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We adopt the point of view that a solution of Einstein's equations is an evolution of given initial Cauchy
data, Implementing the evolution equations necessarily requires a determination, not directly dictated by the
field equations, of the kinematics. of the observers in terms of which the evolution is represented. In this

paper we study the observers' kinematics (velocities and accelerations) in terms of the geometry of'their
congruences of world lines relative to families of time slicings of spacetime, which contrasts with the more
usual approach of imposing particular "gauge" or "coordinate conditions. " The types of conditions we suggest
are adapted to the exact Einstein equations for general strong-field, dynamic spacetimes that have to be
calculated numerically. Typically, the equations are three-ditnensionally covariant, elliptic, and linear in the
kinematical functions (the lapse function and shift vector) that they determine. The gravitational field enters
in nonlinear form through the presence of curvature in the equations. We present a flat-space model of such
elliptic equations {e.g. for maximal slicing) which suggests that this curvature leads to an- exponential
decrease in the proper time between time slices at late times. We show how the use of maximal slicing with

minimal-distortion observers generalizes the notion of a stationary rest frame to dynamical asymptotically flat
spacetimes. In cosmological spacetimes the use of minimum-distortion observers is shown. to diA'erentiate

between those universes which contain only kinematic time dependence (e.g. open Kasner universe) and those
)

in which dynamical degrees of freedom are present (e.g. mixmaster universe). We examine many examples
and construct new coordinate systems in both asymptotically flat and cosmological solutions to illustrate these

. properties.

I. INTRODUCTION

A systematic approach to solving the Einstein
field equations has been developed in a practical
form over the last decade. ' The program is based
on treating general relativity in terms of its
Cauchy problem. ' Initial data for the gravitational
field and matter variables are chosen on a space-
like hypersurface that represents the starting mo-
ment of the physical situation one wishes to study. .
The four elliptic equations of constraint, are solved
numerically. Then these data are propagated into
the future by numerically integrating the hyper-
bolic equations of evolution. The latter step in-
volves first choosing the velocity and acceleration
vectors of the observers who are describing the
evolving spacetime. That is, one must prescribe
the "kinematics" (i.e. , spacetime gauge) of the
construction. 'After the spacetime has been built,
any information of interest, such as gravitational
radiation, event horizons, particle trajectories,
etc. , can be extracted numerically.

In this paper we shall. study spacetime kine-
matics from the viewpoint of spacetime geometry
rather than the more usual approach of "coordi-
nate conditions. '" The geometric approach leads
to new ideas that are theoretically appealing and
useful in calculations. Our presentation of new
kinematical conditions involves necessarily also

I

a brief unified review of the initial-value and
evolution equations that shows where the kinemat-
ical conditions fit into the program.

The generality of the methods is such that no
special symmetries need be imposed, in prin-
ciple, on the spacetime. (However, only axisym-
metric cases have been calculated in detail so
far. ') Moreover, we work with the exact theory
and do not employ any approximation schemes.
This means one can construct general solutions of

'the Einstein equations that possess good space-
like initial data. Cosmological problems can also
be treated by these techniques, but here we shall
mainl. y focus attention on asymptotically flat space-
times. In particular, any solution of interest in
astrophysics, such as collapsing stellar cores,
formation of black holes, colliding black holes
or stars, etc. , can be generated by this algo-
rithm. This could be of great importance, for
example, in planning gravitational-wave detec-
tion experiments. ' The most effective sources
of gravitational waves should be those withstrong
internal fields and high-speed, large-amplitude
internal motions. No known approximation tech-
niques apply to such problems. ' Hence, one
must consider a systematic approach to the full
theory that is adapted to numerical calculations.

Because we are considering a solution of the Ein-
stein equations as an evolution of given Cauchy
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initial data, we regard the gravitational field as
the time history of two spatial tensor fields' (y,»,

K„) that represent the intrinsic geometry and ex-
trinsic curvature of a spacel. ike hypersurfaee.
One point of view' regards the evolution as in-
volving the choice of time slices, one after
another, which push forward into the future.
Another point of view that is equivalent to the first
imagines a family of Eulerian observers, ' each
with a four-velocity n' orthogonal to the time
slices. These observers move into the future and re-
cord the relative proper distance configuration (y„)
and the relative shearing and expansion in local pro-
per time (K„) of the neighboring observers.

An essential difficulty in general relativity is
that there is no 0 priori preferred family of time
slices for an unknown gravitational field. The
spacetime metric in general admits no time-trans-
lation-invariant hypersurfaces as it does in Min-
kowski spacetime. Even in the "time-indepen-
dent" Schwarzschild and Kerr spacetimes, of
course, the time-translation invariance is not
global in the sense that the symmetry vector is
not everywhere timelike. Therefore, one must
necessarily construct a system of reference in
order to be able to calculate the gravitational
field. Since there are no preferred observers,
one must simply choose some set of world lines
orthogonal to a family of spacelike hypersurfaces
and define the Eulerian observers in terms of
these. ' Obviously, any other choice of Eulerian
observers or time slices is just as good in prin-
ciple. Therefore, one has to sort our kinematics
and dynamics as much as possible even though
they are intertwined in the time history of

(y.„K.,).
Time slicing is the fundamental kinematical

choice because it determines which sequence of
data (y„,K„) represents spacetime. We want the
slicing to cover enough of the full maximally ex-
tended spacetime for the relevant physics to be
imprinted in (y,», K,»). The slicing must stay non-

singular throughout the calculation, even though a
portion of a slice may be inside a black hole while
another part is in nearly flat spacetime. This re-
quirement severely restricts -the allowed slicing.
Given such a slicing, one has the history of the
gravitational field in terms of the related Euler-
ian observers.

However, the Eulerian observers may not repre-
sent the optimal choice for sorting out kinematics
and dynamics. Given a sequence of time slices
and arbitrary three-dimensional coordinates on the
initial slice, one can imagine a non-normal con-
gruence of curves threading the slices (nowhere
tangent to any slice) with each such curve ac-
quiring its three "labels" in the initial slice. ' Now

we have in addition to the Eulerian observers a
set of "coordinate observers" for the same family
of time slices. The relation of the two is specified
at any point on a sl.iee by a velocity shift. For in-
stance, one could use such a shift to make the
spatial coordinates constant along the world lines
of a fluid source, in which case the new observers
would be of the "Lagrangian'" type. Alternatively,
one might wish to adopt a set of trajectories that
minimizes certain coordinate effects in the repre-
sentation of (y,», K,»). In any event, the idea is to
determine velocities rather than coordinates to
determine the geometrical properties of the ob-
server congruence. This leaves the maximum
amount of useful coordinate covariance at one' s
disposal.

Typically we are led to four elliptic equations to
be solved on each slice to yield the instantaneous
kinematics. The solution tells how far to advance
along the normals of the present slice before stop-
ping to construct the next slice and how far to
move parallel to the slice if a velocity shift is re-
quired. These elliptic equations are three-dimeri-
sionally covariant and contain the curvature of the
three-space. This is a novel. and important fea.—

ture, as most previous studies of kinematics (in

terms of coordinate conditions)' have been motivat-
ed by the behavior of weak fields and have not,
therefore, involved curvature. By way of con-
trast, our conditions are meant precisely for use
in highly curved dynamic spaceti. mes. Both the
elliptic character of the equations and the presence
of curvature suggest a kind of "feedback" effect
that, in a sense, allows the kinematics to be ad-
justed by the dynamical state of the field at a given
moment.

In Sec. II we review the basic notions of geo-
metry and kinematics that motivate our study.
Time slicings are the subject of Sec. III, which
contains descriptions of geodesic, maximal, and

hyperboloid slicings as particular cases. We

present new results on the behavior of maximal
slices in regions of strong curvature. This is
followed by a description of various shift-vector
conditions in Sec. IV. Included here are the mini-
mal-distortion 3,nd related shift vector criteria.

The final section contains a number of examples
of our kinematical conditions in familiar space-
times. We first show the intimate relation of Kil-
ling vector fields (if they exist) to the maximal-
minimal gauge. An examination of the stationary
rest frame allows us to generalize this notion to
arbitrary dynamical asymptotically flat space-
times. We show how Several well-known black-
hole coordinate systems can be geometrically uni-
fied. Turning to homogeneous cosmologies we see
that the use of a minimal-distortion shift vector
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sorts out dynamical degrees of freedom from
coordinate modes.

II. KINEMATICS AND DYNAMICS

We shall regard solving Einstein's equations as
constructing the evolution of a Cauchy initial-data
set. The algorithm that guides our work breaks
into four parts: (1) We find Cauchy data that satis-
fy the constraint equations and represent the ini-
tia, l state of the physical system we wish to study.
(2) We erect the observers' velocity and accelera. -
tion four-vectors (3.) We evolve the data along the
observers' trajectories to the next time slice.
(4) We sort out the gravitational physics from its
coordinate representation. In this section, we
briefly outline these steps and set up the notation
we shall need.

n'y„= n'K„= O. (2.5)

The pair (y„,K„) form the gravitational part of
the complete Cauchy data for a solution of Ein-
stein's equations. " As such, they must satisfy
the initial-value equations on 9:

D (K" —y" trK) =j',
6l-K.@"+ (trK)'= 2p.

