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In this paper, a number of theorems are proven which collectively show that singularities will occur in

spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose
theorem, which uses only the weak energy condition but which applies only to open universes, is extended to
all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere.
Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced
by the weak energy condition and the assumption that the strong energy condition holds only on the average.
In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from
the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which
satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete.

I. INTRODUCTION

The Hawking-Penrose singularity theorems col-
lectively show that singularities must occur in
spacetime provided three types of conditions are
imposed:

(1) certain reasonable initial conditions, such as
the existence of trapped surfaces or the existence
of a compact spacelike hypersurface;

(2) various restrictions on the causal structure,
such as the existence of a Cauehy surface or the
absence of closed timelike curves;

(3) energy conditions.
Now at least one condition of the fir st type has been
justified by astronomical observation, ' and I have
shown elsewhere" that, roughly speaking, con-
ditions (1) and (3) imply that a violation of the
causal structure conditions in unlikely to prevent
the predicted singularities; indeed, such violation
mould tend to make singularities rather than remove
them. In the present paper I shall address the
problem of weakening the third type of conditions.
I shall prove several singularity theorems which
collectively show singularities will still occur
even when the restrictions on the energy tensor
are relaxed.

Recall that the singularity theorems use the
energy conditions as sufficient conditions for the
focusing of certain causal geodesic congruences
whose presence in space-time is guaranteed by
conditions of the first type. The existence of
focal points on these eongruences is then shown
to be inconsistent with the causal structure re-
strictions. It is therefore concluded that although
focusing occurs, it does not lead to focal points;
i.e. , some of the geodesics in the congruence must
be incomplete. Since the energy conditions used in
the standard singularity theorems are sufficient
but not necessary conditions, we mill still be able
to p,ssert that singularities must occur in space-

T„UU'o 0 (2)

for all causal vectors U'. Thus the prediction of
singularities would be more believable if there
were a singularity theorem which used only the
weak energy condition. Penrose's theorem (Ref. 1,
p. 262) uses only the weak energy condition, for
only the convergence of null geodesic congruen-
ces is needed in this theorem, and the weak energy
condition is sufficient to insure this. Unfortunate-
ly, this theorem is restricted to open universes.
In Sec. III Penrose's theorem will be extended to
all closed universes which possess a Cauehy sur-

time if we can find weaker sufficient conditions
for the occurrence of focal points on complete
causal geodesics.

In Sec. II, we will discuss the possibility that
the sA'ong energy condition, which requires

(T„—2I,„T)U'U'~ 0

for all causal vectors U', will be violated. This is
the condition used in the best known singul. arity
theorem, the Hawking-Penrose theorem (Ref. 1,
p. 266), for the condition is a sufficient condition
for the convergence of causal geodesic congruen-
ees, and it is various causal geodesic congruen-
ces whose continued focusing is required in the
proof of this theorem. The strong energy condition
is not a necessary condition for the continued fo-'

cusing, however. In fact, it will be shown in Sec.
II that if (1) holds only on the average along all
causal geodesics, then generic closed universes
must have an incomplete timelike or null geo-
desic. Thus more than a small, local violation
of the strong energy condition w ll be required
to avoid singularities in closed universes.

Many familiar matter fields, such as the mas-
sive scalar field, have a stress-energy tensor
which can violate the strong energy condition but
not the sneak energy condition, which says that
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face whose universal covering manifold is non-
compaet. It mill be further shown that if black
holes exist and the weak energy condition holds,
then some null geodesics must be incomplete what-
ever the topology of the Cauchy surface. It will
be demonstrated in this section that the strong
energy condition in the Hawking-Penrose theorem
can be replaced with the assumption that the weak
energy condition holds t:verywhere and the strong
energy condition holds on the average. The sig-
nificance of these new singularity theorems will
then be discussed. It will be pointed out that they
imply that the nonsingular" cosmology proposed
by Murphy' is in fact singular, and that the non-
singular cosmology of Bekenstein' develops sin-
gularities when it is perturbed sufficiently to create
black holes.

