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e construct families of spinless two-particle unitary cross sections that possess a nontrivial discrete phase-

shift ambiguity, with in general an infinite number of nonvanishing partial waves, A numerical investigation

reveals that some of the previously known finite Crichton ambiguities are merely special cases of the newly

constructed examples.

I. INTRODUCTION tering angle, then one may wr~te

In 1966, Crichton' constructed two different
elastically unitary scattering amplitudes, each
with exactly the same modulus. Crichton's ampli-

-tudes contained only S, P, and D waves, but they
provided an example of a nontrivial ambiguity in
the determination of a scattering amplitude from
a differential cross section. It was subsequently
shown' that Crichton's phase-shift ambiguity was
only one point in a continuous family of SPD exam-
ples that produced the same cross section. Next,
twofold ambiguities were const;ructed with non-
vanishing S, P, D, a,nd E waves' and with S, P, D,
E, and C waves. ' Meanwhile, it had been shown
that a twofold ambiguity was the maximal possible
uncerta, inty in the case of an entire, nonpolynomial
amplitude. ' Very recently, Berends and Van
Reisen' have constructed Crichton ambiguities of
a special kind in which an arbitrary but finite num-
ber of partial waves is nonzero.

In all the above works, a doubt about the rele-
vance of the Crichton ambiguities to actual elas-
tic-r egion phase-shiN analyses can legitimately be
raised in view of the fact that physical partial-
wave amplitudes should fall off exponentially as
the angular momentum tends to infinity. Even
when the partial-wave series is cut off sharply,
as in unsophisticated partial-wave analyses, the
highest partial waves that a.re retained should be
small; and this feature is not present in the known
Crichton examples. Thus, one may wonder
whether there is a Crichton ambiguity at all when
the partial-wave series is infinite and has a finite
ellipse of convergence. @le shall show in this pa-
per that actually the ambiguity still exists when
one allows an exponential tail, and that some of
the known finite Crichton ambiguities are but spec-
ial cases in which this tail fortuitously vanishes.

Gersten' observed that if E(z) is a polynomial
amplitude of order I in z, the cosine of the scat-

where the z,. are the zeros of the amplitude. New
amplitudes may be obtained by complex conjugat-
ing some or all of the zi, leaving the modulus of
(1.1) invariant for real z. Thus all of the alterna-
tive amplitudes would correspond to the same dif-
ferential cross section. However, if the energy
is such that, no inelastic channels are open, the
amplitude must satisfy the equality conditions of
elasti. c unitarity. In genera, l these equalities are
not preserved under complex conjugation of some
or all of the z,-.

We follow Berends and Van h,eisen" in limiting
our search for an alternative unitary amplitude to
the case that only one of the zeros, say z„ is
complex conjugated. Thus we intend to construct
a new amplitude, E'(z), such that

E'(z) = ' ' E(z)1 —z+ z —z 1

in which E(z) has a zero at z =z„and E'(z) has a
zero at z =z,*. However, we shall drop the arti-
ficial and unnecessary assumption that only a fin-
ite number of partial waves are nonvanishing. If
we write in fact

E(z) = —.— ' Q(2f+ 1)(v, —1)&,(z),
1 z-z,

2'L 1 —zl g 0

then E'(z) is obtained by replacing z, by z,*. The
elastic unitarity condition for E(z) may be writte'n

for E= 0, I, 2, . . . , where

S) = 4+ 2iE

E, being the usual partial-wave amplitude of E(z).
By using the recurrence relations for the I»egendre
polynomials we find
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where

(I+ l)y„,+ ly, ,
2k+ I

Since we wish E' to'be different from E, we re-
quire Imz, ~o, and thi.s means that if both ampli-
tudes are to be unitary, then for aB /,

and

Im(P*, y, ) = 0 . (1.9)

We shall regard (1.8) as the main recurrence re-
lation and (1.9) as a subsidiary condition. In fact,
since we require y, - 1 Ns 1-~, as a necessary
condition for the convergence of the series (1.3)
in some neighborhood of the physical region, than
we can show that (1.9) is equivalent to

Im(y,*y, ,) = 0 . (1.10)

We may use the subsidiary condition (1.10) to
divide the various solutions of the nonlinear re-
currence relation (1.8) into classes. Observe first
that, if all the y, are real, then F'(z)=E*(z). This
is the well-known trivial ambiguity which is of no
further interest. If y, is complex, then (1.10) says
that y, , must have the same phase, modulo m, un-
less it vanishes, and hence that y, , must also have the
same phase, unless it is zero, and so on. Thus we may
divide the possible solutions into gr oups depending on
which of the y, 's are zero. Since the y, must be as-
ymptotically real and we want to exclude the trivia].
ambiguity from consideration, it follows that at
least one y, must be complex, and hence that at
least one other y, must vanish. A particular fam-
ily would consist of all amplitudes for which, say,

—y o e. ey 0
n2 n&

Then the y, , for 0- l&n„would have to be rela-
tively real (i.e. , they all have the same phase,
modulo m). For n, & l&n„ the common phase could
be different from that in the first interval, hand so
on, and for l&n,„„ the y, 's wouM all have to be
rea1.. We define the "class .L" amplitudes as all
those solutions of our equations for which y~, =o
and y, +0 for l ~ L. Clearly L must. be finite since
convergence of the partial-wave series implies y,- 1 a,s l- ~. The fa.mily to which we alluded above
belongs to class n, + 1, and the special case of a
class I. amplitude for which y, = IL for /=-I. is an
I,th-order polynomial.

