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The Schwarzschild radial coordiriate as a measure of proper distance
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It is shown that when time is measured in a Schwarzschild field by radially falling or rising geodesic
clocks, the usual Schwarzschild radial coordinate R, defined by ds ' = dR '/(1 —2M/R)
—(1 —2M/R)dT + R dQ, has the physical significance that it is a measure of proper distance
between two events that occur simultaneously relative to the radially moving geodesic clocks, the two events

lying on the same radial coordinate line.

I. INTRODUCTION

One of the underlying principles of general rela-
tivity is the freedom of choice of coordinates in
the mathematical description of laws and physical
quantities. However, certain coordinates may be
"preferred" over other coordinates in the sense
that they are simpler or are directly related to
physical quantities, or both. For example, in the
absence of gravitation, Minkowski coordinates
are regarded as being measured by clocks and
rods and are preferable to more complicated co-
ordinates that are mathematical constructs in
flat space-time.

It is well known that when expressed in terms of
the usual Schwarzschild radial coordinate R, de-
fined by

4R'ds' = —(1 —2M/R)d T'+R'dQ',

the effective gravitating mass of the source that
influences the motion of test particles is'

M„, =M —Q'/R. (5)

II. SIMULTANEITY AND PROPER DISTANCE

Consider two events lying on the same radial
coordinate line with radial coordinates R, and R, .
Let these two events be simulil:aneous relative to
the Schwarzschild coordinate T in Eq. (1). The
proper distance L between these two events is

We shall here show that the Schwarzschild radial
coordinate R has a further direct physical sig-
nificance, namely, that it is a measure of the
proper distance between two simultaneous events,
where simultaneity is determined by the times
recorded on radially falling or rising geodesic
clocks.

Also, for a radially moving geodesic particle, the
second derivative of R with respect to the proper
time 7 of the particle takes the inverse-square
form

d'Rld+ = —MlR'.

And in a Heissner-Nordstrom field given by the
metric

dR
1 —2M/R+Q /R

—(1 —2M/R + Q'/R')d T'+ R'd Q' (4)

there are expressions for important physical
quantities in the spherichlly symmetric case that
take a much simpler form than they do in terms
of other coordinates, such as isotropic or Kruskal
coordinates. For example, the invariant are'a A
of a sphere defined by B = constant is given by

T=const

(6)

where in evaluating the integral, the coordinate T
is held fixed along the radial line joining the two
events. Note that the square root in this expres-
sion for the proper distance becomes imaginary
when R &2M. This is linked to difficulties of
interpretation insid e th e Schw arz schild rad ius,

The expression for proper distance in Eq. (6)
depends on the simultaneity determined by the
Schwarzschild coordinate T. This simultaneity
is, of course, not absolute. It depends on the
coordinate system. Therefore the same is true
of the above definition of-proper distance. Indeed„
the Schwarzschild coordinate T enters twice:
once in the initial statement that the events under
consideration are simultaneous with respect to it,
and once in the integral in Eq. (6), which is
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evaluated for constant T. Thus the situation itself
and the integral formula for the proper distance
are both coordinate dependent. In what follows
we shall employ a corresponding definition of the
proper distance between two events that are
simultaneous for a different time coordinate, and
will elaborate on the concept in the Conclusion.

II'I. A PHYSICAL TIME COORDINATE

The difficulties with the proper distance I- in,
Eq. (6) and the metric in Eq. (1) when R ~2M
can be attributed to the use of the Schwarzschild
coordinate T as a measure of time. This T is
given by coordinate cl.ocks that are not standard
clocks. We shall show that these difficulties are
alleviated when time is measured by radially
falling or rising geodesic clocks that are standard
clocks.

Consider radially moving geodesic standard
clocks that are either falling from, or rising to,
some maximum radius R; &2M. For brevity we
shall speak only of falling clocks, but, as will be
seen, the expressions to be developed will hold
for rising clocks as well. Let the clocks be re-
leased from R; at uniform intervals of T and be
adjusted such that the time of each clock at the
instant of release is equal to the (proper) time
recorded on a standard clock that remains fixed
at R;. Thus one can envision a sort of clock
factory fixed at R; that, at regular intervals of
time, drops cl.ocks that are synchronized with a
master clock in the clock factory. The time at .

any event in the manifold is then taken to. be equal
' to the time on the radially falling geodesic clock

that is coincident with this event, so that the time
coordinate has the physical significance that it
equals the time 7 recorded by a geodesic, radially
falling standard clock under the stated initial
conditions, Of course with this procedure one
coordinatizes only that portion of the manifold for
which R ~R;, but for R &R; one 'can always use the
Schwarzschild coordinates (R, T) with no difficul-
ties.