Section IV mill conclude the paper with a discus-
sion of the possibility that the weak energy con-
dition is also violated at extremely high densities
and pressures. It will be shown that there is no
local energy condition which is weaker than the
weak energy condition.

Conventions and notations of this paper are the
same as those used in Hawking and Ellis' (HE) un-

less othermise noted. The Einstein equations are
R„=8m(T, —,'g„T). —

II. THE STRONG ENERGY CONDITION

AND THE AVERAGED STRONG ENERGY CONDITION

singular Friedmann cosmology. His stress-energy
tensor consists of incoherent radiation together
with a classical conformal massless scalar field
coupled to dust particles, and he finds that under
these circumstances the S' topology Friedmann
universe will "bounce" instead of terminating in
a singularity. Interestingly, the meak energy con-
dition is not violated, though the strong energy
condition is.

Parker and Fulling' have obtained a. bouncing S'
Friedmann univer se by using as their matter tensor
the expectation value of the canonical stress-energy
tensor arising from a quantized massive scalar
field. A computer analysis of the case in which the
cosmology is in a special quantum state showed that
the universe could contract to a minimum size and
then re-expand, but it is not known if this behavior
mould continue for an infinite number of cycles,
or even if it would occur at all for a physically
reasonable quantum state.

To my mind one of the strongest reasons for
doubting the validity of the strong energy condition
in the extremely high-density regime comes from
a consideration of the spontaneously broken gauge
symmetry theories. A typical action is

Jd'x (-g)'~'$(l/le~)(R —S'.,Z.")
—(1/4~)PD, @'D'y, + V(Q)]],

= (Q.,v') y ~(f P ,"Uqv. (3)

where U' is any causal vector. Thus if the scalar
field or its second derivative becomes sufficiently
large, the absolute value of the second term in (3)
can become larger than the first term, and this
will cause a violation of the strong energy condition
(since U, U' ~0). As emphasized by Bekenstein, '
a violation of the strong energy condition by a mas-
sive scalar field may be physically significant
because the strong interactions in nuclear matter
can be regarded as mediated by a classical mas-
sive scalar field. Bekenstein has used the fact
that (3) can'become negative to construct a non-

The strong energy condition, when coupled to
the space-time geometry via the Einstein equa-
tions, basically says that gravitation is always
an attractive force. As emphasized by Hawking
and Ellis (p. 95), a, violation of this condition has
never been seen in the l.aboratory. In particular,
the electromagnetic field and the massless scalar
field cannot violate the strong energy condition
under any circumstances. However, it is possible
for the massive scalar field to violate the condition
since for this field the stress-energy tensor gives

(T., —,'g.,T)V'V' = (y, ,v—')'+ ', m'@'V.V'-

D.0' = '.4'+& .~.54'

V(y) = ',m'y y. + -,'~(y y. )'—+,'m'/~-
(m'& o, x& o)

and the c's are the structure constants of the gauge
symmetry group. The canonical stress-energy
tensor obtained from the above action is

+ '&(D.0 DsA -—'g.sD.A D 0--g.oV(4)] (4)

Yasskin has pointed out' that, due to the presence
of the V(Q) term, it is possible for (4) to violate
the strong energy condition (but not the weak ener-
gy condition).

The important thing to notice in the above exam-
pl.es is the fact that the energy condition violation
occurs only in a restricted set of circumstances;
in the Parker-Fulling case, for example, the vio-.
lation is knoMn to occur only for a certain set of
quantum states. It is quite possible that the viola-
tion would be quite local, with the strong energy
condition holding in an average sense. The follow-
ing theorem shows that if the strong energy con-
dition holds on the average along all causal geo-
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desics, then the occurrence of singularities is
still inevitable in any closed universe on which
the Einstein equations hold.

Theorem 1. Space-time (M, g) is not timelike
and null geodesically complete if

(1) f „R,~U'U~dt ~ 0 along every complete causal
geodesic y(t), equality holding only if R„U'U'=0-
over the entire history of y(t) IU' is the tangent
vector to y(t), and t is an affine parameter];

(2) every causal geodesic contains a point for
which U'U~U&, R»,~&,U&&4 0 (i.e. , the generic con-
dition holds);

(3) the chronology condition holds;
(4) there exists a compact achronal set without

edge.