In Sec. II we shall consider class 2 amplitudes
and show that some of the C r ichton SPD solutions
are close to amplitudes with an infinite number of

partial waves. This is interesting, since it shows
that the twofoM ambiguities are Inuch more com-
mon than one might have thought on the basis of
the known polynomial examples. Continuous paths
between the SPD ambiguity and some Sp'DE cases have
already been plotted' by means of a computer
program. The polynomial amplitude occurs as a
special case when Rex, takes on a particular val-
ue. We consider in Sec. II also the special case
that arises when Res, -- 1: Here the partial-wave
series is unending, but the ellipse of convergence
is infinite, so we have an entire amplitude of the
sort considered by Itzykson and Martin. '

In Sec. III we discuss in more detail the numeri-
cal problems involved in the construction of phase-
shift ambiguities with an infinite number of par-
tial waves. QTe find ambiguities for Rex, &1, a,

region where phase-shift ambiguities for poly-
nomial amplitudes do not exist, as well as for
Res, & 1, , and -we show that polynomial solutions
occur in the latter region when Res, takes on. cer-
tain specific values. In Sec. IV we present detailed
numerical results, in the form of tables of the
phase shifts, in which the transition from ampli-
tudes with finite ellipses of convergence to poly-
nomials and to order-zero entire functions can be
clearly seen.

We have solved completely the problem of con-
structing C richton-type ambiguities associated
with the complex conjugation of one zero of the
scattering amplitude. However, the subject is far
from exhausted since one could consider the com-
plex conjugat;ion of any finite or even a.n infinite
number of zeros. Indeed, one can consider trans-
formations that leave the cross section invariant
but which do not amount to complex conjugation of
zeros on the first Riemann sheet of the z plane.
Despite the simplicity of our approach we have
demonstrated that Crichton-type ambiguites are
much more common than one might have thought
from a consideration of the polynomial cases
alone. In this paper, we have constructed exam-
ples in which the dispersive part only has poles
inside the large Lehmann ellipse; but, in fact it
has already been shown by an implicit method'
that Crichton-type ambiguities can be constructed
in which the first singularity of the dispersive pa, rt
is a branch point. Such a case corresponds in fact
to a transformation more general than the complex
conjugation of physical sheet zeros.

It is clear that certain classes of differential
cross sections. do not admit of Crichton-type am-
biguities (in particular those for which the con-
traction mapping proof of Martin is applicable).
Qne surely expects that many cross sections out-
side the contractive region will also not possess
two different unitary amplitudes. However, the
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question is still open as to just how common the
Crichton-type ambiguities are, Are most unitary
amplitudes close to amplitudes that belong to Cri-
chton pairs, or is this almost never the case TÃe
do not yet know.

(l+ I)e„,+ l~, ,
2l+ 1

u= Res, + (Imz, )'
Rex - Il.

(2.9)

(2.10)

H. CLASS 2 AMPLITUDES. .

In this section, me shall be exclusively interest-
ed in the simple class of solutions of the subsidary
condition (1.10) that is characterized by

y, =o, (2.1}

(I+ 1)t(~q+ lE( (2.5)

with the understanding that e, =1 in accordance
with (2.1). For /= 0 and /= 1, we find from (1.8)
that

(2.6) .

cl

Rel;= —9ll z, l' -4l, ). (2.7)
2 1

Qne can first imagine trying a naive iteration of
the system (2.4), (2.6), and (2.V). Choose a com-
plex z, and a real y, such that (2.6) and (2.7) can
be solved for y„ i.e. , such that (Rey, )'- ly, l'.
Then solve (2.4) for q, in terms of e, for l

For a giv n l ~r and ~~-i are air ady
known, and so (2.5) allows a„, to be calculated
from g, . Evidently, thi, s iteration can be deemed
successful only if all the diseriminants of the
quadratic equations for the g, are non-negative
and if

(2.8)

as 3- ~. If this asymptotic condition is indeed ob-
served, then for It large enough we may approxi-
mate (2.4) by retaining only the terms linear in
&, a.nd g, :

So that yo may be complex, but-y, must be r'eal for
I& 2. Qur task is to s'olve the recurrence relation
(1.8), subject to these conditions, and subject also
to the asymptotic requirement

I

y, - 1, ~ (2.2)

as l- ~. It is convenient to introduce the notation

(2.3)

and in terms of e, , the relations (1.8) become

q, —2q, + 2 Re z, (q, + g, —q,g,)

+ lz, l'(~, '-2z, )=0, (2.4)

for l ~ 2, mhere

The general solution of (2.9) is a linear superposi-
tion of the Legendre functions of the first and sec-
ond kinds with index l and argument n. The re-
quirement'(2. 8) can be met by choosing z, such
that

l
u

l

& 1, which implies lz, l
& 1, and by picking

out, the solution

~r =cq, (M), (2.11)

r,(c)= 0. (2.13)

Having done this, we mould fi&&ally determine y,
from (2.6) and (2.7).