(2.6)

(2.7)

Here D, is the covariant derivative operator in-

ducedd

on K(D,y„, = 0), trK = y "K„=g "K„, and (R

is the scalar curvature of y„. These four equa-
tions are the four Einstein equations

n'y "Gb, = n'y" T~, ,

n'n"G =n'n"T
CC CC

'

(2.8)

(2.9)

The external sources of the gravitational field are
characterized by a str es s- energy tensor 7„. It
produces a stress density 8,„, a momentum den-
sity j', and an energy density p given by

A. Initial data

C (2.10)

(2.11)

Separating the four initial-value equations from
the ten Einstein equations

eb ab (2 1)

is a process that is well known. " %e recall here
only the salient points. Spacetime, which is char-
acterized by a metric g„with signature (-+++),
is sliced into a family of spacelike hypersurfaces

These slices are Labeled by a monotonically
increasing function &, such that 7' = constant on
each slice. The congruence of timelike curves
that meets these slices orthogonally has a unit
timelike tangent vector field n', with

(2.2)

The vector field n' represents the four-velocities
of the Eulerian observers. On each slice F, these
observers are momentarily at rest. They mea-
sure their local. proper distances in ~by the three-
metric y, ~ induced by g,„on T and given by the
"projection operator""

(2.3)

The description of the embedding of V in space-
time requires also the extrinsic curvature (second
fundamental tensor) K,~, which is conveniently de-
fined by'

(2.4)

where 8„- is the I ie derivative along n . The ten-
sors y, ~ and K,~ are called "spatial" tensors be-
cause they depend on the choice of slicing V'and

satisfy

AJARp= Teen n, (2. 12)

B. Eulerian and coordinate observers

The remaining Einstein equations deal with the
evolution of (y,„K,,) away from S along a vector
fieLd t'. This vector field is tangent to the con-
gruence of world lines of "coordinate observers, "
so called because their world lines are assumed
to be permanently labeled by the spatial coordinate
values x' (i = 1, 2, 3) that they acquire in the initial
slice. In general t; is not coincident with n'.
Because n' is a unit vector orthogonal to the slices
1', there is a, scalar function" (-a) relating n,
and &,7', that is,

n, =-nV', v . (2.13)

The role of the scalar "lapse function" e is to
specify the orthogonal proper-time interval egr

as determined by the Eulerian observers of V.
A constructive algorithm exists for obtaining

representative initial data for a gravitating sys-
tem. From physical or mathematical. considera-
tions, one makes a first guess at "bare" initial
data (y,'~, K,', ) and (p', j"). Then the initial-value
equations are turned into a set of four quasiLinear
elliptic equations determining four constrained
pieces or "potentials" (Q, W'). These equations
are solved, either analytically or numerically, and
the bare data are then dressed by (P, W') so that
the resulting data (y„,K„) and (p, j') satisfy (2.6)
and (2.7). For details, see 0 Murchadha, and
York."
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FIG. 1. The local kinematics of the gravitational field
are described by the lapse function e and the shift vec-
tor pa. Given a slice z= 0, we can erect unit normal
vectors n at each point on the slice. To define the
slice labeled by 7 =67, we advance a proper distance
A6 T along each na . To reach the point in the slice T'

= hy, which we wish to have the same spatial coor-
dinates x ' (i = j., 2, 3) as the base point of n, we move
along a vector t ' = G. n' + P'. This is equivalent to a
velocity boost between n and t' with three-velocity
&a &- isa

between the slices g (v) and V'(&+6') (see Fig. 1).
The kinematic freedom available in n allows a
portion of a slice in a strong-field region to ad-
vance at a different rate from another portion in
a weaker-field region, a feature that turns out to
be of crucial importance in applications.

The Eulerian observers by definition are at
rest in W and have no (spatial) rotation, '4

gI.,&~ pg, )
——0, (2.14)

because n' is hypersurface-orthogonal [cf. (2.13)].
However, these observers in general have a non-
vanishing acceleration vector given by

a' = y' D~(lno.'), a'n, =0, (2.15)

which shows that the lapse function is the ac-
celeration potential" for Eulerian observers.

f

These observers in general will need to accelerate
ip order to counterbalance the tendency of gravity
to focus timelike trajectories and cause a col-
lapse" of the slices 5( coordinate singularity" ).

The above relations characterize the ' time" &

in terms of a family of spacelike hypersurfaces
The complementary or dual aspect of time is

described by the four-vector f' = (&/&r)' along which
the data on 5 are to be evolved. The use of t'
(coordinate observers) corresponds in hydro-
dynamics to the use of mixed Euler-Lagrange tra-
jectories because in general t' lies along neither
the Eulerian trajectories nor the matter trajec-
tories. In this case, besides &, we need the

shift vector" P' (Ref. 13) to relate the two (see
Fig. 1)

t ' = o'.n' + P', P'n =0.6 (2.16)

of f' relative to n' From (2. .16) we find

(2.17)

t'= (n' —P') "'t'= d '(1 —v') "'(on'+»')
= &(n'+ v'), I' = (1 —e') '/', (2.18)

which is the usual special-relativistic result. The
second step recognizes that the boosted observers

The basic requirement on t' is that it be a tangent
field of a congruence of curves that ' threads" the
slices. &= constant, in the sense that t' should be
nowhere tangent to V'. Hence we require that &

&0. On the other hand, it is not necessary to re-
quire that o."& P' (P'=y„P/'P' =g„p'P'); that is,
t' need not necessarily be timelike. One here
recognizes the important fact that the relation
of Eulerian and coordinate observers is specified'
in addition to o.' by a relative ' velocity" P' that has
nothing whatever to do with spatial coordinate con-
ditions pew se. Therefore, the points in an initial
~ can be labeled by any convenient coordinate sys-
tem w'hile the kinematics of evolution involves only
the relationships among families of observer tra-
jectories (spacetime geometry).

Before proceeding with details of the kinematics
when there is a nonzero shift vector, one may
observe that the evolution can always be carried
out along the nonunit normal vector T' = &n' that
is always timelike for o.'&0. If t' and T' are
smooth vector fields and P'40, then these two
vectors merely generate different diffeomorphisms
between fixed slices E(v) and K(v+ 57') The a.p-,
parently more complicated choice of t' rather than
T' is often preferable because, as we discuss in
Sec. IV, an appropriate choice of P'10 can sim-
plify the description of the spacetimes calculated
in a Cauchy evolution.

For purposes of illustration, we assume that
t' is timelike, as in Fig. 1. Because t' has a
velocity" or shift P' relative to the Eulerian ob-

servers, we may imagine the transformation from
pV to t' ' frames" as occurriq, g in two steps that
demonstrate how the kinematical choices inherent
in special relativity (P' or the v' defined below)
and general relativity (o.'= lapse function = accelera. —

tion potential =' gravitational red-shift factor")
are both being used. First, we boost the four-
velocity n' to the four-velocity t' (g„t't' = -1)
of observers whose world lines coincide with
those of t'. However, note that t"s clocks do not
keep the same time w as t"s clocks (see below).
Also, we do not bother to boost the arbitrary
three-basis tangent to V'because it is already the
one we want to use. The boost of pg' to t' is de-
fined by the physical three-velocity
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[t' = (s/&&~)'] have clocks that keep j+'s local proper
time &~, not the time &. The. relative rate of &

clocks and &~ clocks is given by

8t'=~r 't' or =QI' ' (2.19)
87 8+

which follows from (2.18). This step shows how
the lapse function a is used to adjust clock rates
j.n an appropriate way. Clearly, the most impor-
tant aspect of the adjustment process is the man-
ner in which a varies from point to point [the
relative tilting" of V'(v) and V'(v+ 5v) in Kuchar's"
terminology]. This variation of n on W is equiva-
lent to the acceleration of the Euleria. n observers
(2.15). Finally, we note that in general the F'
observers wi11 possess local spatial rotation, "

t( Vbt, )4 0, (2.20)

and therefore these observers cannot define a time
slicing of spacetime.

In summary, the Eulerian and coordinate ob-
servers are related by a scalar and a three-vec-
tor (n, P') that define the kinematics of the evolu-
tion. It is especia. lly important that the specifica-
tion of initial data on a slice proceeds entirely
independent of the kinematics of the trajectories
that carry the data away from the slice.

tyab 2 +ab + Byab &

D,D~a+ o![dl,~+ (trK-)K, ~
—2K p~

—(S„——,'y„ trS)

—spy, ~]+ZqK, b,

(2.21)

(2.22)

C. Evolution equations

The dynamical Einstein equations are concerned
with the evolution of the spatial metric y, b. They
can be w'ritten in either second-order form" for
S,S,y„or in first-order form" for @,y, b and

The latter are preferable for our purposes
for two reasons. Firstly, the initial-value equa-
tions are very much more difficult to treat if we
try to use (p,~, C,p, ~) as initial data" instead of

(y„,K„). Moreover, the preferred latter form of
the constraints [Eqs. (2.6) and (2.7)] contains no
reference to & and O' Second.ly, the dynamical
equations 2,2,y„contain both (a, P') as well as
(S,o!,C,P')," in contrast to the equations for S,y, ~

and 8+„ that contain in essence only (n, p') and
their derivatives within a given slice. Thus, the be-
havior of o.' and P' away from a given slice is ir-
relevant in the first-order formalism. This means
that the kinematical conditions that are imposed
to fix a and P' need only depend on the known in-
stantaneous state of the field at a fixed time.

In the presence of external sources, the first-
order equations of motion are

where 8,„is the Ricci curvature tensor of y„.
The principal kinematical terms in (2.21) and

(2.22) are

and

D,D~o, = a(D,a~+a, a~)

T'
q . = V, Pq+ Vi, P, y 2', n~ P'a

(2.23)

(2.24)

8 BKsg = P' V~ K,t, + K„Vn P'+ K,s V, I-I' (2.26)

Equation (2.21) is actually an identity following
from (2.4) and (2.16).

Two equations that will prove useful in the se-
quel are obtained from the traces of (2.21) and

(2.22):

8,[ln(dety)'i'] = ntrK-+D, P,
8 q (trK) = —&o. + o[K,~A' + z (P+ trS)]

+8 BtriC.

(2.26)

(2.27)

Here dety is defined" by dety= n 'det(-g„) and
6 = y"D,D, is the three-dimensional covariant
scalar Laplacian operator. Observe that (2.26)
is a geometrical identity while (2.27) is a con-
sequence of Einstein's equations.

Assuming that the constraints (2.6) and (2.7) are
satisfied, on the right-hand side of (2.22) we could
replace p using (2.7) to obtain g-,K„ in terms of

(y„,K„,S„,o., P'). We see from this step that to
evolve a set of initial data that is compatible with

the constraints we need a specification of n and
P' besides the gravitational data (y„,K,„) and the
initial stress tensor S,b. The stress tensor S,b

will be known in terms of the same source initial
data that was required in constructing p and j'.
Because of the Einstein equations (2.1) and the
Bianchi identity, we have VbT"= 0. Thus, in priri-
ciple we do not need to use separate evolution
equations for p and j'. The equation VbT" =0 can
easily be rewritten to give S,p and &,j' in terms
of (y,„,K„,p, j', o. , P') and their spatial derivatives.
The evolution of S,b would be obtained from any re-
maining independent equations of motion of the
source or its equation of state. However, in prac-
tice there are a number of oth,er wa.ys to evolve
matter fields. We refer the reader to the work of
Wilson for how thj.s is done.