Comment. Condition (2) is not needed if we assume
that fR„U'U~dt is strictly positive along all causal
geodesics. Note that fR,~U'U~ ~ 0 and the Einstein
equations imply J (T„—~„T)U'U'~ 0. Thus con-
dition (1) implies that the strong energy condition
holds on the average, where the average is taken
over the entire history of a causal geodesic.

Proof of Th'eorem I. Hawking and Penrose have
proven (Ref. 1, p. 267) that the following three con-
ditions are inconsistent:

(a) every inextendible causal geodesic contains
a pair of conjugate points;

(b) the chronology condition holds on (M, g);
(c) there exists an achronal set S such that F.'(S)

is compact.

%e shall show that the assumption of causal geo-
desic completeness and assumptions (l)-(4) are
inconsistent because together they imply conditions
(a)—(c).

Assumption (3) is the same as condition (b) and
the compact achronal set without edge of assump-
tion (4) is the set S of condition (c), since for an
achronal set without edge we have 8'(S) =S.

We will complete the proof by showing that (1)
and (2) together with the assumption of causal
geodesic completeness imply (a). Two points p
and q on a causal geodesic y(t) are said to be con-

jugate along y(t) if the expansion 8 of a geodesic
congruence containing y(t) becomes infinite at tr
and q. The expansion 8 satisfies

where 2o'= o' „o'~"and m, n = 1., 2 label the two
spacelike directions of a pseudo-orthonormal frame
parallel propagated along y(t). For timelike geo-
desics 0' satisfies

+ 36 g(R„U'U +2o'), (7)

where 2o'=—o zo' z and a, P= 1, 2, 3 label the three
spacelike directions of an orthonormal frame
parallel propagated along y(t) [Eq.uation (7) fol-
lows from equation (4.25) of HE, ' and Eq. (6)
follows from the equation for null geodesics anal-
ogous to (4.25).]

It can be shown (Ref. 1, pp. 97 and 100) that P
and q are conjugate along y(t) if and only if a func-
tion y, defined by 8,= (I/y )dy/dt, satisfies y = 0
at q and p. If we define a new function x by the
relation x"=y, then 8= (n/x)dx/dt, and (5) becomes

4 g
, +F(t)x=0,

Ch2 (8)

where

F(t) = (I/n)(R, ~U'U~ + 2o') .

Since x"=y, y will be zero at p and q if and only
if x =0 at p and q. Thus we have reduced the prob-
lem of finding conjugate points to the problem of
discovering the location of zeros in solutions to
(8): a complete causal geodesic y(t) will have a
pair of conjugate points if and only if there is a
solution to (8) which has at least two zeros on the
interval (—~, +~).

I have shown elsewhere" that (8) will have a
solution with at least two zeros if'f '„"F(t) dt&0.
For causal geodesics along which B,~W 0, this in-
tegral is positive by assumption (1) and the fact
that o' ~ 0. If f „R„U'U~= 0 along a geodesic,
then by assumption (1) R„U'U~—= 0 on the geodesic.
By assumption (2), there exists a point p on every
causal geodesic for which the first term of Eq. (6)
or (7) is nonzero, depending on whether the geo-
desic is null or timelike respectively. This means
that o' is positive in some neighborhood of p. Thus

= —R,,U'U~ —2o' —(1/n) 8', I" t dt= (1/n)(R, r,
U'U + 2o')dt

where U' is the tangent vector to the geodesic,
t is an affine parameter along y(t), and n= 3 for
timelike geodesics and n = 2 for null geodesics.
The function o' is positive definite. For null geo-
desics it satisfies

manb

so (8) will have a solution with at least two zeros
in (-~, +~).