This scheme can only be fully implemented with
the help of a, computer, but before me embark up-
on such a numerical analysis, me shall show that
the above proposal makes sense when lg, l

«I for

where C is a real constant. .The corresponding
partial-wave series for i'(z) and E'(z) would con-
verge in the interior of the ellipse E(u), defined by

«~)= tz: lz+(z'-1)'"I = l~l+(~'-I)"'] (21»
Infact if lu l

«1, there is no solution of (2.9) that
leads to an exponentially convergent partial-wave
series (except for the trivial case of a polynomial),
so we shall always consider

The major difficulty with such an ascending iter-
ation is that in general the asymptotic reeurrenee
relation (2.9) would be ruined by an admixture of
P, (u), which is inconsistent with (2.8), and indeed
which invalidates the passage from (2.4) to (2.9).
Evidently there is something like an eigenvalue
condition operative, albeit a nonlinear one: %e
cannot choose z, and y2 freely if we want to be sure
to hit the asymptotic form (2.11). ~e must some-
how make y2 an implicit function of z, ; but in fact
even if we knew hom to do this, it would still be
unadvisable to iterate the system (2.4) in the
ascending mode. "Zhe reason is that rounding er-
rors mould accumulate and these mould eventually
allow a leakage of the unwa'nted solution, P, (u).
Evidently it is much better l:o start with (2.11) for
/= I. and L= L+ 1, for some large I. and some C,
and then to iterate the exact recurrence relation
(2.4) in the descending mode down to I= 2. This
yields finally q, and hence ey or equivalently y,
=1 —&,. For a general choice of the asymptotic
norma'lization C, the condition (2.1) would be vio-
lated, and so me must now construe y, as an im-
plicit function of C.

" and determine the latter by the
condition
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3&3+ 2&~
2 . 5

(2.14)

all I& 2. In this case ~q, ~

«1 for all I& 3, but where e, is complex but G(z) is real since y, is
real for I & 1. The alternative amplitude, E'(z),
is obtained from this by replaci. ng z, by z~~ and

, hence,
since E, = 1 and &, is negligible. Hence the linear-
ization (2.9) of the nonlinear recursion relation
(2.4) is valid down to I= 3, at which value it yields

E'(z-*)= —. ' [O(z) —~,*].
2i 1-.z, (2.20)

e, =Cq, (u) . (2.15)

On the other hand, e, can be obtained from (2.4)
for l= 2, if we inject the approximate value -', for

e )inearize with respect to &,. and obtain

4 —5 Rez,
' 3Rez, —5(z, l2'

which is only consistent. with the above approxi-
mations if indeed the right-hand side is much
smaller in absolute v'alue than unity. If this is
the ease, then we can read off C by comparing
(2.15) and (2.16}, and then indeed

~
&,

~

«1 for all
l» 2 since we assume z, to have been chosen so
that ~u~ &1.

A limiting case of the above approximation oc-
curs if we set Rez, = —'-, so that C and all &, for l» 2

vanish. The amplitude is then a second-order
polynomial, namely the Crichton ansatz, which we
write

(2.16)

E(z) = —",e'" sin5, (z+ n)(z+ P), (2.1V)

E( ) = —.— ' [G( ) - ~.],2$1 -z (2.19)

where 6, is the D wave phase shift, where

& = -z, = -5+ —.„icot52, (2.18)

and where p satisfies Eqs. (20) and (21) of Ref.
2 which may be shown to be equivalent to (2.6) and
(2.7) in the case y, = 1. It should be noted that for
the polynomial solution neither ~u~ nor ~z, ] need
be greater than unity, but only if ~u

~

& 1 can we
find solutions close to the Crichton amplitude that
are analytic in the ellipse (2.12}.

It should be noted that if ~u
~

& 1 and if / is large
enough, then the asymptotic form (2.11) should be
a good approximation to the exact solution. How-
ever, if Rez, is not close to -', then &, is not small
for some low values of l, and one must solve the
quadratic equations (2.4) instead of the linearized
ones. For each l one has a, choice between two solu-
tions, and in practice not all choices lead to real so-
lutions for all the e, down to q, . The condition (2.13)
must finally be used to determine C by a method of
successive approximations, as we shall see in Sec,
III.

To conclude this section, we shall examine the
exponential tail more closely. The amplitude (1.3)
can be written

From this it follows that

E(z) = -E'*(z *)— '-Ime„
1 —zl

(2.21:)

and thus E(z) and E'*(—z *}differ only in their S
and I' waves. Hence, 0, = -0,' for /» 2 and so the
two tails are identical (up to the trivial ambiguity),
It.is easy to. :genera)ize. this proof to class L in
which y~, =O, and y, is real for l» L, and we find

5, = -0,' for l » L. This is a result of possible
physical significance, for often, one has a model
for the high-l tail, and our results show that this
is not sufficient in general to remove the twofold
ambiguity since our amplitudes have the same
tails and differ only in the low partial waves.