D. Gravitational degrees of freedom

An unavoidable consequence of the kinematical
freedom present in general relativity is that the
history b„(v),K„(w)j of the gravitational field has
a mixture of time dependence that results partly
from the choice of observers and partly from
"real" gravitational dynamics. " The only situation
in which one can definitely separate these two as-
pects is when there exists in the spacetime an
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exact Killing vector $'($&g„=V, $, + V, $, =0) that
is timelike sufficiently far (in spacelike directions)
from the central strong-field region. In this case
one can arrange that t' = P and there is no dynam-
ics. On the other hand, if one selects a t'c (' in
such a case, there will appear in fy„,K„)a "fic-
titious" time dependence. One of the major goals
in studying kinematical constructions by geometric
methods is to avoid such problems as far as possible.

Our approach attempts a separation of kinemati-
cal and dynamical effects in a three-dimensionally
covariant manner on a family of "good" slices
(Sec. III). We ask what geometric object con-
structed from the spatial metrics y, & of the slices
&can be regarded as containing the dynamical
degrees of freedom. " The simplest answer that
we are aware of is the conformal three-geometry"
of &, represented by the "conformal metric" j,&

= (dety) ' 'y, ~. The conformal factor (dety)' ', by
which j,& is multiplied to produce y„, contains
the overall scale of the metric and, in an asymp-
totically flat spacetime, contains the information
on the total energy of the system. " This conform-
al factor is not part of the freely specifiable data
in the initial-value problem, but is found by using
one of the constra. int equations. " [The factor
(dety)'~' is essentially equival'ent to Q', where Q

is the gravitational scalar potential referred to in
Sec. II A.]

One expects the conformal spatial metric to con-
vey information on the anisotropy of the gravita, —

tional field. In asymptotically flat spacetimes,
such anisotropy may be regarded as representing
gravitational radiation. " (In weak fields the con-
formal three-geometry is determined by h, ~, the
usual transverse and traceless wave variables. )"
In compact three-geometries, the anisotropy is
referred to as gravitational degrees of freedom. "
(For example, in the "mixmaster universe, ""
the anisotropy variables P, and P determine the
conformal three-geometry of the "0-time" slices. )
In both cases, the underlying dynamical object is the
conformal three-geometry induced on a family of
slices. Hence, in separating kinematics and dynam-
ics, we focus attention on the time rate of change of
the conformal three-geometry, which is represented
by , y„. Clearly +,y ~ will change if we use dif-
ferent i observers even if the slicingis fixed.
This means that our choice of shift vectors jg' is
the handle Py which we can reduce kinematical ef-
fects in the evolution of Cauchy data on a given
family of slices. This process is treated in Sec. IV.

III. TIME SLKES

In dynamic spacetimes there are no timelike
symmetries to suggest a preferred choice of slices

. or the lapse function n. We know only that if n-1
and P'-0 sufficiently rapidly at great distances
from the strong-field region of an asymptotically
flat spacetime, then t' reduces to a, constant time
translation at spatial infinity. Here we have t'
-8', which is appropriate in the case that the
curved spacetime Eulerian observers are to be

'identified asymptotically with the standard ob-
servers of Minkowski spacetime. In spacetimes
with compact time slices, th6 above reasoning
does not apply. Here the time slicing must be con-
structed wholly from the spacetime dynamics it-'
self without appealing to an external. standard ref-
erence system such as "observers at infinity. "
We will now examine the properties of several
natural time- slicing conditions.

A. Geodesic shcing

The simplest procedure would be to start with a,

given slice and to set n = 1 everywhere. This im-
plies that the Eulerian observers are freely fa'lling

[Eq. (2.15) yields a, = 0] and that the slices are geo-
desically pa, rallel. It is now well known that this
condition fails in general to give a family of slices
that a.dequately cover the spacetime regions of in-
terest. " What happens is that the Eulerian geo-
desics tend to focus to a caustic, owing basical. ly

to the attractive nature of the gravitational inter-
action. This can be seen from the Einstein equa-
tion (2.27)

&(trK) =K,~K' + z(p+ trS) (3.1)

if n = 1 and P'= 0. The first term on the right-hand
side is always non-negative and so is the second
if the strong energy condition ' is satisfied. The
convergence trK= —&,n'= 4„ln(de—ty)-'~' of the Eul-
erian geodesics thus tends to increase without lim-
it, resulting in a coordinate singularity (dety-0).
This happens on a free-fall time scale (7 -M for
Mack: holes).

As a, specific example, let us briefly consider
' the evolution of the time-symmetric slice v~,„=0
=vK,„,„,', of the extended Kruskal-Schwarzschild"
spacetime. This is the prototype of all black-ho&e
spaeetimes because it contains an E instein- Bosen
bridge and an event horizon. At late times any

nonrotating uncharged collapse forming a black
hole should settle down to a Schwarzschild black
hole. The choice of time slices to the future of the
initial slice is completely determined by giving n.
If we choose a=1, then the region of the spacetime
covered by these slices is shown in Fig. 2(a).
Since the free-fall time to the singula, rity is wM

from the center point of the 7.=0 slice, the slices
will asymptotically go only to ~„„=7tM. Note that

virtually none of the spacetime exterior to the
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the geodesic slices became singular in. the central
region. (For more details see Sec. V.)

Borrowing the terminology of Choquet-Bruhat
and Geroch, "we call any such partial foliation of
a spacetime a develoPmenf. Each slicing condition
on n will yield a development of the initial-data,
set. Our goal is to construct a development which
will contain as much of the exterior of the black-
hole spacetime as possible.

9.Maximal slicing

0'
O.

.~~r„„-W

0 I 2 7'

Aa —[K„K"+ —,.' (p+ trS) ]n = 0,

a linear elliptic equation which must be supple-
mented by appropriate boundary conditions. " If
the constraint equation (2.7) is satisfied then (3.2)
can be rewritten as

(3 2)

The unsuitable features of geodesic slicing were
recognized long ago by Lichnerowicz, ' who sug-
gested a possible remedy. He pointed out that n

can be chosen in. such a way that trK remains zero
if it vanishes on an initial slice. As a result, . the
Eulerian. observers have zero convergence and
their local volume element (dety)'~ ' is time indepen-
dent [Eq. (2.26)]. Since Eulerian observers are by
definition irrotational (hypersurface orthogonal),

'

we may think of them as forming an incompres-
sible, irrotational, shearing "test" fluid in the
spacetime. The fluid remains incompressible be-
cause the Eulerian observers are accelerating
(D,a. eO) to balance the focusing effect of grav'ity.
From the dual h'ypersurface point of view, the de-
mand trK=0 implies that the volume of any region
0 of the hypersurface ~is maximized" relative to
any other spacelike hypersurface which coincides
with ~outside of Q.

If we define time s'ices by trK= &,(trK) =0, then
from (2.27) we see that the required equation" for
n on each time slice is

FIG. 2. (a) The shaded region represents the devel-
opment of the initial slice e = 0 in Schwarzschild-
Kruskal spacetime by geodesic slices ( = 1). Note that
the slice z= zM hits the singularity (Hef. 6) and covers
very little of the exterior of the black hole, i.e., it is
asymptotic to ts, b= wM. This is why one needs a more
sophisticated choice of ~. (b) Here the development of
the same initial slice is by maximal slices [Eqs. (3.4)].
The slicing remains nonsingular and the entire exterior
of the black hole is covered. The "limit surface" which
the maximal slices wrap up around (Ref. 37) is rs~& = q34.

black hole is covered. This indicates that if we
had perturbed the metric and radiation had been
generated near the horizon, it would not have had
time to propagate to the wave zone (r «20M) before

no. [61—~(p —~ trS)]o.'= 0. (3.3)

4n —(Rn =0, (R~ 0. (3 4)

Return. ing to our example of Schwarzschild-
Kruskal spacetime, let us ask what the develop-
ment of the 7= 0 initial data. is if n satisfies (3.4)
on each slice. If n= 0 at the throat (r~,„=2' at w

=0), then the answer is the usuai Schwarzschild
time coordinate sl.icing" which covers the entire
exterior of the black hole (up to 7=+~), but none
of the interior. Because n is antisymmetric

Because the coefficient of 6 is non-negative in

(3;2), by the same argument as in (3.1), the same
must be true of the coefficient of a in (3.3). T et
us therefore confine our attention to the vacuum
case (o= trS=0) where the equation becomes
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FIG. 3. (a) The spherically symmetric lapse function e is plotted versus the dimensionless radius ~ ={+ja)x& ~here ~
is the proper radial distance from the throat and xo and a are as defined by Eq. (3.7). These plots of e(x) are given for
a series of time slices of the symmetric maximal slices of Schwarzschild-Kruskal spacetime studied by Estabrook e&

4. (Bef. 37). Notice the rapid collapse of the lapse near the throat at late times (&~10M). Time slices are labeled by
the strength parameter xo and by proper time at a large finite distance (where we set e = 1). The curves rise more
rapidly than in Fig. 4 because this distance is not infinite. The location of the event horizon rz~ =2M is denoted by a
dot on each slice (see Eppley, Bef. I). {b) For the same time slices as in (a), we plot the Bicci scalar@(x) of the
three-metric of the slice. At 7 =0, @,=0 from the constraint equations. It grows in the strong-field region (x =—0) as
time increases. This is what forces the lapses to zero in (a). At late times the central value of 8 goes to 8/9~~, the
value of @ for the hypercylinder rz, &

——3M/2. The "effective radius" a [Eq. (3.7)j is found to grow linearly in time and be
approximately the proper radial distance from the throat to the horizon in the time slice.

across the throat, time advances "downward" on
the left side of the Kruskal diagram. The case
where n is symmetric across the throat (n= 1 at
7= 0) was investigated by Estabrook ef al.
(EWCDST)" and Reinhart38 in 1973. This develop-
ment is shown in Fig, 2(b). Note that not only
does it contain the entire future of the exterior of
the black hole, it also contains a large portion of
the interior spacetime.

Now in order for the proper time f ndr-~
along an observer's world line far from the black
hold and yet have f nd&v. M in the central re-

0
gion, the lapse function e must go to zero very
rapidly in this strong-field region while n-1 at
spatial infinity. Figures 3(a) and 3(b) show the re-
sults of the EWCDST investigation as later refined
by Smarr and Eppley. " We see that n drops to
zero as the three-scalar curvature (R rises. This
behavior was qualitatively explained by EWCDST
using Eq. (3.4) and the Hopf maximum-minimum
principle for elliptic equations. Since this early
research, more spacetimes have been construc-
ted4' (colliding black holes, collapsing stars, and
strong imploding gravity waves) with the same
qualitative results as shown in Figs. 2(b) and 3(a).