To find the transformation between our op-
erational. ly defined time coordinate ~ and the
Schwarzschild time coordinate T, we start with
the wel. l-known timelike solution to the radial
geodesic equations,

dr/dR = (1 —2M/R;)'i'dT/dR

(2M/R —2M/R, )'~'
1 —2M/R

Integrating Eq. (8) term by term between the
limits R and R; and making use of the require-
ment that at the instant of release the time on
the falling clock is to be equal to the time re-
corded on a clock fixed at R;, i.e. , r; = (1—
2M/R;)'~'T;, we obtain

(8)

T=(1 —2M/R, )'~'T —c
' (2M/y —2M/R;)'~'

1 —2M/y

(9)
This is the desired transformation between the
coordinates (R, T) and (R, r).

In terms of r, the metric of Eq. (1) takes the
form

ds'= (&de —(2M/R —2M/R;)''dr]'1

I t

T2+ R2(fQ2 (10)

obtained from the transformation

T = T++2M ln(R/2M —1). (12)

Consider now two events that are simultaneous
relative to our operational time coordinate 7. If
we again take the proper'distance between these
two simultaneous events as

=const

we find from, Eq. (10'),

This form of the line element is analytic for all
R &0. The presence of the'divergence of the in-
tegrand in Eq. (9) at the Schwarzschild radius is .

to be expected since a coordinate singularity can
only be removed by a singular transformation.

. For R &0, Eq. (9) holds everywhere except at
R =2M, Consequently, at these places the line
element in Eq. (10) satisfies the Einstein field
equations. Therefore, by continuity, it must sat-
isfy the field equations al.so at the Schwarzschild
radius. The metric form in Eq. (10) is similar
to, but different from, the Eddington'-Finkel-
stein' metric

ds'=dR' —dT*'+(2M/R)(dR —dT*) +R'dQ (11)

dR/dr ='(2M/R —2M/R, )'~', (Va)

(I —2M/R, )'~2
(Vb1-2M/R

where c = —1 or+1 depending on whether the geo-
desic clock is, respectively, fal. ling from, or
rising to, the maximum radius B;. Equations
(Va) and (Vb) can be combined to give

dR R2-R
(1 —2M/R, )'~' (1 —2M/R, )'~'

Thus proper distance between events that occur
at the same time T is proportional to the Schwarz-
schild coordinate difference B2 Ry between the
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events. Moreover, when the clock factory from
which the clocks are dropped is situated at R& = ™,
the proper distance between the two ~-simultaneous
events becomes just R, —R, . However, the limit
R;- ~ involves difficulties with infinite transit
times, which we shall discuss at the end of the
next section,

p =aN,

where the constant a is some scaling factor.
Further, the Schwarzschild time coordinate T;
when the Nth clock is released is given by

T; =@AT; + To;,

so that we may write

(r T;/a)p = T; —T„.
From Eqs. (7a) and (7b) we obtain

(1 —2M/R;) ' ~'

(1 —2M/R)(2M/R —2M/R;)' '

(16)

from which, by integrating from (R;, T, ) to (R, T),
one obtains

T, = T s(1- 2M/R, )'~'-

IV. A PHYSICAL SPACE COORDINATE

With the transformation of Eq. (9) leading to the
metric form in Eq. (10), one has a situation in
which the time-keeping clocks are moving rela-
tive to the space markers that measure constant
R' s. It might be more "natural" to have the
space markers coincide with the time-keeping
clocks. One would then have a radially moving
reference system in which the time of an event
is measured by the clock coincident with the
event, and the space coordinate of the event is
determined by the particular one of the falling
clocks that happens to be at the event, i.e. , by
"how many" clocks this particular clock is away
from some arbitrarily chosen clock which corre-
sponds to the spatial origin. If the clock factory
stamped the dropped clocks with consecutive
numbers, the spatial coordinate would thus be the
difference between the numbers stamped on the
event clock and the spatial origin clock.

, Let the particular clock that is serving as the
spatial origin be released from R; at the Schwarz-
schild time coordinate To and let successive
"space marker" clocks be released from R; at
successiv'e equal intervals 4~;. The distance p
to the Nth clock released after the origin clock is
then defined to be

Upon substituting Eq. (18) into Eq. (16), we obtain
the transformation between the Schwarzschild co-
ordinates (R, T) and our operationally defined
spac e coordinate p:

' p= T —T„—e(1 —2M/R;)'~'

7 (1 —-2M/R, )'~' ' p.
a

= (1 —2M/R;)'i'To; +e cfg

,. (2M/y-2M/R, I'~' '

(20)

This combination, which can be integrated, gives
R as an implicit function of.p and ~.