Finally, one can see from (2.10)-(2.12) that as
Rez y

~ the ellipse of convergence of the partial-
wave series tends to infinity, although the amp)i-
tude will not in general be a polynomial. %e have
here. examples of twofold ambiguities wi. th entire
functions of the sort studied by Itzykson and Mar-
tin. ' One can see direct)y that when Rez, = 1, the
solutions of (2.4) are

'g( =. 6 ( k Imz q [e ( (2 —e ( )]
For sufficiently large I, ~&, ~

«1, and so

et et alt ~-

(2.22)

(2.23)

t = 6(Im z,)'. (2.24)

III. PROPERTIES OF THE DESCENDING. ITERATION

In this section we shall discuss in more detail
the numerical procedure outlined in Sec. II. %e
shall analyze the various conditions that a class n
amplitude xnust satisfy. In particular, we shall
show that z „ the zero of the amplitude which is
complex-conjugated, must lie in a bounded region

This approximate recurrence relation can be
solved for /- I, where L» 1 and .

~
e~

~
«t, to gave

~ )
= t(&alt)" ', (2.25)

which tends to zero faster than any exponential, po
that the corresponding amplitudes are entire func-
tions. Indeed, since the difference between E(z}
and -E'*(z *) is a polynomial, we know from the
results of Itzykson and Martin' that the order of
our functions is zero.
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of the complex z, plane. We also investigate the
analytic properties of class n amplitudes.

In the actual calculation we do not linearize (2.4)
but solve it for Er x

= ~ —y

2l+1 l+ 1
~/-1. .l ~E Re~ 1 l ~1+1

+ -(1 —Rez, )
2l+ 1

l
Im'z,

X 1 —T( 1+
(

-
)2 Ci(2 —6))R j 2 g (3.1)

where r, = +1. In principle we could choose either
value of T, for every value of l. However, if we
want &, to decrease exponentially for increasing l,
it is clear that we must have 7, =+ I for all l' great-
er than some L. In the special case of an Lth-
order polynomial, e, =0 for /» I. but &~, 40. This
implies 7~ = -1, and then (3.1) yields

2(2L+ 1)
(1 —Rez ).I 1 1 (3.2)

&z.i = C 8'~.i(&) &~= C i@~(&) (3.3)

where u is given by (2.10). Then we use (3.1) to
iterate down to I =1 (class 2 amplitudes). This is
possible only if during the iteration the condition

1+( 'l, e, (2 —e, )~ 0
Im z,

Beg ] 2 l l (3.4)

is satisfied for l» 2. I,et us assume for the mo-
ment that this is the case. We have then obtained
a value of &„say &',". We repeat this procedure
with a second value of C, say C„and find Ey".
Gnce we have two values of e„we make a linear
extrapolation to find an improved value which we
then iterate:

n+1 (n) (n-'1 ) (3.5)

We have found that this simple procedure is usual-
ly sufficient to find a value of C such that

«,(C)=1, (3.6)

except, of course, whenever (3.6) is incompatible
with (3.4). Once we have C such that (3.6) is sat-
isfied, we use y, = 1 —e„corresponding to this

If we iterate (3.1) down to I = 2 {for class 2 ampli-
tudes) and find that r, = 1 and that we can solve
(2.6) and (2.7) for Z„ then. we obtain indeed a poly-
nomial ambiguity of degree J .

To construct a phase-shift ambiguity with an in-
finite number of partial waves, we must first of
all choose a, finite number of l va. lues for which 7,
=-1. We then choose z, such that Iz, l&1. Next
we take a sufficiently large value of /„say M (M
»I., where L is the highest l value for which 7,
= -1), and some value of C, say C„and set

value of C', to calculate y, from (2.6) and (2.7). It
is easily seen that y, must satisfy

(3.7)

yn-2 = e ~n-2~ yn-3= e &n-3 ~

where p,„,and p,„,are real. (They are equal to
plus or minus the modulus of the corresponding
y. ) Thus,

e'~ n —2

g ~n-3 -~ I.~"n-2
I.

and from
I S„,I

= 1 we obtain the condition,

ll-z, j

I & -21
1

(3.9)

(3.10)

Now we consider the unitari. ty condition for l
=n —&. We have

(3.11)Sn~ —
~ ~y +

1

d fro m IS„-,I

= 1 we fi.nd, ~~i~g (3.8) and (3.10)

which implies

(3.12)

For class 2 amplitudes we can obtain a slightly
better bound by combining (3.7) and (3.8). These
two conditions imply we must require

il-z, j 3 l-z,
I I,I 2

—", (Iz, l

--.,') . (3.13)

Condition (3.13) gives an upper bound for
I
Imz,

I

which equals 1 for Res, ='0 and approaches 3 from

Once again this will not always be the case. The
problem is then to choose z, such that (3.4), (3.6),
and (3.7) are all satisfied, and this is essentially
a numerical problem. Fortunately, we can re-
strict the possible values of z, considerably, a.s
we shall now show.