This behavior of the maximal time slicing has
been termed "singularity avoidance. ""

Despite the facts of the above discussion, "avoid-
ance of spacelike singularities" is not a correct
characterization of the properties of maximal fol-
iations. In the Reisner-Norstrom solution, n goes
to zero inside the outer horizon, "but the singu-
larities avoided in this case are timelike. In a
self-similar dust collapse studied by Eardley and

Smarr, " there is a spacelike singularity that is
not avoided by the maximal slicing IEq. (3.3)j.
Both of these examples are described in Sec. V.

What we do know is that maximal slicing pre-
vents the focusing of the world lines of the Euler
ian observers. In order to get an idea of how this
is related to the behavior of curvature and matter
density on the slices, we now turn to the study of
a simple example.

C. Simplified solution of the maximal equation

The solution of (3.4) depends on y, ~ both because
is the covariant Laplacian and because (IL(y,~) is

the coefficient of n. To try to understand which is
the dominant factor, we shall follow Wheeler44 in
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].0
xo= 0

region where Sp t 0 and rise back to' unity as o. -1
+ O(l/r) as r -~. The minimum value of o.'always
occurs at the origin with value

0.8

Q i„= (coshxo)

D,e= 0
r=O. (3.6)

0.6

0.4

0.2

0
0 [0

FIG. 4. Plotted here are the analytic solutions fEq.
P.5}]of our flat-space model equation for maximal
slicing. The solutions are labeled by the "strength"
xp of the curvature. Note the striking similarity be-
tween these curves and the lapse function resulting from
the maximal slicing of a black hole [Fig. 3(a}].

a method he used on a similar problem. We mo-
del (3.4) by assuming that y„ is a, flat metric in

spherical polar coordinates and that (R is spher-
ically symmetric and constant (6L,) in a region of
radius a about the origin and zero outside. Of
course, the last step breaks the correct relation
between scalar curvature and metric, but a per-
turbative treatment. of the model (adding small
curvature terms to the metric) shows that the re-
sults are still qualitatively correct. Moreover, as
we shall see, the resemblance to the actual maximal
slioing of Schwarzschild spacetime turns out to be
remarkable in several respects,

The solution of (3.4) in this case is

~ sinhxa= (coshx, )', 0 ~x ~x,
x (3.5a)

tanhxo —xpe= 1+ x0x

x =rMe„x, =-aV6L„

(3.5b)

(3.5c)

where o. and sa/sr are matched at r=a. (See Fig.
4.) This is a one-parameter family of solutions.
The natural parameter turns out to be xp, the di-
mensionless "strength" of the scalar curvature
hill. Ef xp 0 corresponding to zero scalar cur-
vature, then += 1 everywhere. As x, increases
from zero, the lapse function begins to fall in the

6L"'y„„' 'dr =-a[8(x=0)]' '. (3.7)

Since S.~ 0, (8= 0(r '), and y,„=1+0(r '), x, in

(3.7) is always real and finite. [In nonspherical
. problems, (3.7) would have to be replaced by an
average of such integrals over different direc-
tions. ] In the nonvacuum case, in place of (3.7)
we have

(3.8)

I.et us return to the numerical results for max-
imal slicing of the Schwarzschild-Kruskal space-
time. 4' In Fig. 3 (a) we have labeled each n graph
by x, [calculated using (3.7)] as well as by T. In
Fig, 5 we plot n,.„versus x,'. Note that at late
times o. ,„-e '"'o in almost exact agreement with
our flat-space example. This indicates the "col-'
lapse of the lapse" is due to general properties of
elliptic equations and is not dependent on. the de-
tails of strong gravitational fields. Because Figs.
3(a) and 3(b) are the result of a Cauchy evolution,
x, is a function of time. In Fig. 6 we plot x,(7).
For reasons we do not yet fully understand, it is
almost exactly linear: x, = ( /1rM77) 0+.34.. In-

Thus, for large x, the minimum value of the lapse
goes as n

The qualitative behavior of n in our "flat space
with scalar curvature" model, Fig. 4, is very sim-
ilar to what happens in the full dynamical curved
spacetimes that have been evolved by maximal
slicing [e.g. Fig. 3(a)]. This indicates that the so-
lutions of (3.4) or (3.3) in the actual slicings will
be determined primarily by the behavior of the
"strength" of the scalar curvature on these slices.

There are now two questions that naturally arise:
(1) What is a reasonable curved-space general-
ization of the "strength parameter" x, = av'(Rp ~

(2) How does o.',„depend on x, and on time '?

Knowing the latter will tell us, for example, how

long it takes for e,.„ to reach zero and halt the
evolution in th'e strong-field region. Will this be
less than the time from the initial slice to any
singularity ~

To generalize the strength parameter x,=algp
in the spherically symmetric case, we write down
the simple proper line integral
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FIG. 5. From Fig. 3(a), we have plot n~;„versus the
strength parameter xp defined by 3.7. At late times we
find en;„- e ' "o, in almost exact agreement with our
flat-space model, Fig. 4.

serting this relation into that found in Fig. 5 for
o. ,„(x,), one finds that at late times

n,.„-e ' '& w, = 1.82M. (3.9)

This exponential decay of the lapse induced by
maximal slicing is a new result and gives a much
clearer insight into the so-called "singularity
avoidance. "

It suggests that maximal slicing halts the evo-
lution before any singularities are reached if (3.7)

grows raPidly enough, as opposed to the un-

weighted curvature alone, for example. This is
not too surprising since the maximal equation is
elliptic and hence n,.„will "feel" a global, rather
than a local, measure of the strength of the cur-
vature. In certain extreme cases of the spherical
collapse of self-similar dust studied by Eardley
and Smarr, "the generalized parameter x, does
not grow fast enough for the maximal slices to
halt (i.e. , for o. -0 in the central region) before
reaching a singularity. There, the main support
of the integrand of (3.7) has insufficient linear
measure (a "spike" in p at the origin).

However, in almost all "reasonable" cases stud-
ied, including colliding black hol.es and coll.apsing
stars, ' the maximal slicing does halt the evolution
in the strong-field region before the singularity is
reached. Again, as an example, consider the max-
imal slicing of Schwarzschild-Kruskal spacetime
with D, o. =0 on the throat (to be thought of as the
analog of r=0 in our model). The throat will free-
fall collapse to the singularity in 7&&= ~M. The e-
folding time for maximal slicing is ~, = 1.80M and
the total elapsed proper time until the maximal
slicing halts the collapse at r~,„=1.5M is T,„

~nindf or

T,„= —+ =1.91m,
vY

(3.10)

which is well short of T&z. We could have estimated
T,„ from our model using (3.6) as

4.0

max (coshx~) 'dt

2.0 cosh t 7.,
0

0
3 8 I 0 12 14 16

7:fM

.
'll —2.BVM & sf~.e (3.ll)

FIG. 6. The value xp from Fig. 3(a) is plotted here
versus time. It is remarkable that from g= 0, the
growth of zp is almost exactly linear with an inverse
slope of 7, —-1.8M. This together with Fig. 5 implies

e ~ ~e at late times for maximal slicing of
Kruskal-Schwarzschild spacetime.

In this case the model predicts that the last max-
imal slice occurs before the singularity is
reached, just as in the actual calculation.

The last conclusion can be seen to be essentially
a consequence of the maximum-m'inimum principle
for the elliptic equation (3.4). At the interior pos-
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itive minimum a= n,.„, we have of course that
D,n „=0. Therefore, the observer at this place
ha, s acceleration a, = D, lno. = 0 an. d is in, free fall.
However, his immediate neighbors are acceler-
ated outward to prevent convergence of the world
lines n.ea.r him. Hen. ce, cx „dt & 7&f.0

D. Hyperboloid slicing

Up to now we have assumed that our time slices
would be like the planes of Minkowski spacetime
as we move far enough from strong-field regions. -

However, there is another set of potentially use-
ful slicings that we shall mention. These are the
hyperboloid slicings with trK= K, = constant. In
Minkowski spaeetime the trK=K, slices are just
the "mass" hyperboloids which are described in
See. V. These slices are asymptotically null and
approach null infinity 8 rather than spacelike in-
finity. This suggests that they might be well. ad-
apted to studying gravitational radiation from a
bounded region.

Such slices have been shown to exist in several
asymptot, ically flat spacetimes. Brill" studied
their properties in Schwarzsehild-Kruskal spaee-
time and Eardley and Smarr" showed that they
could be also used for star collapse with a
Schwarzschi1. d exterior. Whether strict1.y trK
= constant slices exist in radiating spaeetimes is
apparently not certain. . Goddard4' has conjectured,
that the difficulty in. finding "good cuts of ~"' may
doom the existence of such slices in general for
a.symptotically flat, spacetime.

No such problems exist for trK= constant slieings
in compact cosmologies, where trK is a natura, l
time coordinate. " All homogeneous cosmologies"
have these slices (with trK a different constant for
each slice), and they have proved to be useful in
studying singularities in generic inhomogeneous
cosmologies. " Moreover, theorems demonstrating
the existence of such slices have been given with-
out restrictions to homogeneity. "

E. Other slicings

We wish to emphasize that general sl.icings of
any spaeetime, compact or infinite, can be ob-
tained constructively by choosing any initial value
for trK and then fixing its velocity g,(trK). One
obtains in this way an elliptic equation for n that
generates a family of slices by solving

hn —[K„K"+
& (o+ trS) ]n = 8 ~trK —R,trK.

(3.12)

Qn any slice, everything in this equation is known
except the shift P' (and, of course, o.). Therefore,
in general the equations for n and P' (next section)

have to be solved simultaneously because they are
coupled. This points out one of the advantages of
trK=0 or trK= constant slicings. In these cases
P' does not appear in (3.12) and the equations for
n and P' are uncoupled. " This uncoupling (first
find o. , then find P') is analogous to the fact that
the initiaLvalue. equations (for the quantities y and
W' mentioned in Sec. IIA) uncouple whenever trK
= constant.

In summary, the simplest cases are those in
which ~ can be found independently of P'. These
are, for asymptotically flat spaces, (1) maximal
slicing: trK= 0, 8,(trK) =0, (2) hyperboloid slic-
ing: trK=constant (D,trK=O) and 2,(trK) =0. For
compact spaces we have trK= constant (D,trK= 0)
and 8,(trK) = constant &0.

IV, SHIFT VECTORS

A. Curve congruences and shift vectors

We assume that we now have a choice of. an ini-
tial slice and a prescription for determining the
lapse function. a. This will lead to a development
of the initial data that is foliated by a family of
spacelike slices V' labeled by a, scalar function. T,
the time variable.