When the differential of Eq. (20),

(2M /R —2M/R;)' I'd ~ —~dR

= (1 —2M/R;)'~'(2M/R —2M/R;) ~ (~T;/a)dp,

(21)
/

is substituted into Eq. (10), we obtain the metric
form in terms of the coordinates (p, r),

ds' = (AT;/a)'(2M/R 2M/R;)dp' —d—r'+R'dQ',

(22)

which is diagonal and analytic. for all R &0.
If we set 4T; =a and l.et the dropping radius

R,.—~, the metric form of Eq, (22) reduces to

ds = (2M/R)dp —dr +R dQ (23)

which was obtained by Lemaitre' in 1933. How-
ever, the condition 8;-~ means that a falling
clock would use up an infinite amount of its tj.me
in making the journey to regions of finite R, and
this infinite journey time should be taken into
account in the transformations of Eqs. (9), (19),
and (20). The difficulties associated with an
infinite journey time can be avoided if R; is kept
finite.

When calculated with the metric form of Eq.
(22), the proper. distance L= f„4 „„„dsbetween
two events simultaneous relative to 7 is

Nfl

„, (1 —2M/y)(2M/y —2M/R, )'~' '

(19)

The integrals in the transformations in Eqs.
(9) and (19) will involve terms in ln(1 —2M/R) with
all the attendant difficulties when R ~2M. However,
upon eliminating T, we obtain the followi. ng com-
bination of Eqs. (9) and (19), which does not di-
verge anywhere:

. (1 —2M/y)(2M/y —2M/R, )'~'

(16)

R

1-= (&T;/a) (2M/R —2M/R;)' ~'d p .
B
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V. CONCLUSION

%'e have shown that when, in the spherically
symmetric case, the time coordinate is given by
the times shown on appropriately synchronized .

falling standard clocks, we obtain a simple phy-
sical picture of the Schwarzschild radial coordi-
nate as a measure of proper distance between
simultaneous events, where proper distance is
defined as

= const4
(26)

I

Further, when a spatial coordinate is then intro-
duced not for mathematical reasons but solely
because it is naturally related to the falling clocks,
the former nondiagonal metric becomes diagonal,
and does so at no cost of simplicity. The line
integral in Eq. (26) does not lie along a spacel. ike
geodesic connecting the two T- simultaneous
events. However, the radial line of integration
is a geodesic in the subspace defined by
7 = constant.

Equation (26) is not the only way proper distance
can be defined. Landau and Lifshitz, ' for example,
starting from a space-time described by the gen-
eral metric

ds' = g;,crx 'dx'+ 2g;,dx 'dx'+g„(dx')'

(i, j =1, 2, 3), (27)

Setting dr =.0 in Eq. (21) and substituting the re-
mainder into Eq. (24), we obtain

dR R2-8,
(1 —2M/R )'~' (1 —2M/R )'t' '

(25)

which (up to an immaterial + or —sign) is identical
to the expression for proper distance given in
Eq. (13}. This equivalence is to be expected since
the v's in the nondiagonal metric form in Eqs. (10)
and the diagonal metr'ic form in Eq. (22) are
identical, so that it makes no difference which of
these metric forms is used to calculate fds sub-
ject to the condition d7'=0.

define infinitesimal proper distance dL by means
of a "radar" method in the following manner'. Let
an observer with fixed coordinates x,' reflect a
light signal from an event infinitesimally close
to his world line. If the proper time measured
on a clock at the observer's location between the
emission and reception of the radar signal is d'7'p,

the infinitesimal proper distance between the
observer and the event from which the light signal
is reflected is d'efined to be

6 L= pdTp ~

With this definition Landau and Lifshitz show

dL = Hg y
—A4gy4/g4c)&x &x'l (29)

where dx' is the spatial coordinate difference
between the event and the observers world line.

It is seen that for diagonal metrics Landau and
Lifshitz's definition of infinitesimal proper distance
agrees with the infinitesimal form of the definition
given in Eq. (26). If the metric is not diagonal,
however, Eqs. (26} and (29) yield different re-
sults. A physical reason for this disagreement is
obtained by recalling the discussion of Sec. III;
The time coordinate 7 in the nondiagonal metric
in Eq. (10) is measured by clocks moving relative
to the space coordinate R, whereas the definition
of Landau and Lifshitz would require measuring
time To with clocks that are fixed at R =const in
Eq. (10), But clocks fixed at R = const in the
metric in Eq. (10) are no different from clocks
fixed at R = const in the metric in Eq. (1), so one
will eventually obtain the same result for proper
distance given in Eq. (6) if the definition of Landau
and Lifshitz is used with the metric of Eq. (10).
Moreover, one cannot have physical clocks fixed
at 8 = const &2M, which is why the falling geodesic
clocks were introduced in the first place in
Sec. III.

Note added in Proof. E. Newman and. J. N. Gold-
berg, Phys. Rev. 114, 1391 (1959), in defining
distance in terms, of the geodesic deviation of null
rays, haye shown that in a Schwarzschild field
the distance is proportional to the radial coordi-
nate R. We thank Professor J. Stachel for bringing
this to our attention.
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