First of all we shall prove, for amplitudes of
class n, that IImz,

l

=-1 is a necessary condition
for the existence of an ambiguity of the type con-
sidered in this paper. For a class g amplitude, we
have yn, =0 and y, real for l» n but y, complex for
I &n —1. Condition (3.4) implies

tl -z, I

ly, l- —:—'- for f-n.
j Inn, j

We write
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above as
I
Re z

We shall now show that
I
Rez,

I
cannot be arbi-

trarily large. To do this we use (1.8), which we
write in the form

(I+ 1}y...+ Iy, ,
2l+ 1

=y, Rez, ~(I1-z, l'-y, 'Im'z, )'". (3.14)

For simplicity in exposition, we shall first con-.
sider class 2 amplitudes and then generalize the
result to arbitrary class. Since there is certainly
a bound of the type

ly, I
-a„ I (3.15)

where &, is independent of l, we. know that also

l&il = lyi Rez ~(ll-z I'-yi'lm'z. )"'I
(3.16)

Let us start with (3.8}:

(Rez, «1+(-.')'". (3.22)

The bound (3.20) is in fact valid for .all I and for
an arbitrary class if

I Rez,
I

& 1. In order to dem-
onstrate this, let us consider the general situation
we described ln Sec I, i-e. , y.l=y.2=" y.
If

I
Rez,

I
& 1 we already know that (3.20) holds for

I ~ n~+ 1. We also know that (3,8) holds for all l.
Vfe write once again y, = e' ~ p, „with p. , real. The
phase, 4„ is a constant for n,.&l&n,.„,but can
differ from one block to the next. %Vithin each
block, say for n; & l&n„„.we follow the same pro-
cedure of successive bounds .as in (3.16)-(3.20),
but now for p, Since the phases 4, disappear,
from the unitarity relation, we obtain

(3.23)

%e then find, from the unitarity relation for l=n„,
1l 1 -z, I (3.17)

1 Ima, I

It is easily seen that for Rez,
l

& 1 we obtain from
(3.16) a better bound for y, I. In fact,

uyn~-x2..1

t&-~, l

( I z, I' —2 I Re z, I + 1)'~' (3.24)

I~I Rez,
I
+

(3.18)

which is valid for /~ 1. Note that the right-hand
side of (3.18) is already finite in the limit

I
Rez,

l

The bound (3.18) can be improved by repeat-
ing the argument which led us from (3.16) to
(3.18). This iterative process can be continued as
long as B~,&B„which implies

or

[lz, I'-2IRez, l+I]"'-1,
which is valid for

I
Rez,

I

& 1. So for arbitrary
class n we have the bounds (3.12) and (3.24), and
for class 2 the tighter bounds (3.13) and (3.21).
These bounds are shown in Fig. 1.

In the rest of this section, we shall be concerned
with the analytic properties of class n amplitudes.
Let us first of all assume that the corrections to
the asymptotic form (3.3) are negligible. Then we

l&-z, l

(I z I

' —2 I Rez, I + I)'~' (3.19)

A detailed inspection of the right-hand side of
(3.14) sho~s that for

I
Rezil &I, the Ba will ap-

proach the right-hand side of (3.19) arbitrarily
closely. This means that

1.0

I1-z, l

(lz I' —2l Rez I+1)'" ' (3.20)
0.5

For Res, -1 the right-hand side is unity, which
implies that all e, (l~ 1}are positive. If we com-
pare (3.20) with (3.V) we find

1.0

Re z,

1.5

ll —z, l 3 1 —z,
(I., I 2IR..-', l. l) ~-Z .,

' 'I

which leads to the bound

(3.21)

FIG. l. Allowed regions for the zero, z&. For class
n amplitudes this region is bounded by the unit circle
and the interrupt;ed curve. For class 2 we must stay
inside the solid curve. The regions in the other quad-
rants can be obtained by reflection with respect to the
Beg& and Irm& axes.
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find from (1.3)

E(z)= -2, 1
' g (2I+ I)c,P, (z)
1 /-0

D(z) = Q (2l+ 1)HeE,P, (z),
l=o

(3.27a)

A(z) = Q (2l+ 1),ImZ, P, (z) . (3.27b)
l=o j

If z, is the nearest singularity of D(z), then D.is
analytic inside a unifocal ellipse, e(z,), with semi-
major axis z, . Because of elastic unitarity, A(z)
is analytic in a larger ellipse, &(z,), with semi-
major axis 2zp' —1=x,. %e' now use the fact that
E and E' have the same modulus so that

[D(.) -D'(z)][D(z)+ D'( )]
= -[A(z) -A'(z)][A(z)+A'(z)] . (3.28)

Now, if ~=D-D' and ~=A-A', we have

2Dcn = -(2A- m)~+ (hD)'. (3.29)

Because ~ and ~ are polynomials, the right-
hand side of (3.29) is analytic in c(z, ) and there-
fore, the left-hand side must also be analytic in
a(z, ). This is possible only if the singularities of
D inside i(z, ) are poles which are canceled by
zeros of M3. In the case of class 2 amplitudes it
can be easily verified that ~ has only one zero
at s =u and therefore, the only singularity allowed
is a pole in D at z =u. In the examples we show in
Sec. II, the partial waves clearly exhibit this
dominant pole behavior.