The existence of a development described in
terms of a particular foliation leaves only the
choice of a congruence of curves, threading the
leaves of the foliation, to be designated as the
"time congruence. " Whatever this congruence is
chosen to be, we shall parametrize each of its
curves by the value of 7 it acquires in intersecting
the slices . That is, the proper-time clocks car-
ried by observers moving tangent to the time con-
gruence are to be adjusted in such a way that they
measure the time v; We assume that, at great dis-
tances from the strong-field region, the adjust-
ment required becomes arbitrarily small, so that
7. is the proper time of observers "at infinity. " As
described in Sec. IIB, this adjustment process re-
quires a knowledge of both n and the relative
three- velocity of observers moving tangent to the
time congruence with respect to the Eulerian. ob-
servers. (Alternatively, the latter is given by the
hyperbol. ic "tilt angles" of the time congruence rel-
ative to n'. ) Thus, if the proper. time from r to
7+ &T measured along the time congruf nce is 6T~,
then the adjustment factor is defined by 6T~= (n'

p')'~'gT. Hence, we require a specification of
pa

We now have two independent curve eongruences
of interest, the time congruence and the normal
congruen. ce. The latter may be regarded as being
defined automatically by the foliation, as one needs
to know only a and n'. The curves of the normal
congruence can also be parametrized by 7.. The
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adjustment factor analogous to the above is simply
n. The use of the normal congruence thus para-
metrized in calculating the development would re-
strict one to time-orthogonal coordinate frames.
This is a restrictio'n that should be avoided in
general. For example, it is clearly inappropriate
for describing rotating sources.

On the initial slice, we may suppose that there
is an arbitrary coordinate system (or overlapping
systems) x' with basis (s/&x')', i = 1,2, 3. Each
world line of the time congruence is permanently
labeled by the coordinate values x' that. it acquires
in the initial slice. Therefore, the basis (97'sx')'
of the initial slice is carried along the time con-
gruence and rema. ins tangent to the leaves of the
foliation. The time leg of the frames of the "coor-
dinate observers" is given by t'= aR'+ P'. With a
geometrical specification of the folitation and the
shift vector, one has an unambiguous definition. of
the coordinate frame

coLIlovLng condLtLon 'Ls p = u7 (77 = u7 ). In thLS

case, a given element of the fluid has fixed spatial
coordinates x'. (Of course, even when p'=u7', the
time T does not coin.cide with the loca, l proper time
defined in the rest frame of the fluid element. )

Tying p' to u7' can simplify the description of the
sources of a gravitational field in some cases.
However, this is not always true. If a bounded
fluid source is spatially rotating relative to spatial
infinity, then setting p'=u7 in the fluid, with p'-0
at infinity, would cause the spatial coordina, tes in

the fLuid to "wind-up" in a complica, ted way in the
evolution.

In such ca.ses, and in general, it may be more
important to use P' to simplify the descriptioh of
the gra77itatio77al field that results from the evo-
lution of a, given. source. This is especia, lly impor-
tant also whenever a horizon or gravitational rad-
iation can form. In any case, the tying of p' to u7'

ca.nnot be used in a vacuum spacetime region.

9 9

BT BX

in terms of the geometry of curve congruences.

B. Shift vectors and matter flow&

In addition to the two congruences described
above, there is a third set of independent world
lines describing the history of any sources that
may be present. For definiteness, let us suppose
that the source is a fluid. Then there is a unit
timelike four-velocity field u tangent to the fluid
world lines. The relation of u' and n' is similar
to tha, t between t' and 8'.

7d =(1 —W) (77 +u7),

A' n) =0
(4.1)

where nl' is the three-velocity of the fluid relative
to the Eulerian observers n'. To describe the flu-
id's motion on the family of slices 7'relative to the
coordinate frames, we can first define its three-
velocity F~' using ~ time rather tha. n Euleria. n prop-
er time ("clocks adjusted by n"). This gives u7'

= ew', which is analogous to P'= nv ' in the discus-
sion in Sec. IIB. It follows immediately that the
three-velocity of the fluid rela, tive to the coordinate
frames

where the tensors

gab g ab+ ZaZb

Vab l al b(~7aZd) Ll ad~ Ze)
C e

(4.3a)

(4.Sb)

(4.3c)

C. Shift vectors and' geometry of the gravitational field

Elsewhere, "we have presented a three-covariant
method of choosing the shift vector as part of a
"radiation gauge" for general relativity. It was
shown that this "minima, l-distortion" shift vector
arises from a simple variational principle and that
it provides a natural three-covariant strong-field
generalization of the radiation gauges of ADM and
Dirac, which'were motivated by consideration of
weak fields. Here, we shall describe the geomet-
ric foundations of this and similar prescriptions.
In Sec. V, we show by examples tha, t the minima, l-
distortion shift vector also simplifies the descrip-
tion of the field even when no radiation is present
(e.g. , in the Kerr metric).

We begin by recalling the well-known decompo-
sition" of the covariant deriva, tive of any timelike
unit vector Z'. (Similar decompositions exist for
null and spacelike vectors as well. ) One writes

L7'Z' = &u"+ v" + —l7"9 —Z 'g' (4 2)

8 9

BT BX
6=v z'

e (4.3d)

is given by u' —P'.
The above discussion suggests one possible phy-

sically motivated way of choosing P'. We can cor-
relate the fluid motion and the coordinate observ-
ers' frames by demanding a definite relationship
between P' and M)'. For example, the well-known.

gb Zc~ Zb (4.Se)

are, respectively, the projection tensor (local
"three-metric" orthogonal to Z'), twist (Ld"
=-&d"'), shear (v"= v", IL"v„=O), expansion, and
acceleration of Z'. All these tensors are ortho-
gonal to Z'.
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I,"Z,=~"Z =0"Z =gbz =0
b b b (4.4)

If we take Z'=n', then we find h„=y„(three-
metric of 9'), uF»= 0 (n' is "surface-forming"),
=a' (acceleration of Eulerian observers), and v'»

+ 3 gag" = -~", ~"= the extrinsic curvature of
Likewise, the fluid motion (Z' =u') can be analyzed
in terms of its twist, shear, expansion, and ac-
celeration as determined -in the local rest frame
of the fluid.

Here we wish to describe, in. terms similar to
the above, a, strain tensor O, b for the time congru-
ence t'. This quantity will be analogous to the
strain. tensor

Oab= &ab+ —.~yab=yarb (a 4)
e (4.5)

28ab= -2Kab = +6'ab. (4.6)

Therefore, the strain. induced in the three-geom-
etry of E in passing along the normal congruence
from r to v+ 57 (slices not parallel) is simply

+«yab= 2+@ab= 2&a +b V(c &'+g~: 2&.V(a++b)

(4.'7)

Because t'= nn'+ P', P'R, = 0, the strain tensor 9„
that we seek will be the sum of (4.7) and the ad-
ditional purely intrinsic deformation k~ y b

= D pb
+D, P, familiar from ordinary el.asticity theory. "
(Here it is convenient to think of P' as describing
an "active" motion of the points of a=constant. )
Therefore, one can define the strain tensor 0„
associated with the time congruence by

26,»= & 2, y, »
= 2nK, »+ &4»-y, »

= 2 J.V&, nn» . (4.8)

This stra, in tensor compares the intrinsic metric
on ~ to that on 7+ 5~ by (1) transferring ("drag-
ging*') the former along the time congruence, (2)
taking a projection of the thus deformed three-
metric into T+ 6v (not orthogonally to f'), (3) taking
the difference between the deformed metric and,
that "already" on 7+ 5r, and (4) pulling the differ-
ence back to v.

One may conveniently visualize the above process
in terms of small deformations of thin shells" in
Euclidean space. (See Fig. 7.) One maythinkof an
"already curved" shell (y, » not flat, K„IO) that is
given a specified normal deflection 6v(o' n') and an
arbitrary tangential deformation 6~P'. A natural
question to ask is: %hat tangential deformation
GAP' will in some sense minimize the resulting
strain tensor 0„~

defined in the ordinary way" (using n') for the nor-
ma. l congruence. Note that H, b characterizes a
strain induced in the three-geometry of ~, with
unit normal 8', as we pa, ss from w= constant to a
nearby parallel slice:

FIG. 7. This schematic diagram illustrates the use
of the minimal-distortion shift vector to reduce coor-
dinate shear. If a small sphere (here one spatial
dimension is suppressed) is transported along the
normal yg to the next slice 7 =AT, it will be sheared
into an ellipsoid. If the slicing is maximal, the
volume will be preserved to first order. On the other
hand, if a shift vector is also used, then some of this
coordinate shear can be removed, although with the pos-
sible introduction of some change in volume.

D. Minimizing changes in the three-metric and in

the conformal three-metric

It is in principle possible to use any shift vector,
as the effect of the shift can. be viewed as that. of
a three-dimensional coordinate transformation in
the slice. However, one can choose the shift in.

such a way as to minimize" the strain discussed
above in a global sense. On. each slice, one forms
the non-negative square of the strain O,b9 in
terms of (4.8) and integrates this over a slice.
Variation. with respect to P' yields a. "minimal
strain" shift vector satisfying

D 8„=0or D'(D»p, +D,p„) =D'(2nA, »). (4.9)

This linear elliptic equation for P has un. ique so-
lutions for a.ppropriate boun. da, ry conditions. " The
equation is three-covariant and involves the curv-
ature of the slice in an essential way, as one sees
from

D (D,p»+D, p, ) = np. +D.(D,p')-+B„p', n-=D'D, ..

This criterion involves the velocity of the metric
because 8„=—,

' s4, yab. If we interpret the result in
terms of definite components y„. of the metric in
a basis 8/sx', then the integrand of the variational
principle is &y'"y''y, y». Hence, we a.re mini-
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(LP).b
= D. &s-+D, P. s1',t, D—.P' (4.10)

%e mentioned earlier that it is convenient to think
of gravitational dynamical degrees of freedom as
being characterized by y,, Because the number
of degrees of freedom of a field at each point on a
slice is the number of iridependent velocity compo-
nents of the metric on the slice, we would expect

appropriate choice of p' to effectively fix three
of the five components of Z,b at each point. More-
over, to minimize "coordinate effects" in the
representation of the evolution of. y„on the given
foliation, we see that the optimum choice of P'
would be to minimize the integral of Z„Z" over a,

slice. This process yields the minimal-distortion
shift vector as the unique solution of

ol

g)~(Lp),„=D"[2n(K„—,' y„trK)]—(4.11)

Notice that (K„——,'y„trK) = —o',~. Therefore one

may regard this choice of p' as the one that

(globally) most nearly compensates the shear n&,,
over which one has no control if there has been
prescribed a definite foliation of a development.
This criterion for p' also contains the curvature"

D'(Lil). , =~P. .'D.(D, P') N—,J3' .
In component language, we have used as inte-

mizing time changes of the metric component func-
tions in an "average" sense.