It follows that assumptions (1) and (2) together
with causal geodesic completeness imply (a).
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III. THE PEAK ENERGY CONDITION

The weak energy condition essentially says that
the local energy density is positive definite; i.e. ,
every local observer measures the mass density
to be non-negative. As its name implies, the weak
energy condition is a much weaker condition to
impose on spacetime than the strong energy con-
dition. In fact, except for the Parker-Fulling
quantum field, all the matter fields mentioned in
Sec. II as possible violators of the strong energy
condition must obey the weak energy condition.
Thus a singularity theorem which used only the
weak energy condition would rest on a much firmer
physical foundation than a singularity theorem
which required use of the strong energy condition.
Penrose's theorem (Ref. 1, p. 263) is a singularity
theorem which uses only the weak energy condition.
Unfortunately, it applies only to open universes.
The following theorem extends Penrose's theorem
to all closed universes whose Cauchy surfaces
do not have a compact universal covering manifold.

Theorem 2. A spacetime (M, g) on which the
Einstein equations hold cannot be null geodesically
complete if

(1) the weak energy condition holds;
(2) (M, g) contains a spacelike Cauchy hypersur-

face S;
(3) the universal covering manifold to S is non-

compact;
(4) there exists at least one of the following:

(i) a closed S' trapped surface,
(ii) a point P such that on every past (or every

future) null geodesic from P the divergence 8 of
the null geodesics from p becomes negative (i.e. ,

the null geodesics from p are focused by the mat-
ter or curvature and start to reconverge).

The proof of Theorem 2 will require the proof
of hvo propositions. %e first define the msiver-
sal couering sPacetime (M,g) to a given space-
time (M, g) to be the universal covering man-

ifold (M, f) to M and the unique metric g induced
on M from g by the covering map f.

Proposition 2. Let (M, g) be a globally hyper-
bolic spacetime. Then the universal covering
spacetime (M, g) is also globaLly hyperbolic.

Proof: Since (M, g) is globally hyperbolic, M=R'
(3S, where S is a spacelike Cauchy hypersurface
for (M, g), and for each a I=A', jaI.S is a. space-
like Cauchy surface for (M, g) (Ref.'1, p. 212). LetS
be the universal covering manifold to S. Then A'(3S
covers M, and further A'(SS is simply connected.
SinceR (3S is simply connected, it is its ownuniver-
sal covering manifold. Thus M =A'8 S and the cover-
ing snap fwhich maps M onto M maps each S onto a
corresponding S. The metric g induced on M by f

is unique, and together with M it defines the uni-
versal covering spacetime (M, g) to (M, g). Now

each S is spacelike is the metric g. For suppose
some S were not everywhere spacelike, say at the
point x„.Then since f is a diffeomorphism from
some neighborhood U of x„ontof(U) in M, S could
not be spacelike at a point x, ~f(x„). But this con-
tradicts the fact that S is a spacelike Cauchy
hypersurface. Furthermore, all causal curves
intersect a given S at least once. For suppose
there were a causal curve y which did not intersect
S. Then f(y) is a causal curve in M which does
not intersect f(S). But all causal curves inter-
sect f(S), since f(S) is a Cauchy surface for (M, g).
Geroch has shown" that no timelike curve can in-
tersect f '(S) =S more than once, and if a. nuLL

curve intersected S more than once, there would

be a timelike curve which intersected S more than
once. To see this, let p &q be two points at which
the null curve X intersected S. If A. is not a null.

geodesic generator of I'(p), then p«q. If Xisanutt
geodesic generator of I'(P), then since S is with-
out boundary (because M and M are without bound-

ary) there is a point xe E X with p& w&q such that
8 AI'(~u) is nonempty. If tv SGI'(w), then p«t. In
summary, S is a spacelike hypersurface in which
every causal curve intersects exactly once. By defi-
nition (Ref. 1, pp. 201 and 205) S is a Cauchy surface
fo'r (iQ, g), and a spacetime which contains a Cauchy
surface is globally hyperbolic (Ref. 1, p. 209).

Proposition 2. I et T be a spherical trapped sur-
face in a spacetime (M, g). Then there exists a
spherical trapped surface T in the universal
covering spacetime (M, g) of (M, g) and f(T) = T.