If Imz, vanishes, the expression (3.26) is exact
since the nonlinear term in (3.1}vanishes. In this
case we obtain an exact solution of the iteration
(3.1), namely .

&, = Q, (u)/Q, (u}, (3.30)

' C'Q (21+ I)Q((~)P)(z)2$1 ~ 8
$ p

+rC„,(z), (3.26)

where R„,(z) is a polynomial of degree rs -1. The
remaining sum in (3.25) can be evaluated and we
obtain

4 z-z, ~ C
E(z) =-—. ' ' +R„,(z), (3.26)

- 2i 1-E,
,

u —t

so that in this approximation E(z) has a pole at
z =u. We shy. ll now show that, even if the non-
linear term in (3.1}is retained, the nearest singu-
larity, of E must be a pole. The argument appears
in the paper of Itzykson and Martin. ' Let E and F'
be two elastically unitary amplitudes with the same
modulus, and let E+E'*be a polynomial. We
write

where we have taken 7', =+ 1 for all /~ 2. It is a
simple exercise to show that in this case all par-
tial waves with L& & vanish, so that we are left
with a single amplitude with only S and P waves.
For ~1m',

~

« I, the two amplitudes have almost
identical S and P waves and differ only in the fact
that the small asymptotic tails are related to one
another by complex conjugation. It is interesting
to note that, for Imz, = 0, z, is no longer a zero
of E(z). This is because the position of the pole
at z = u coincides with z, = Res, = u. We find in fact
that

1
2 (Hez, -1)Q,(Rez, }

' (3.31)

1m z,

l.5l.o0.5l.5 l.0 0
Re z,

FIG. 2. Some of the regions in the complex z& plane
where, for each z&, a phase-shift ambiguity can be
obtained. The regions I, II, and III correspond to
different choices ct the signs y& in Eq. (3,1).

0.5

IV. NUMERICAL RESULTS

In this section we shall present some results
obtained with the method discussed in the previous
sections. We have limited our, numerical work to-

the case of class 2 amplitudes, for a few special
choices of the signs, r„whi choccur in (3.1).
However, the main features of our construction
are quite clear from the few examples we shall
show. As expected, we obtain regions in the com-
plex zy plane in which all necessary conditions for
a Crichton-type ambiguity are satisfied.

Let us first of all choose v, =+ 1 for l ~ 2. It is
. clear that in this case there will be no solutions

with C = 0 since the latter would imply that the &,
vanish for I» 1 so that (3.6) could not be satisfied.
However, we have obtained solutions with CwO,
and the corresponding regions in the z, plane (re-
gions I) are indicated in Fig. 2. There is a large
region for Res, & j.. This region is bounded by the
line Rez, = 1 (where the amplitudes are entire
functions), by curves on which 1m', =0 (where the
two amplitudes are related to one another by the
trivial ambiguity), and by the line Imz, = 0 (where
the two amplitudes become polynomials of degree
1, being then equal to one another). At the point
where the curves Imyp 0 and the line Imz, = 0 in-
tersect, the real part of the amplitude vanishes
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completely [since F'(z}=F(z)= -E*(z*,)], and we
find amplitudes 5,,=0, 5, =rr/2 (Res, =1.6052), and

5o = 5, =rr/2 (Rem, = 1.3417).
With the same choice of the 7, we also. obtain two

small regions for ~Rez,
~

&1. 1st us consider the
region in the first quadrant. This is bounded be-
low by the unit circle, above by a line on which
Imy, .= 0, and on the right by a line on which we
have &, =-1 but also

/

(4.1)

If, with the same choice of 7'„we try to find a,

solution for a g, further to the right, condition
(3.4) will be violated for I = 2.

It is'worth noting that in region I, 0& Beg, & 1,
the imaginary part iri the forward direction is
rather smaH for some g, values; it is even small-
er than the Itzykson-Martin bound. In Ref. 5, it

I

was shown that if the amp1itude is an entire func-
tion of order 0 (including also polynomials) there
is no ambiguity if ImE(l)& —",o'=1.32. We have in
fact obtained ambiguities with ImF(l} as small as
1.28, show'ing that the conjecture that the Itzykson-
Martin bound hoM. s also for functions with singu-
larities in the complex g plane is incorrect.

IQ legion II of Flg. 2, we choose T2= -1, 7& =+ 1
for l = 3. Here we obtain as a special case the SPD

'polynomials (for Res, = f). This region is bounded
on the right by a- curve on which the left-hand side
of (3.4) vanishes for I= 3, and this time we can
move further by choosing also w, = -1. This pro-
cess can be continued all the way to the line Beg,
= 1. In ~egion III (r, = v, = -1) we have as a special
case polynomials of degree 3; in region IV (7, = v,
= 7, = -1), which is in fact too narrow to be shown
in Fig. 2, we have polynomials of degree 4, etc;
In the limit Beg, -1 we approach the entire func-
tlOQ. '.