A related method of choosing the shift is perha, ps
more fundamental. We can define a "shear" ten-
sor associated with 9„by taking its trace-free
part:

1Z„=O„-—,y. b tro

To distinguish Z„ from the usual shear tensor 0.„
discussed earlier, we call Z„the distortion. As for
any shear-type tensor, it can be viewed as describing
the change of shape of a small figure during the defor-
mationprocess. (See Fig. 7.) It has five independent

components that contain the relative stretching of
two of the axes of the figure relative to the third
one ("pure stretching") and the changes of the an-

gles between the three pairs of axes. The distor-
tion tensor says nothing about the change of volume

[I..e. , (dety)' '] of the figure.
The interest in Z„stems from the fact that it is

essentially the velocity of the conformal three-
metric y, =(dety) ' 'y . Thus,

Z„=—2(dety)'~' J g,y, ~

= z&(Z, y, —,'y„t—ra,y)

= —n(K„——', y, t, trK) + 2(LP),~—,

grand in the variational principle
~ 0

g ab (det~)2/3 +tk + jl~ (4.12)

The minimal distortion equation has a three-
dimensional component form equivalent to D'y;, .

=0

E. Discussion of minimal-distortion condition

/

There a,re several features of the minimal-dis-
tortion condition that are worth mentioning ex-
plicitly. Elsewhere, "we have pointed out that in a
wave zone, where the f ield is relatively weak, this
condition generalizes and includes the "TT gauges"
of ADM and Dirac. ' In this case, the P"s are
"small. " However, they are not small in general.
Deep in a "near zone, " even in the absence of
radiation, the 13"s are "large" and using them

simplifies significantly the description of the
structure of strong fields. This is illustrated in
Sec. V. It has also been demonstrated for black-
hole examples by Eppley" and by Duncan. "

A further feature is the close relationship of
minimal-distortion shift vectors to the "iso-
tropic" type coordinates that are used almost ex-
clusively in parametrized-post-Newtonian (PPN)
approximations" to general relativity (and other
metric theories of gravity). The simplest example
of isotropic coordinates is in the Schwarzschild
metric, where the spatial metric has its explicitly
conformally flat form y, , = (1+ I/2x)'f. .. where

f„is a flat metric .and x=(x'+y'i'z')'~' if f,,
J In general, three-metrics are not con

forma. lly flat, but isotropic-type coordinates can
be defined as those that satisfy, "in Cartesian
component language, y.. .=O(x '). The significant
point is that if we choose shifts P' that vanish at
infinity, the minimal-distortion shift always pre-
serves the condition above for isotropic-type co-
ordinates. " [Here we also assume the customary
condition K, , =O(r ') that guarantees finite linear
momentum. j Therefore, repeated solution of the
minimal-distortion equation generates in the
evolution of Cauchy data a time-dependent three-
dimensional coordinate transformation from quasi-
isotropic coordinates to quasi-isotropic coordi-
nates.

This discussion and the examples in Sec. V,
demonstrate that the minimal-distortion shift
vector is a natural choice from the points of view

of (1) the initial-value problem (conformal treat-
ment), (2) anisotropic cosmologies, (3) descrip-
tion of gravity in the wave zone, (4) description
of strong-field structure in Schwarzschild and

Kerr metrics, (5) exact treatment of dynamics
of geometry, and (6) PPN approximation
schemes.
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V. EXAMPLES

A. Killing equations

D, P, +D„P,—2 @K,„=—P,D~ ln(n '
p, )

—P„D.ln(o. 'p. ) . (5.4)

+ (d

where (d'n, =0, then we can write

$a ++-lf a

where f' is given by Eq. (2.16). We project"
the Killing equation

V, g„+V~( =0

into the surface, yielding

(5.1)

(5.2)

(5.3)

We turn finally to a detailed investigation of a
number of familiar spacetimes. These will in-
clude Minkowski spaeetime, stationary spacetimes
(including Kerr black holes), and. homogeneous
cosmologies. Our purpose is to use the general
framework developed in previous sections to
elucidate the close relationship between many
coordinate systems which heretofore have been
considered only in relationship to the specific
spacetime at hand. This will illustrate some of
the practical difficulties one encounters in con-
structing global coordinate systems. Further,
the insight we gain from applying our general ideas
to analytic models, where we can solve the equa-
tions in closed form, will be crucial for the nu-
merical applications in dynamical asymptotically
flat spacetimes or inhomogeneous cosmologies.

Since most of the model spacetimes we will
consider are analytic exact solutions of the field
equations, we pause briefly to consider a funda-
mental difference between the present approach
to solving Einstein's equations and the more tradi-
tional one. Typically exact solutions have been
discovered by making use of preferred vector
fields in the sought-for spacetime, e.g. Killing
vectors, degenerate pri, ~cipal null directions, etc.
The coordinate system in which the spacetime line
element is exhibited is tightly built around these
vector fields. However, this technique is useful
only for a very restricted set of spacetimes con-
taining such vector fields.

To solve for physically interesting radiating
spacetimes one must have a qualitatively different
approach, such as the Cauchy evolution discussed
above. There one poses initial data and evolves
these data into the future along some congruence
of curves t ' specified by a choice of the functions
n and P'. It is from this point of view that we
examine. some well-known spacetimes.

Our first task is to consider how a Killing vector
(' appears in the present approach. Assume the
slicing (o.) is given and we have yet to choose a,

shift vector (P'). lf we decompose $' along the
normal congruence n' to the slicing as

We can then evaluate the distortion tensor Z„
(4.13) by removing the trace from this equation:

2Z, , = —P, D~ In(n '
p, ) —

P& D, ln(n '
p, )

+ -,
'
y, , P' D, ln(n '

p, ) . (5.5)

Two cases present themselves. If the slicing is
carried into itself by the t' isometry, then $'
=f(t) f' [with f(t) =1 usually] and D, In(n 'p) =0.
This allows us to use f' as our coordinate con-
gruence. In this case the EQlling shift vector is a min-
imal-distortion shift vector since from (4.13)

2Z„=(LP)„—2 o',o«0 (5.6)

and the rate of chan. ge of the conformal three-
geometry is zero. The other case is one in which
the slicing is chosen in such a way that it is not
carried into itself by the isometry. If one wishes
to choose the coordinate congruence to lie along
the Killing congruence, then $'=f(x)t' and

8, ln(a 'p, ) w 0. The shift vector so obtained is
not a minimal-distortion shift vector since the
divergence of (5.5) contains the n 'p, terms.
Furthermore, Z,„c0 and the distortion can be
minimized further by solving the full minimal-
distortion equation (4.11). However, in general
the distortion cannot be reduced to zero unless the
more restrictive condition, (5.6), holds every-
where on the slice. Since these equations over-
determine P', one cannot in general find a zero-
distortion coordinate system. In the examples
discussed below, we will encounter both of these
cases.

In applications of the minimal-distortion con-
dition one must keep in mind the fact that the shift
vector one finds will not be unique unless ap-
propriate boundary conditions are imposed. In
asymptotically flat spacetimes there are cori-
ditions at spatial infinity and on any possible inner
boundaries. 28 Asymptotically P',„-0 if at great
distances the slices are like Minkowski hyper-
planes (e.g. , trK = 0) . On the other hand, for
asymptotically boosted slices, such as trK
=constants 0, a more natural choice in keeping
with the interpretation of P' as a velocity is to
requ're

I
~'I = IP'I & ' -»s we shall

Also, we note on such asymptotically boosted
slices o. =o(r)

.In cosmological spacetimes with closed slices,
the closure condition itself provides the only
boundary condition needed. Here P',„ is always
unique up to any possible conformal Killing vec-
tors. The latter would only give an overall re-
scaling of the three-metric. For open eos-
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mologies, there may not be any natural asymptotic
condition, in which case P',„may be nonunique.
Here J3',„can be selected on the basis of the re-
sulting simplicity of the metric. All of these
features are illustrated below.

B. Minkowski spacetime

Usually one does not use a time slicing for
Minkowski spacetime other than the standard
planes which are normal to the time Killing vec-
tor:

~a 8/Bt (5.7)

t = Minkowski time coordinate. Since no curva-
ture is present, these slices are at once geodesic
(o. =1), time symmetric (K,, =O), maximal
(trK=O), and flat (6I, , =0). The slices are trivial-
ly mapped into each other by $', so the minimal-
distortion coordinate congruence lies along the
Killing trajectories with P,„=O.

Another useful slicing is the hyperboloid, 4'

trK= constant. The time slices are given by

(t r)' r' =—-a', (5.8)

where v' = constant on each slice and a is the radius
of curvature of the slice:

trK= —3/a . (5.9)

The slices are no longer geodesic, time sym. —

metric, or flat because we find

a = (1+~'/a')'~', (5.10)

(5.11)

(5.12)

The slices are carried into themselves by (' and

so the minimal-distortion congruences lies along
(', requiring a nonzero P'.

(5.13)

With this shift vector the three-metric on the
slice can be written in two forms familiar from
cosmology:

dl '= (1+v'/a') 'dh'+x'dQ' (5.14)

or, in terms of relabeling x=asinhg, conformal
to a unit hyperboloid: I

dt '=a'(dq'+ sinh'qdQ') . (5.15)

Here [using (5.10), (5.13), and (5.14)] one sees
~v'(= ~P'jn '-1 as x-, so this P',„satisfies

the natural asymptotic conditions mentioned above.
- Note that, as expected, the three- metric is time
independent, i.e. , there are no gravitational de-
grees of freedom present. As pointed out in Sec.

III, the hyperboloid slices intersect null infinity
and not spacelike infinity.