Proof The spheri. cal trapped surface T is an
embedded two-dimensional submanifold of M;
i.e., we can r egard T as a map h: S'- M,
where S' is a. two sph-ere (Ref. 1, pp. 101 and 262).
Pick a point pc M such that f(p) = pc T Letx„.
c S' be defined by h(x, ) =p. Then there exists a.

unique continuous map c: S'-M such that c(x„)
=P and fc =k. For by the homotopy lifting theorem'
such a c will exist if and only if the image of h. +.
m, (S', x„)—v, (M, p) is contained in that of f„:&,(M, p)
—v, (M, p), where m, is the fundamental group.
Now &, (S', x„)= i, the identity element, since S'
is simply connected, and h* maps &„(S',x, ) into
the identity element of v, (M, p). Furthermore,
the image of f~(&, (M, p)) in &, (M, p) contains the
identity element. Thus the image of h. * is con-
tained in the image of f*, so the map c exists.
Since c is continuous, c(S') cM is compact and

without boundary. In addition, c(S') is two-dimen-
sional since&~ is locally a diffeomorphism. De-
fining c(S') = T, we have that T is simply connected
since if it were not, there would exist a loop n
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c T which would not be homotopic to zero, but f(n)
=nc. T. Because T is simply connected, n is
homotopic to a loop m (= T 0 U with n, m having
a-point in common, where U is a neighborhood
with f(U) mapped diffeomorphically onto U. Let
m c T be defined by f(m) =m. Then m must be
homotopic to zero since m is contained in U. By
Corollary 2.4 of Ref. 10, m is homotopic to n.
Thus n must be homotopic to zero, which is a con-
tradiction. Thus T is compact, two-dimensional.
boundaryless, and simply connected. It is there-
fore a two-sphere. "'" Since f is locally a diffeo-
morphism, T will be an imbedded spacelike sub-
manifold of M, and if „X,„

is a null second fundamental
form of 7 at p c T, then „X„~~= „y,~ ~» where f(p) =p.
Thus, g~g'" and, y,~g' are both negative on T.
It follows that T is a spherical trapped surface.

Proof of Theorem 2. Suppose to the contrary that
(M, g) were null geodesically complete. Let (M, g)
be the universal covering space-time to (M, g).
Then (M, g) would also be null geodesically com-
plete (Ref. 8; Ref. 1, p. 181}. Suppose condition
(4ii) holds. Pick a point P c M such: that f(P) =P.
The set of directions at p and all null geodesics
which move into the past from p is compact, and

hence the set of directions at P of all null geodesics
which move into the past from P will also be com-
pact, since there is a neighborhood U of p which is
mapped diffeomorphically onto a neighborhood

f '(U) of P by f '. By conditions (1), (4ii) and pro-
position 4.4.4 of HE, ' every past-directed null
geodesic y~ from p would have a point q conjugate
to t) within a finite affine parameter distanCe c.
For each past-directed null geodesic y&, let y&,
denote the null geodesic segment consisting of
the portion of y~ between q and p. By Corollary

. 2 of Ref. 13, there exists a unique path y&, in M
which covers y&, and which has origin p. Since a
neighborhood of each point of y&, will be mapped dif-
feomorphically onto a neighborhood of each point of

y~, by f, p and q =f '(q}willbe conjugate points of y»
and the affine parameter length of y~, must be less
thanor equalto c. Byproposition1, (M, g) is glo-
bally hyperbolic. Thus by proposition 6.6.1 of kIE, '
P(p) =E (P), and hence Z (p) is generated by null

geodesic segments with future endpoints at P.
By proposition 4.5.12 of HE' and the achronality of
8 (P), the set J (P) is compact, being the inter-
section of the closed setP (P} with the compact
set consisting of all the past-directed null geo-
desic segments from P with length equal to c. By
the proof of proposition 1, we can write M as R'
S S, where S is a Cauchy surface for (M, g) and
S is the universal covering manifold to S. By con-
dition (3), S is noncompact. Since (M, g) is a,

spacetime, it admits a future-directed C timelike
vector field which is everywhere nonvanishing.

