II, where there are no
scattering states at all, the confined in and out
fields would be the same; however, in relativistic
theories, such as QCD, it seems possible that
a single quark or other particle with confined
degrees of freedom (color, in QCD) could scatter
off normal hadrons, and then the confined in-
and out-fields would differ. Note that the confined
ih-operators for a given particle with a confined
degree of freedom “know about” all the other
confined in-operators for other particles with a
confined degree of freedom via A,, which con-
tains all confined in-operators.

Now I show that the confined in-operators lead
to the following simplified form of Haag expansion
of the Wightman field:

Cl(F),E)= acon-in(ﬁ)é(E —-€ (5))+ Z Z f d3qd37’6(§ - ;+a)6(E -E i+l )8(;)+ Ena(a))fnco(:?(nd )B(a; ;)

n=1 «, B

X a:a, con-in(a) a (n+1)8, con'in(;) ’ El o:(p) =e (p) 3 (3' 6)

which provides a solution of the harmonic oscillator in all sectors. First, the term a
couples from all other terms, and satisfies the same free equation of motion as a;,6. Secondly, f1j3,

6 in (3.6) de-

on

con~-in

in (3.6) satisfies the same equation (2.12) as f;,,,. The generic f° satisfies

[@m)HF = @ = E g (0) + Epo (@ 1,50 s (@3 T) =k };Maﬁ(a>f,°,z,"m<a;?)=o, ‘ (3.7

where

M@= @m)* D [ a9 (2 58,53 D1 G103 D) - \ (3.8)
14



Starting with the solution for /{73, given in Sec.
II, one can solve (3.7) recursively, since, for
each n, (3.7) is a linear homogeneous equation
for the f°°® under consideration, and M 4 has
already been determined by f°°® for n -1 in (3.8).

I expect that the usual result, for models with-
out confinement

H(d)y d)f) = Z H0(¢na, in, d):a, 1n) (3' 9)
n, o
will be replaced by

H(d)’ Z/}T) = Z;n,a HO, na(¢na, con-in? zAb:tx,con-in))

where H, . is a free-field functional in the har-
monic-oscillator model, and that similar re-
placements will hold for other relevant observ-
ables. For nonrelativistic models which have
both confined particles which occur only in single-
particle states and normal (unconfined) particles
x Which have both single-particle states and many-
particle scattering states, additional free-field
functionals of the y,,’s will occur in (3.10), and
additional normal-ordered products of the y, ’s
will occur in (3.6). Note that the modified Haag
expansion:in terms of ¥, , ;ou-i, 8 much simpler
than the usual Haag expansion in terms of ¢, ,,.
IV. SPECULATIONS ABOUT ASYMPTOTIC OPERATOR

STRUCTURE IN RELATIVISTIC MODELS

WITH CONFINEMENT

I speculate that the confined in-fields also play
an important role in relativistic theories with
confinement. For example, in a theory such as
QCD, the usual free-quark in-field would be re-
placed by

qcon-in(x) = Al q ;;)(X) + qi(;x)(x) Al ’ (4- 1)

where ¢ {)(x) are the positive-frequency (anni-

hilation part) and negative-frequency (creation
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part) of the usual in-field, and
A= [”(f,_,fz )fto,o)czm (i, 1
) X{ﬁ(fl,f2)¢(0,0>[c2(3,(f17f2)“ Cz (30)]}7 (4'2)

is the projection onto SU(3),-singlet states. In
(4.2),

Cz(s)(fnfz)=%(f12 ~fifa*+ )+ 11

is the eigenvalue of the second-order Casimir
operator for a representation of SU(3) with two
rows of length f, £, >0, and C, % is the second-
quantized form of this Casimir operator, which
can be expressed in terms of either the Wightman
quark and gluon fields or the infinite set!* of in-
fields carrying nonsinglet color, in analogy with
(3.3) for the model of Sec. III. Note that

AZ=4,, (g go)n"ln)z’_' (¢ §:-o)n-in)2 =0,

. - 4.3
ql(n)A].:Alq(in):O’ ( )

in analogy with (3.5). The terms of the modified
Haag expansion will be greatly simplified as was
true for the models in Sec. III: the confined as-
ymptotic fields which carry color will enter at
most bilinearly, while the asymptotic fields for
the color-singlet hadrons will enter in arbitrary
degree as in the usual Haag expansion. The def-
inition of normal ordering for the confined as-
ymptotic fields differs in the way A, is treated
from the usual normal ordering. The Hamiltonian
and other relevant observables will have free-
field form as a function of the confined asymptotic
fields as in the models discussed in Sec. III
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