We have also ~enerated regions in the. g, pla.ne
in which, on the Img, =0 line, the amplitudes re-
duce to SPD polynomials. There are two such re-
gions, one for Reg, &0, one for Beg, &1, which are
also called. II «n Fig. 2. In these regions the*, are
chosen such that 7,= -1, 7, =+ 1 fox l » 3. The re-
gion we obtain for. Beg, & 1 can again be continued
to the unit circle by appropriate changes of the 7, :
Qeartheunlt C3.1cle&e must have &, =+ 1, 7, = 7~=-»,
&, =+ 1 for .l» 5, and again the number of nega. tive
v', increases as we approach the line Rez, = 1 where
again ln the limit we Obtain entlle. functions. Once
again we find polynomials of increasing degree in
this region. , this time starting with degree 4.

Of course', it is possible, by other choices of the
signs 7, , to obtain many more regions in the g,

plane. We have also found that. these regions are
similarly shaped in the case of cia,ss 3 ampli-
tudes.

We shall now discuss the properties .of the partial
waves which we obtain. I et us start with Table I
where we show ~, a,nd &', for amplitudes in region I,
Beg, &1, for various choices of the position of the
zero z„. We present the amplitudes F(e) and
-F'*(g*) so that the 0, and 0I are erlual for I ~ 2

(see the discussion in Sec. Ii). In this region we
have u&1, and so the amplitudes have a. pole for
g &1. It is therefore not surprising that all ~, for
l» 2 have the same sign. As Bee,-1, u increases
and moves further away from the physical region,
which of course has a clear effect on. the decrease
with l of the phase shifts. For Ting, =0 we find,
as explained previously, a single amplitude with
only S and P waves.

In Table II we' give &, and &', for representative
values of g~ in the region 0& Beg, &1. Here we
have u & -1 and Q, (u) now has the sign (-1)'".
This osciOating behavior is reflected in the sign
of ~, for sufficiently large l. In region I, g, is
very close to the unit circle, and the modulus of
the phase shifts decreases very slowly with l. In
region II we pass the line Beg, = 5, where C
changes sign, and as a consequence the large l

phase shifts change sign, too. The sign of C can
be determined in this region from (2.16) since,
close to the line Beg, = &, E, will be well approxi-
mated by CQ, (u). In Table II we also give some
solutions from region III, where we find an SPDF
polynomial ambiguity. This I =3 solution is, of
course, among the ambiguities obtained by Berends
and Buysenaaps. ' They have obtained several sets
of class 2 ambiguities, but only for one of these i.s
~z, ~

is greater than 1. This set, corresponding to
Eq. (30) of their paper with parameter values
-1.097 ~ x ~ -0.5465, is in fact the set of I =3
ambiguities we. obtain in region III. We have thus
constructed a, continuous connection between. the
SPD and SPDF ambiguities which can be continued
to polynomials of arbitrary degree by moving
closer. and closer to the line Beg, =1. A continuous
path between the SPD and SPDF case was found
previously by an entirely different method. '

For. some of the amplitudes in Tables I and II
we have plotted the differential cross sections in
Fig. 3. .We expect the differential cross section
to be dominated by the contribution from the pole
at g =u. Indeed, the differential. cross sections
have either backward or forward peaks and, be-
eauee we consider class 2 only, very little struc-
ture elsewhere. For solution A in Fig. 3, u is very
close to -1 and the cross section almost vanishes,
except for the large backward peak and a small
contribution in the forward direction. For this
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TABLE I. Phase shifts of ampbtudes E and E' that corr espond to the same differential
cross section. For each pair of amplitudes we give the values of z&, u, C, ImE{1), and sinIM.

Bee~ & 1 only. The labels C, 0, and E correspond to those in Fig. 3.

C Region I

Rezg

Imzg

ImE{1)

siDp

~o ~o

63, hs

65, 6~

68, 68

he, 69

~~o ~o

4.9 x 105

x 1O"

2.1367

0.099 15
-1.059 21

-0.223 58

-0.028 92

-Q.OOQ 53

-0.188 x 10

-0.179 x 10

O.171 x 1O-"

-0.164 x lo ~~

-0.159 x 10

0.154 x 30

0.65

5;325 0

191.13373

2 ec3123

0.140 76
-1..025 20

0.982 80
0.740 64

-0.204 51

-0.036 41

-0.003 77

-0.000 33

-0.292 x 10 4

-0.258 x lo ~

-0.23O x 1O-'

-0.206 x lo ~

-0.186 x10 8

0.6

3.000 0

36.524 23

2.473 7

3.86

0.156 67
—0.942 07

1.057 84
0.834 71

-0.180 36

-0.038 81

-0.006 56

-0.001 04

-0.000 17

—. 0.266 x lo 4

-0.428 x 10 ~

-0.697 x 1O-'

-0.114 x 10 6

2.13333

14.018 05

2.730 7

0.260.49
-0.923 70

1.16736
0.943 85

-0.152 33

-0.039 18

-0.009 17

-0.002 10

-0.000 49

-0.000 11

-0.264 x 10 4

-0,624 x 10

-0.148 x lo 5

ImE{1)