Each integral curve of this field will intersect
S, and will intersect Z (P) at most once. The set
of integral curves thus defines a continuous inject-

0 0

ive map a:J (P)-S. If Z (P) were indeed compact,
its image a(P($)) would also be compact and would

be homeomorphic or J (p). Since S is noncompact,
o'(J' (p)) could not contain the whole of S and would

therefore have a boundary in S. This is impos-
sible, since by proposition 6.3.1 of HE, J (P}
and hence n(P($)) would be a three-dimensional
manifold without boundary. We have a, contradic-
tion, and thus (M, g) cannot be null geodesically
complete. If condition (4i) holds, then by this
condition, conditions (2) and (3), and propositions
1 and 2, the universal covering spacetime (M, g)
has a noncompact Cauchy surface and a spherical
trapped surface. Thus the conditions i~posed on
the universal covering space-time are the same
as those imposed on a spacetime in Penrose's
theorem (Ref. 1, p. 263), and so (M, g) must be
null geodesically incomplete. Thus (M, g) must
be null geodesically incomplete.

Hawking and Ellis have shown (Ref. 1, Sec. 10.1)
that condition (4ii) almost certainly holds in our
universe. Therefore, if we can believe the weak
energy condition, theorem 2 shows that singulari-
ties are inevitable in our Universe provided our
Universe has a Cauchy surface whose universal
covering manifold is noncompact. Now Poincare's
conj ecture"' "—which almost all mathematicans
believe but which is still unproven —states that a
compact, boundaryless, simply connected three-
manifold is a three-sphere. Hence, if we assume
Poincare's conjecture to be true, theorem 2 shows
that our Universe must contain singularities un-
less our Universe contains a Cauchy surface whose
universal covering manifold is topologically S'.
Unfortunately, it is quite possible that our Universe
contains a Cauchy surface with topology S' (such
a Cauchy surface will be its own universal cover-
ing manifold). Furthermore, condition (3) of theo-
rem 2 cannot be replaced by a weaker condition.
Consider, for example, the Robertson-Walker
universes which satisfy Einstein s equations with
a matter tensor that consists of a perfect fluid
satisfying the weak energy condition plus a cos-
mological constant term with A positive; that is,
the matter tensor is given by

~.~
= (&+P}I'.~&+Pa.~

—(~a„)/8~.
Such a matter tensor will satisfy the weak energy
condition. If K = +1 (S' topology) and A = A„«.& 0,
then there is a static solution, the Einstein static
universe. In this universe the null geodesics from
every point first expa.nd and then reconverge to a
point, so condition (4ii) holds. Since each f =con-
stant surface is a Cauchy surface, condition (2)
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also holds. Thus every condition of theorem 2

holds except for condition (3), and the Einstein
static universe is null geodesically complete. If
K =+1 and 0& A & A„«, then there exists a solu-
tion which contracts from an infinite radius,
reaches a minimum radius, and re-expands. It
is easily verified" that this solution contains
trapped surfaces in the contracting phase; for this
solution all the conditions of theorem 2 hold ex-
cept for condition 3, and this solution is also null
geodesically complete (Ref. 1, p. 139).

These examples show that if we wish to extend
theorem 2 to S' universes, we must use a stronger
initial condition than condition (4). In particular,
I will argue that if we replace condition (4) by the
requirement that (M, g) contains a. black hole, then
we can remove condition (3) fro'm theorem 2.

Black holes have been defined precisely only for
asymptotically flat spacetimes: a black hole is a

0

connected component of SAX (8'), where S is a par-
tial Cauchy surface from which the spacetime is
strongly future asymptotically predictable (Ref. 1,
p. 315). One must calculate the entire future his-
tory of S in order to determine the precise bound-

ary of a black hole. In practice, no one bothers
to do this. For astrophysical calculations relativ-
ists generally assume that the surface of a black
hole is probably very near the outermost margin-
ally trapped surface which is then said to be the
surface of the black hole. This marginally trapped
surface is defined in general by the sequence of
trapped surfaces inside, so tr apped surfaces real-
ly define black holes in practice. Thus two con-
cepts, trapped surfaces. and event horizons, are
used to define black holes. The concepts are re-
lated in asymptotically flat predictable space-
times since in these spaces trapped surfaces must
lie inside event horizons. In closed universes,
the relationship between these concepts is not so
clear cut because there is no "natural observer"
like 8' from which an absolute event horizon can
be defined. However, it does seen intuitively
clear that the definition of black holes in closed
universes should involve trapped surfaces and

event horizons, with the former inside the. latter.
I shall thus say that a necessary condition for the
existence of a black hole is the existence of a
trapped surface T and an .inextendible timelike
curve y such that TAX (y) is empty. That is,
there is at least one observer who can never see
the trapped surface. +le then have theorem 3.

