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Classical space-time concepts in high-energy collisions
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We show that the observed rapidity dependence of production amplitudes implies a simple classical picture
of the longitudina1 evolution of the, collision.

I. INTRODUCTION
I

In this paper we discuss the distribution in space
and time of the relativistic particles produced in
the central region during a high-energy collision.
%e shall show that the qualitative features of the
observed inclusive cross sections imply that the
asymptotic final. state cari be described by a sim-
ple semiclassical picture. %e first sketch this
picture in qualitative terms.

For the sake of definiteness, consider aPP col-
lision in the center-of-mass frame. Choose co-
ordinates so that the colliding particles meet at
& =s =0, where s is measured along the incident
direction. I.et ~, m, g~, and/ be the energy,
mass, longitudinal momentum, and longitudinal
rapidity of the secondary whose trajectory is under
discussion.

First note that &s&q& & 1, and &q, /&u =&5 imply
that

but it does not establish in what space-time domain
such a description is valid. Our answer to this is
best visualized by imagining a set of stationary ob-
servers in the c.m. frame. For &&0, they see two
pulses of hadronic matter receding at the speed of
light in opposite directions. The first particle
seen to emerge from these pglses is the one of
smallest final ~X[; loosely speaking, it "peels off"
the back of one of the receding pulses. Other se-
condaries follow suit in order of increasing ~X~.
The times & and positions ~ at which separation
occurs are &-(~/~)&, and z -0,&/~, where w, is a.

characteristic hadronic proper-time scale (-10 "
sec). After separation, these secondaries move
along classical trajectories, thus appearing as if
they had all been made at the collision point & =~

This inequality states that one can slmUltaneouSly
specify the longitudinal coordinate and rapidity of
ultrarelativistic objects. The reason is clear from
7 ~in&& . An uncertainty 4g contains a band of mo-
menta sufficiently broad to permit the construction
of a packet that is as narrow as one pleases, pro-
vided only that the mean momentum of that band
is large enough. $uch a packet wiQ then move
along a elassicai trajectory. (The spreading of the
packet will be discussed in Sec. III.) A tacit as-
sumption in all this is that production amplitudes
only vary appreciably on a logarithmic energy
scale —that rapidity is a sufficiently fine-grained
variable. On the other hand, the rough energy in-
dependence of transverse-momentum distributions
means that the transverse localization is of order
f.0 "cm independent of +. Hence no classical pic-
ture can be associated with the tr'ansvqrse motion.

The argument of the preceding paragraph shows
that the longitudinal motion of relativistic second-
aries may be described by a classical trajectory,

0

2/ge
I

FIG. 1. This figure shows the trajectories of various
secondaries in the c.m. system after they are peeled off
the back of the pulse receding to & + ~. The dots
from which the trajectories stem occur at the times t&

defined in Sec. III.
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=0 with their finally observed velocities q, /cu.
(This space-time development is illustrated in
Fig. 1.)

The picture we have just sketched coincides with
the classical model originally proposed by one of
us, ' though we hasten to add that there the picture
was also used in the interaction region. The use
of classical trajectories in the interaction region
is obviously a strong dynamical assumption. The
argument to be given here makes the tacit assump-
tion that the dynamics leads to the observed am-
plitudes, but is otherwise almost totally devoid of
dynamical content'; it therefore sheds no light on
what happens in the interaction region.

/

II. WAVE-PACKET CONSTRUCTION OF THE ENERGY FLOW

We construct an initial state representing a col-
lision it z =& =0 via a superposition of "in" states,

2 ~ps ~P2 (2.1)

and similarly for Q~(p, ). As explained in Sec. I,
the produced-particles are to be described by

One may think of Q, and Q~ as Gaussian packets,
centered at p, and p&, Rnd real so that the collision
occurs at the space-time origin:

exp[-(p„-p, )'/Z~, '1 exp(-p„'/2~, ')

packets having a fixed uncertainty in rapidity. We
shall soon show [see Eq. (2.6)] that the uncertainty
of the secondary's packet is essentially the same
as that of the incident particles. %6 therefore set

(2.2)

where + is the energy of the secondary in question,
Rnd && is the energy-independent rapidity spread of
the pRcket. The transverse -momentum uncel talnty
is energy independent, and on occasion we param-
etrize it as

(2.2')

As we shall see, bath &~ and &~ must be taken as
small compared to unity.

We wish to study the emergence of produced
particles. A concrete way of doing this is to cal-
culRte the expectRtlon VRlue of some locRl observ-
able after the collision. For charged particles one
can use the current density, but this will not do
for neutrals. In all cases one can use the stress
tensor T„„(x), and we therefore focus on itP

%6 wish to calculate the expectation value

(2.3)

for & sufficiently large so that the collision is over
and the secondaries are spatially separated. For
such times the appropriate states are the "out"
states, +'„"', in terms of which T» behaves as if
it were constructed from free fields. Thus

nm

I

&nlSIp,'p,'& *&nl T„.(x)l ~& &~IS Ip, p, & 0:(p,')0.*(p,') e~(p. )0& (p.)d'p d'pd p,'W,'.
elm

(2.4)

For the moment assume there is only one species of secondaries. Then l~& =Iq, ' ' 'q„&, In&=lq,
'