Sll+

6o, 6o

6~, 6~

156, 56

~v ~

~8~ ~8

't5Q y ling

~~o ~ o

0.4

1.80

4.51

0.298 54
-0.805 64

1.281 05
1.075 14

-0.11603

-0.032 9

-0.009 13

-0.002 54

-0.000 71

-0.000 20

-0.577 x 10

-0.166 x 10

-0.479 x 10 5

1.45

1.650

6.51152

3.083 2

4.60

0.391 59
-0.775 57

1.381 06
1.172 53

-0.087 99

0.026 63

—0.008 11

-0.002 50

-0.000 78

-0.000 25

-0.783 x 10 4

-0.251 x 10 4

-O.8O6 x 10-'

1.5
0.2
1.580

5.663 47

3.162 5

1.47911
1.281 98

-0.056 69

-0.017 66

-0.005 64

-0.001 83

-0.000 60

-0.000 20

-0.677 x lo 4

0.229 xlo 4

0.778 x 10-'

Q.l

5.032 96

3.297 3

0.571 10
-0.701 93

1.56270
1.36530

-0.030 07

-0,009 74

-0.003 26

-0.001 11

-0.000 39

-0;000 14

.-0.478 x 10 4

-0.170 x 10 "

0.608 x 10-~

0

1.500

4.82910

3.821 9

0.666 47
-0.666 47

-1.461 96
+ 1.461 96

0

Q

0

0

0
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TABLE II. The same as Table I, but now, for zi such that Re~i & 1. The labels A and B
correspond to those in Fig. 3.

Region II

0.4 0,5 0.7 0.9

ImE(1)

simp

o ~o

-1.10417 -1.12 -1,708 3

0.654 07

1.402 4

2.28

0.575 89
' 1.5354

2.15

1.286 80

1.505 5

2.60

l.342 84

1.649 7

2 64

-0.24434
-0.717 50

-0.126 56 -0.173 39 -0.087 58
-0.887 64 -0.832 84 -0.940 63

0,8

-0.017 95
-1,012 43

0.75

-4.725

-32.372 42

1.964 0

0.044 23
-1.052 84

0.577 69 '

0.429 79
0.644 45
0.419 25

0.671 26
0.48131

0.730 78
0.50072

0.787 72
0.538 10

0.847 ll
0.591 13

62» 62

53» 63

65, 55

~6» ~6

67, 67

~8» ~8

6~, 6~

~io» ~10

0.096 48 0.087 29 . 0.039 05 0.01933

-0.056 80 -0.047 36 -0.015 04 -0.005 80

0.03180 0.025 65

-0.018 99 -0.014 83

0.008 460,01119

-0.006 74 -0.004 93

0.002 870.004 06

0.005 48

-0.002 09

0.000 80

-0.000 31

0.000 12

-0.002 46 -0.001 69 -0.000 05

0.001 68

-0.000 50

0.000 15

-0.000 05

0.142 x10 ~

-0.437 x10 5

-0.262 32 -0.270 45 -0.248 35 -0.248 59

0

0

0

-0.016 52

0.001 38

-0.000 14

0.134 x ].Q~

-0.134 x 10 ~

0.].35 x 10-6

-0.137 x lQ ~

0.139 x 10+

-0.24498 -0.236 94

ImE(1)

simp

6o»6o

(52, 62

63, 63

65, 65

66, 66

~8» ~8

~s ~s

~io» ~io

0.7
-15.363 3

-836.797 80

2.11207

0.11596
-1.10448

0.896 39,
0„63157

-0.231 56

—0.026 97

0.000 29

-0.863 x 10 5

0.259 x 10

-Q.789 x10

0.242 x10
-0.747 x10" i

0.232 x 10-"

Region GI

0.980 59

0.7
-2.426 3

2.120 98

3.14

0.11040
-1.088 96

0.90191 '

0.641 16

-0.228 74

-0.027 72

0

0

0

0.7

7.277 x 10~

2.128 71

0.105 13
-1.074 75

0.906 76
0.649 76

-0.226 23

-0.628 33

-0.000 26

0.240 x 10 5

0.230 v 10

0.224 x 10 o

-Q.22Q x 10

0.217 x10 i3

0.215 x 10-"
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c= 6

b
5 C

sing, = sup
1,2

d&, Ir(1, 3) I IZ(2, 3) I

IZ(l, 2) I

nounced. For solutions 0 and E, the pole lies to
right of the physical region hand a forward peak ap-
pears in the differential cross section.

For completeness, me have calculated the sing.
parameter of Martin. ' Martin showed that if the
functional of the differ'ential scattering cross sec-
tion

oL
-1.0 -0,8

L
-0,6 -0.4 -0,2 0 0.2

cos 9
0.4 0,6 0.8 1,0

FIQ. 3. The differential cross sections corresponding,
to some of the amplitudes in Tables I and D. The labels
A—E correspond to those in the Tables.

is smaller than 0;79, then no nontrivial ambiguity
exists.

Ne have obtained examples with sing. values
that are reasonably small, but 'they never-approach
the theoretical bound closely.
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