Theorem 3. A spacetime (M, g) on which the
Einstein equations hold cannot be null geodesically
complete if

(1) the weak energy condition holds;
(2) (M, g) contains a spacelike Cauchy hypersur-

face;

(3) there exists a black hole in (M, g).

This theorem has essentially been proved in outline
on page 265 of HE. ' However, it was not, stated
there very precisely.

This theorem indicates the the Bekenstein non-
singular Friedmann cosmology' —which has Cauchy
surface topology S' and which obeys the weak (but
not the strong) energy condition —would develop
singularities if the inhornogeneities of a realistic
version of this model caused the formation of black
holes. Indeed, Bekenstein himself wa, s well aware
that inhomogeneities might possibly destroy the
nonsingular nature of his model. In asserting that
the homogeneity is responsible for the absence of
singularities in the Bekenstein model, I am turning
the pre-Penrose argument against singularities
on its head.

It should be emphasized that the singularities
predicted by theorems 2 and 3 are incomplete
null geodesics; there need not be any incomplete
timelike geodesics. There is a very simple cri-
terion for the existence of incomplete null geo-
desics in open Robertson-Walker universes.

Theorem (Hawking" ). Any expanding, open Ro-
bertson-Walker cosmology which satisfies the null
convergence condition is null geodesically incom-
plete in the past direction. (The null convergence
condition says that A,~K'K'» 0 for all null vectorsz.)

Murphy has constructed' a "nonsingular" K = 0
Robertson-Walker, universe which satisfies the
weak energy condition. Since this model is ex-
panding and satisfies the Einstein equations, it
must, by Hawking's theorem, contain past in-
complete null geodesics. The presence of such
null geodesics is not surprising, since Murphy's
universe asymptotically approaches the steady-
state universe in the past direction, and the steady-
state universe is known to be null geodesically
incomplete in the past direction (Ref. 1, p. 126).

If we add the null convergence condition to theo-
rem 1, we can extend theorem 1 to open universes.

Theorem 4 [Generalized Hawking-Penrose theo-
rem (Ref. 1, p. 266)].' Spacetime (M, g) cannot
be timelike and null geodesically complete if

(1) the null convergence condition holds;
(2) f „R,,U'U di~ 0 along every complete time-

like geodesic y(t), equality holding only if R„U'U'
—= 0 over the entire history of y(t):

(3) the generic condition holds;
(4) the chronology condition holds;
(5) there exists at least one of the following:

(i) a compact achronal set without edge,
(ii) a closed trapped surface,
(iii) a point p such that on every past (or every

future) null geodesic from p the divergence 9 of
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the null geodesics from p becomes negative.

Proof. By (I) and (5), there exists an achronal
set S such that E'(S) or E (S) is compact [if (M, g)
is null geodesically complete]. The argument is
the same as the one on page 267 of HE. ' By (1) and

(3) every complete null geodesic will have a pair
of conjugate points. By (2) and (3) and the proof
of theorem 1, every complete timelike geodesic
has a pair of conjugate points. We can now deduce
the existence of an incomplete causal geodesic by
repeating the argument on pages 267-269 of HE. '

EV. IS THE WEAK ENERGY CONDITION VIOLATED?

It is interesting that the weak energy condition
is the weakest energy condition that can be defined
locally; that is, it is the weakest energy condition
which can be defined using the entire set of time-
like vectors in T~, where T~ is the set of all tan-
gent vectors at a point p in M. To see this we
prove proposition 3.

Proposition 3. If T,bU'U at p is bounded below
for all timelike vectors U' in T&, then the weak
energy condition holds at p.