We see that already for these simple slices it is
important to use the minimal-distortion congru-
ence. If, for instance, we had the same hyper-
boloid slicing, but chose the shift vector equal to
zero, the spacetime line element would read

ds' = —[1+csch'(o —r/a)] dr '

+ a' csch'(cr —r/a)(do'+ dQ'), (5.16)

where o. is a radial coordinate constant along the
normal congruence. Since the normal trajectories
are moving through a static spacetime:

j =a csch(o —r/a), (5.17)

the lapse and three-metric appear to be time de-
pendent. Furthermore, the radial coordinate cr has
range

r/a~a& w, (5.18)

which depends on r. Notice that P'=0, in this
example, is also a minimal-distortion shift vector
(the confocal three-metric is time independent)
However, this shift vector does ~ot satisfy the
natural asymptotic condition for boosted slices.
This vividly demonstrates that even when no
gravitational field is present, and even though a
"natural" smooth time slicing is used, the time
dependence of the three-metric is highly dependent
on the choice of shift vector. The optimum choice
is the minimal-distortion vector (5.13) that satis-
fies the natural asymptotic condition.

ds ' = —e"dt '+ e'~(d p'+ dz')

+ p B 8 "(dP —Rdt) (5.19)

where v, p, , B, and ~,are functions of p and z,
but not t or Q. Here the time slices are chosen
to be orthogonal to the twist-free part of the time
Killing vector $'. In fact, it is easy to show that

= o.'l2 —&d (5.20)

where &u' is the vorticity vector formed from $'.
The normals m' to the slices are often referred to
as "Bardeen locally nonrotating" observers. From
our point of view they are the Eulerian observers
for this particular slicing (the normals to any
slicing are "nonrotating" by definition).

The lapse function is given by

C. Stationary spacetimes

Let us move now to the case where a gravitational
field is present (with or without matter), but with a
Killing trajectory still present. For example, con-
sider the usual stationary axisymmetric line ele-
ment"
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(5.21)
I

and the slices are maximal, ~ therefore we require
P',,-0 at spatial infinity. If uFw 0, the slices are
"momentarily stationary"' and if co'=0, they are
time symmetric. The only case in which they are
geodesic is if v = ~'=0, which is Minkowski space-
time, in which case the time planes are recovered.
The slices are obviously carried into themselves
by g', and thus P' = —&a' is a minimal-distortion
vector field. As in Minkowski spacetime, the
first-order form of minimal distortion (5.6) is
satisfied. We note that here P' minimizes the
distortion caused by differential rotation shear,
not radial shear as in the Minkowski space hyper-
boloid slicing. Again, if a different shift vector
were used, the three-metric would appear to be
time dependent.

Stationary spacetimes may contain (rotating)
masses or vacuum black holes. In the former
case 0. &0 everywhere. However, in the latter
case the topology of the three-slice is S'x B in-
stead of R'. As a result, there is a "throat" on
which an "inner boundary condition" is required.
In the standard stationary coordinate systems (in-
cluding Schwarzehild and Boyer-Lindquist sys-
tems), the boundary conditions on the throat are
seen to be

(5.23)

D. Black holes

It is important to realize that the standard co-
ordinates for stationary black holes are by no

@=0, (5.22)

[(LP),, +2n(r, ,] e'=0,
where e' is an outward normal to the two-surface
of the throat in the slice. The latter is a Neumann
condition, so P',.„40 on the throat. It can be shown
in general from the variational principle for P
(Ref. 28) that the Neumann condition (5.23) gives
an absolute minimum for Z„. In the static case
there is no dragging of inertial frames and o,,
= 0. Therefore in this case, P',.„=0 everywhere
satisfies (5.23).

Our analysis of the stationary line element in
terms of maximal slicing with minimal-distortion
shift vector instead of in terms of Killing vectors
allows us to generalize to a spacetime of no sym-
metries. That is, we believe the natural general-
ization of the notion of a, stationary rest frame to
a dynamic spacetime is obtained by f irst choosing
initial data for which the total three-momentum
vanishes" and then by evolving Einstein's equations
using a. lapse and shift satisfying (3.2), (4.11), and
(5.22), (5.23). The f' trajectories are then, in a
sense, "close" to Killing-type trajectories.

means the only useful ones. ,Let us consider, for
simplicity, Schwarzschild-Kruskal spacetime. "
Here the Killing congruence (' is hypersurface
orthogonal, but it is timelike only outside of the
event horizon. The static slicing orthogonal to $'
therefore only covers the spacetime outside of the
black hole.

One way to explore the dynamic region inside the
black hole is to use geodesic slices. Lemaitre"
first used this idea. to show that the surface r = 2M

was not singular. His system is based on a nor-
mal congruence of marginally bound radial geo-
desics. If 0 = constant along each geodesic, then
the line element is

ds'= d~'+-(4M/3)' '(v —v') ' 'da'

+ (9M/2)' ~ 2((T T)~—~ 'dQ' (5.24)

(5.25)

where r is the standard Schwarzsehild curvature
Again, because $' maps the time slices into

themselves, the coordinate congruence lies along
the (' trajectories. Note, however, that the fall-
off in the slices of various quantities is different
from the falloff usually assumed. Here

Py r 1/2 (5.26)

(5.27)

This is why the three-slices can be flat and not
contain the mass. In addition, each slice inter-
sects the Schwarz sehild singularity at r = 0.

The Lemaitre system. is useful as an example
of the simplification induced by the minimal-dis-
tortion shift vector. , However, as a model for more
complicated nonspherical spacetimes, we would
like a nonsingular evolution. In Sec. III, we dis-
cussed various developments of the time- symmet-
ric slice vK,„,„„=Oin the Kruskal diagram. There
we saw the crucial dependence of the slicing on the
choice of lapse function. The use of a shift vector
in such black-hole spacetimes" where the three-
space is not topologically A is beginning to be in-
vestigated.

For the geodesic slicing, the coordinates adapted
to the normal congruence are termed Novikov co-
ordina, tes." This coordinate system is a special
case of the Bondi- Tolman metrics. " Such coor-'
dinates are natural for studies of dust ball collapse

As in the hyperboloid example in Minkowski spa, ce-
time, one sees here that demanding a normal co-
ordinate congruence (P" =0) causes an apparent
time dependence in the three- metric. By choosing
instead a minimal-distortion shift vector, we find
that the line element becomes

1

ds =-(1 —2M/r)dr2+ 2(2M/r )' drd7+dr'+'r2d02,
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matched" to a Schwarzschild exterior. There one
can ask for the shift vector which sends the coor-
dinate observers along the $' trajectories and con-
sider the problems of matching the lapse and shift
across the surface of the star. For a discussion
see Smarr and Welty. " For the maximal slicing,
the shift vector which matches the t ' trajectories
with those of g' was found by Estabrook ef al."
Note, however, that neither the geodesic nor the
maximal slicing is carried into itself by the $'
trajectories, since the slicing advances symmet-
rically across the throat, and therefore these
shift vectors are ~ot minimal-distortion shift vec-
tors.

This leads us to a subtle point involving bound-
ary conditions. There are two types of "inner
boundaries" which may occur. One is when there
is a throat present, as in the Schwarzschild solu-
tion, and the other is when a central massive body
is present. In the latter case, for instance, one
might want to choose the shift vector inside the
matter by the requirement that the coordinate con-
gruence be comoving with the matter, and in the
vacuum exterior choose a minimal-distoriton shift
vector. In either case, one must choose an inner
boundary condition on P'.

As discussed above, for the shear to be an ab-
solute minimum, one must use the Neumann-type
boundary condition on P', i.e. , (6.6). This in gen-
eral requires that P' c 0 on the boundary. How-

ever, if this occurs then the coordinate congruence
must cross the boundary. In the case of a symme-
tric slicing of a throat spacetime, this means the
isometry between the upper and lower sheets will
be broken. In the case of a star, such an absolute
minimum means either the surface of the star can-
not lie along a coordinate line, or if comoving co-
ordinates inside are demanded, then the shift
vector is discontinuous across the surface. An-
other possibility, of course, is to choose P'= 0
on the boundary. In this case, the boundary will
lie along a coordinate line, but the distortion, will
not be an absolute minimum. In particular, dis-
tortion will pile up near the boundary. An example
of such a minimal-distortion shift vector with a
maximal slicing has been given by Eppley. '

Finally, we make some remarks about whether
maximal slicing always leads to nonsingular de-
velopments. In Sec. III we presented a model which
indicated that maximal slicing causes the lapse
function to drop to zero exponentially in time as a
nonlocal strength of curvature and matter terms
increases. Two questions arise: (1) Is this drop
always. fast enough so as to produce a nonsingular
development'? (2) In the cases where it is, does
this mean the slices are "avoiding a spacelike sing-
ularity to the future"?

The answer to both of these questions, as mentioned
earlier, is no. A counterexample to the first claim
was produced by Eardley and Smarr. " They investi-
gated the maximal slicings of a class of Bondi- Tolman
solutions representing dust ball collapses. In most
cases the maximal slicing behaves qualitatively as
described in Sec. III. But, for a sharp enough rise
in the density p toward the center of the ball, re-
sulting in a very iphomologous collapse, the maxi-
mal slices hit the spacelike singularity in a finite
time. In terms of our model calculation, this is
because with such a sharp "spike" in the central
density, the weighted strength in Eq. (3.8) gives
too slow a time rise to x, and therefore too slow
an exponential falloff for c/ [Eq. (3.9)]. However,
it seems likely that more reasonable equations of
state will not allow this to occur.

To see how question (2) can have a negative ans-
wer, we turn to the charged version of Schmarzs-
child spacetime: Heissner- NordstrOm. By solv-
ing for the maximal slicing of the analytically ex-
tended spacetime, Duncan ' finds the x= constant
surfaces which are the analogs of the ~ = 2M limit-
ing maximal surface in Kruskal-Schwarzschild
spacetime. Here there are two surfaces x= cons-
tant which have trE=O:

8 Q2 1/2
=-'M 1+ 1-——

1,2 4 9M (5.28)

One of these, r„ lies outside of the Cauchy hori-
zon:

r =M[1 —(1 —Q'/M'/'/'j (5.29)

for 0&@/M&1. The Cauchy evolution by maximal
slices from the time-symmetric initial slice wraps
up around x, . Now even if the maximal slices filled
the entire interior of the Cauchy horizon (r) r )

they could not hit a singularity. Thus, they must
be "avoiding" something else. In this case it is
the Cauchy horizon x itself, since it is a null
hypersurface with zero volume. This example again
indicates that maximal slices try to avoid global
regions of small volume.