Pr oof. Suppose T„U'U'= -c, with c & 0 and U'

timelike. Now V' = tU', for all t c (0, +~), is also
a timelike vector, Thus- T,„=t'T, bU'U = -t'c,
which is not bounded below since t' can be made
as large as we please. Thus there can be no such
c; i.e., T„U'U'~ 0 for all timelike U'.

Therefore, if the weak energy condition can be
weakened, it must be done by restricting in some
way the causal vectors U' in T„U'U'. The obvious
restriction —requiring U to be a unit timelike
vector —will not yield a weaker energy condition
for the focusing of null geodesics provided thz
matter tensor is similar in form to the matter
tensor of most known fields; that is, provided
the matter tensor is type I, which means that at
each point p there is an orthornomal frame E„
E2 E3 E4 for which the tensor takes the form
(Ref. 1, p. 89)

(10)

where the p's denote the principal pressures and
p, the energy density.

ProPosition 4. If T,&U'U' is bounded below for
all unit timelike vectors U in T~, and if T,b is type
I, then T,Q'K' ~ 0 at P for all null vectors K' in T~.

Proof. Since T,~ is type I, there is an orthornor-

mal frame E„E„E„E,with T,b represented as
in (10). If we perform a. Lorentz boost in the o.'

direction (n = 1, 2, 3), we obtain a new unit time-
like vector U' which satisfies

UOU5 y 2(~ + P2p )

Since P'~ 1, but y' can have any value greater
than or equal to one, (11) will not be bounded be-
low unless p, ~

I
p,

I
(or unless p, ~ 0, p, +p ~ 0, in

which case the proof is in). Now any null vector
at p can be written K'=K(a, b, c, 1) in the E, frame, ,
where a'+g'+c'= j.. Thus

T„K'K'=K'(a'p, + b'p, + c'p, + p. )

Although the weak energy condition is the weak-
est energy condition that can be defined locally,
there is a very strong reason for wanting a sin-
gularity theorem that uses a weaker condition.
In semiclassical gravitation theory, one assumes
that the gravitational field is a classical object
generated by quantized matter fields. These
quantized matter fields couple to the gravitational
field via the semiclassical Einstein equations:

C,b
——8&, x T~b x dx

where (P, f f(x)T„(x)dxQ) is the expectation value
for the state Q of the smeared stress-energy oper-
ator T,~(x) An impo.rtant result of axiomatic
quantum field theory is the following.

Tkeor em (Epstein, Gla.ser, and Zaffe"). Let
f be a. positive test function with comps, ct support
and let T(x) be a local field" which satisfies
(Q, f T(x)f(x) dx P) ~ 0 for all states P, and

(Q„f T(x)f(x)dx Po) =0 for the vacuum state &f&,.
Then f T(x)f(x)dx=—0.

In other words, there exists some state ef for which
the expectation value of the operator f T(x)f(x)dx
is negative. Setting T(x) = T,~ and T(x) = T„—,'g„T, —

we find that this theorem implies that there must
exist a state Q and a state Q for which the weak
and the strong energy conditions are violated re-
spectively. Several authors' "' have suggested
that this violation of the energy conditions might
prevent the formation of singularities. However,
the Epstein-Glaser- Jaffe theorem only guarantees
the existence of one state violating an energy con-
dition. There is no guarantee that many such
states will exist, or that the Universe will ever
be in such a state, or that the Universe will re-
main in such a state. Furthermore, the Universe
may be in a state for which the strong energy cori-
dition but not the weak energy condition is violated.
If. this happens, then theorems 2 and 3 would im-
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ply singularities. If the Universe remains in a
strong-energy-condition-violating state only for a
brief period, and if the amount of violation is not
too great, then theorem 1 would imply singularities
(provided the Universe is closed). Thus the exis-
tence of states for which the local energy con-
ditions do not hold does notiPso facto invalidate the
prediction of singularities. To show that in the
actual Universe, singularities are prevented by
the above-mentioned quantum-mechanical mech-
anism, it would be necessary to show that the

Universe will be in such a negative-energy state
sufficiently long to violate the averaged strong
energy condition.
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