All of these remarks may be carried over to dy--
namical spacetimes containing no Killing trajec-
tories. Geodesic slicings seem to work well if
curvatures are very small" (weak gravitational
waves). For strong fields, caustics develop in
geodesic slicing and a better method, such as
maximal slices, must be used. This has been
done" for star collapse, strong gravitational
waves, and colliding black holes. The general
properties shown by our flat-space example seem
to carry over, even in highly nonspherical prob-
lems. Presumably, this is because at late times
any nonrotating black hole settles down to a spher-
ical one. The use of nonzero shift vectors for these
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spacetimes is only beginning to be explored. How-

ever, it is clear that the choice of zero shift leads
to a time evolution of the three-metric dominated
by coordinate shear. ' The use of hyperboloid slic-
ing is also beginning to be explored. "

For an application to an open universe let us
study vacuum Kasner spacetime, a Bianchi type-I
homogeneous cosmology. " The line element in
the usual form with zero shift is

.E. Homogeneous cosmologies

ds' = dr-'+ ]
7't'~ (dx ')', (5.35)

D'(LP), ~
= 2J ~ . (5.30)

If the cosmology is tilted, then this full equation
must be solved with a matter current O'. For the
untilted case (5.30) simplifies to the source-free
case

(5.31)

Here again the boundary cms&itions p/ay the cru-
cial vole. If the universe is open we may have

(LP)„=const (5.32)

and a nontrivial P'. (In particular, the constant
may be 2oc„.) If it is closed then

(5.33)

and the only nontrivial solutions are conformal
Killing vectors. " If no such symmetries exist,
then we have

p, =0. (5.34)

Just as we study the kinematics of stationary
black-hole spacetimes to prepare us for asymp-
totically flat dynamical spacetimes, so the ho-
mogeneous cosmologies" are the models from
which we gain insight for the inhomogeneous ca,se.
In the black-hole spa, cetimes, the sta, tionarity
forced the "standard time slices" to be maximal
(trK=O); in the cosmological spacetimes the
choice of surfaces of homogeneity as time slices
implies the slicing trK=f (7). However, the ho-
mogeneity also implies the normals n' are geode-
sic (o= 1). As was suspected for a long time and
now has been rigorously proved, families of max-
imal slices do not exist in general for closed cos-
mologic s."

The use of a, shift vector is uncommon in the
study of cosmologies, except in the case of tilted
cosmologies, "where the shift vector is chosen to
maintain comoving coordinates when the matter
flow lines are not orthogonal to the surfaces of
homogeneity. We show below that the minimal-
distortion shift vector can be useful for simplify-
ing the three-metric of homogeneous cosmologies.
Furthermore, as in asymptotically flat spacetimes,
we define gravitational degrees of freedom to be
present when Z„(P',„)xO. This contrasts with
the usual investigations of homogeneous cosmolo-
gies when P'=0 is the preferred gauge. The min-
imal- distortion shif t equation becomes

where p,. are three constants. The slicing is geo-
desic but also satisfies D, trK= 0, with trK(r) be-
ing given by

trK= -7 ' = trK(r) . (5.36)

Note that in these coordinates the three-metric is
time dependent, even though there exists a homo-
thetic Killing vector" (self-similarity) in the Kas-
ner universe given by

(5.37)

V,$~+ V, $,= cg„. (5.38)

ta(yi) 0

y4 —7Pg l~f
(5.40)

In these new coordinates the line element becomes

ds ' = — 1 —g [(p,. —1)y ']' dr'

Q (p j)yidy&dq-+q2 Q(dye)2 (5.41)

We see that the three-metric is manifestly confor-
'mally flat and thus the time rate of change of the
conformal three metric vani-shes. Even though
v„c0, we easily verify that Z„=O t Eq. (4.10)]
and therefore gravitational degrees of freedom are
entirely absent. The apparently dynamical behav-
ior in (5.35) is purely kinematical and is eliminat-
ed if we use a minimal-distorition shift vector:

(LP)„=2oc„=constant. (5.42)

However, as noted above, in open cosmologies this
shift vector is not unique, since one can add to it any
solution of (5.33). In particular, one can add -8/By'
to P

' in (5.41). Along the new t' trajectories we intro-
duce new constant coordinates z' = ~y' and the line
element becomes

Since the slices are carried into themselves by
$', it seems likely that, by an extension of our
discussion in Sec. VA, a minimal-distortion shift
vector will result if we choose t' to lie along the
&' trajectories:

(5.39)

To verify this conjecture, we find new coordinates
y' which are constant a,long t'.
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ds' = — 1 —Q (p,.z'r ')' dw'

—2 Q p,.z'T 'dz'dr+ Q(dz')'. (5.43)

= trK(T), (5.44)

where we are using &= ma, „as a time coordinate to
emphasize the interchange of roles of time and
space variables for za, „&2M. Note that'the KST
cosmology has a "big bang" at 7 =234, expands
until trK=O at T=ys, h= 3M/2, and recontracts to
a singularity at T=0.

As in the Kasner universe, the use of a, mini-
mal- distortion shif t vec tor removed the time de-
pendence for the three-metric, which in normal
coordinates reads

2 +. g
2 dQ2

T S0b (5.45)

With a new radial coordinate

+3 h ( +Bch) fach (5.46)

defined to be constant along the minimal-distortion
congruence, the four-metric decomposes as

r T(3M —7)
2M —7 ' 2M-v ep

'

df' = r'(dp'+ dQ').

(5.41)

(5.48)

Note that, as in the Kasner universe (5.41), the
lapse and three-metric are independent of the spa, —

tial variables because of the homogeneity, but the
shift vector depends linearly on distance. This is
necessary in order for the minimal-distortion
shift vector to "undo" the coordinate shear in the
extrinsic curvature. Our calculation verifies in

i

The three-slices are in fact flat, not just conform-
ally flat. It is' interesting that this feature of the
flat three-spaces, which we also saw in the Le-
mastre coordinates of Schwarzschild, is only man-
ifest in the minimal-distortion coordinates. "

We turn now from. the Kasner universe to the
Kantowski-Sachs- Thorne" (KST) universe. This
'is a very interesting example since it has features
representative of both black holes and cosmologies.
Among the homogeneous cosmologies, the KST is
the only one" not belonging to a Bianchi class, by
virtue of its three-surfaces having topology S, && R.
As was noted by its discoverers, it can be mapped
isometrically onto the Kruskal-Schwarz schild"
spacetime for x&2M. There the "natural" time,
slices are the r,~ = constant hypercylinders (S, x R).
These are homogeneous surfa, ces (independent to

t~~) and therefore are constant trK slices

2 2MtrK= — —1 (7 ——,'M )T2 7

a new way the fact that KST possesses no dynam-
ical degrees of freedom. "

Let us return to the interpretation of EST as the
xa,„=constant slices of Kruskal-Schwarzschild
spacetime for r„„&2M. Consider now the trE=K,
= constant slicing of the full manifold. What has
been found by Eardley and Smarr" and Brill ef, al."
is that such a slicing "wraps up" around an xs,„

I

=x, constant slice inside the horizon (y =2M) where
trK(T = x, ) = K, using Eq. (8.44). Thus a "limit
slice" exists for hyperboloid slices just as it does
for maximal slices. This is very important since
it means the hyperboloid slices combine the ad-
vantages of null infinity with the strong-field be-
havior of maximal slices.

As a final cosmological example, let us consider
the mixmaster universe, "which is a, closed Bian-
chi type-IX homogeneous universe. " Here, of
course, the gravitational degrees of freedom a~e
excited.

Following our discussion at the beginping of this
section, the closed nature of the time slices (top-
ology S,) implies that the minimal-distortion shift
vector vanishes modulo conformal Killing vectors
(which provide only an overall rescaling of the co-
ordina, tes). Thus, the anisotropic shea, r in the
normal coordinates is entirely caused by gravita-
tional shear. " Thus, there are no superfluous
coordinate effects.

One could extend our analysis to the other Bian-
chi types and thus complete this study of homo-
geneous cosmologies. It would be very instructive
if one could find a cosmology which is, in a sense,
a Kasner universe crossed with a mixmaster uni-
verse, i.e. , a cosmology in which the normal co-
ordi. nates induce both kinematic and dynam, ic modes
into the three-metric. The minimal-distortion
shift would then remove just the kinematic terms.
Candidates among the homogeneous cosmologies
would require the three-metric of the time slices
of homogeneity not to be conformally flat. For
other reasons such a classification has been re-
cently carried out by Spero and Szafron, " Using
their results and notation we would claim that
there are no dynamical modes excited (slices are
conformally flat) in any Bianchi type-I, V, VI, (a
—n, =-n, ), VII„(n, =n, ), VII, (n, =n, ), IX(n, =n, =n, ),
or Kantowski-Sachs- Thorne cosmology. Which
ones among the others actually have Z„(P',„)40
remains to be calculated. Also of interest would
be to perform this analysis on inhomogeneous cos-
mologies, such as the Gowdy universe.

VI. CONCLUSIONS

We have discussed how the choice of a coordinate
system in which to represent a spacetime metric
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can be analyzed geometrically. One considers a
foliation or slicing of the spacetime to define the
time coordinate. The three spatial coordinates are
then constant along a congruence of curves which
thread these slices. This decomposition defines
two sets of "observer" world lines: those normal
to the slices, termed "Eulerian, " and those along
the coordinate lines. The kinematics of these ob-
servers is then governed by the acceleration of the
Eulerian observers and the three-velocity of the
coordinate observers. These quantities are codi-
fied in the lapse function and shift vector of Arno-
witt, Deser, and Misner.

The choice of slicing is crucial in order to ob-
tairi a nonsingular development of an initial-data
slice. We illustrated this by comparing geodesic
and maximal slicing of Kruskal-Schwarzschild
spacetime. The use of the maximal slicing re-
quires solving a curved- space elliptic equation on
each slice. We presented a model flat-space ex-
ample which seems to capture most of the features
of the time development of the maximal lapse func-
tion. This model indicates that at late times the
lapse drops exponentially to zero in strong-field
regions.

With the slicing determined, the shift vector may
be used to sort out the time dependence of the
three-metric. In particular, the use of a certain
"minimal-distortion" shift vector is seen to be of
great kinematic value. Its properties were dis-'
cussed in general and then in explicit examples.
As models for more complicated spacetimes we
investigated Minkowski spacetime, black-hole
spacetimes, and homogeneous cosmologies. These
familiar spacetimes seen from the present view-
point show the way in which maximal or hyperboloid

slicing and minimal-distortion shift vectors unify
a wide range of coordinate systems. More im-
portantly, these methods are directly applicable
to spacetimes possessing no symmetries,
which cari be found from the numerical evolution
of Einstein's equations.

Note added jn proof. After this work was com-
pleted, Robert T. Jantzen communicated his re-
sults on the use of shift vectors in Bianchi cosmo-
logies [in Relativistic Cosmology and Bianchi
Universes, edited by R. Ruffini (to be published) j.
He finds, by group-theoretical methods, that the
natural shift vectors indeed do satisfy the minimal-
distortion conditions that we have proposed.
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