Since we are concerned with times after the particles have separated, &„„will only have matrix elements
between states of equal multiplicity, and these elements are sums of one-particle matrix elements. Then
we can write the spin-averaged tensor as

&nlT~, (x)l m& =5~~ Q tp„(qq, q))e~~~& ~&l'* g (2v)~2(u,.5~(q,. —q~), (2.5)

where f, (q, q) =2&v'. Thus (2.4) becomes

&T„.( ))=Q& (dq, )(dq,')(dq, )'''(dq )&q,'q. " q l~lp p,'&*(2 )' '(p-gq, )&q,q, " q l~glp p, &

& f,.(ql, q, )e"~ '~'"(2~)'6'(P -p' -q, +q,')q.*(p,')At(p.')4(P, )4.(p.)d'pd'pd'P, 'd'P.', (2.6)

Where We uSed the identity Of thp SeCOndarieS, de-
fined & P, +P„&'=P,'+P,', and (dq) =—d'q/(2w)'2',
and introduced the invariant production amplitude
SR.

The second 6 function in (2.6) guarantees that

q, —q,
' is constrained by the momentum spread

(&„&~)of the original packet, and as a conse-
quence &, is close to ~,'. To take advantage of
this, define k =q, —q,', q =~(q, +q,'). Since the un-
certainties are assumed to satisfy (&', +&')«+'(q),
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we have

~, =- ~ (q +-,'&) = (d(q) + xk ' v, ,

(d),
' = (d)(q —Xk) = (d)(q) —2k

(2.7)

p;(x) = —r+-" p,'(x), (2.14)

and where we have used t00(q) =2[(d),(q)]I. By virtue
of (2.12) and (2.9),

where v, =q/(d)(q} is the velocity of a particle of
mass m and momentum q.

In Sec. IV we shall show that the production am-
plitudes vary negligibly over the momentum spread
of our packets. ~ Accepting this, and recalling the
definition of the cross section &,'b for &+&-++ any-
thing, we can then write (2.6) as

(T~„(x))= g d,
" -"",p', (x)E,~d'q, (2.8}d'q 2(d), q)

where &,t is the flux 4Epttt, t„and the density p,'(x)
is given by

i;(«)=f,«" '~'*d."(Pl)d"(Pl)d.(P)d, (P.)

x (2)[) ()4(P I"—q -+q'}dtp ' '' d p' (2 9)

In (2.8) we have removed the restriction that there
is only one kind of secondary by the indicated sum
on s,

The normalization of (2.8) and (2.9) can be clari-
fied by calculating the total number of events in
the collision, and the energy of the final state. To
do this, we note from (2.1) that the amplitude for
producing a final state +'„"' is ()I'„'"',@), and that the
probability of ariy event is therefore

(2.1O)

d'x P,'(x) =1. (2.15)

That (2.13) is correctly normalized is now veri-
fied by evaluating the total energy following the
collision:

d'x(T~ (x))~„,„,„( = d'q g, 't
&u, (q),

da'~b

O' CPQ

and:this, by the energy-conservation sum rule, - is
the incident energy. Q.E.D.

III. THE SPACE-TIME DISTRIBUTION p s (~)

In the preceding section we showed [recall Eq.
(2.8)j that the expectation value of the energy-mo-
mentum tensor T)„(x)following the collision can.
be expressed as an integral over several factors:
the one-body inclusive cross section, the. momen-
tum-space density f'„„(q), and the function p', (x).
The latter has the unambiguous physical interpre-
tation of giving the space-time distribution of sec-
ondaries of type s and momentum q. If one were
to study the final state by means of some other
local observable, say a scalar or vector density,
the final result would again have the form of (2.8),
but with t'„„(q}replaced by the appropriate momen-
tum-space density. In all cases p,'(x) would enter
and have the interpretation stated above.

The study of p,'(x) is facilitated by introducing

()id„'"';O'P"
P ) =-i(2[[)'64(p„-p,-p )(ttIJRIp, p )

(2.11)

and the total- cross section is
I

Q 6'(p, +p, -p. ) I& I Ip,p, &l'.
ab- n

Pt«, q) = f4 (P)d (Pl)."d (P,,)d."U). . ,

x (2)[) 54(P g' q +q')dxp ~ ~ ~ dp'

(3.1)

in terms of whic11

Assuming again that varies but slightly over the
packet, we have

4(x) et[k«x-((df i«)$)t]GO «) (3.2)

IP = (R«P««P« f d'P, d'P d«P d«P 5(P —P'',)', For sufficiently short times it is legitimate to re-
place (d, and (d),

'
by (2.7), and then (3.2) becomes

X 4.*(P )(I)i*(P.}(0"(&t)4t (PX) ~ pdx, =
(2 )x&

d(« t) . &tk'(x vt) G(k «-) (3.3)

(2.12)

Following the collision the energy density per event;
is thus

&P,(*)),...,,, =,—Z f d ~.(d)(ti(«)d'd,

(2.13)

where

This confirms the statement made in Sec. I: The
produced particle appears just as if it had left the
origin at time t =0 with its final velocity.

Although (3.3) makes it appear as if the particle
travels along the classical trajectory x =v, t from
t =0, it must be remembered that our basic result
(2.8} is only valid once the particle in question is
sufficiently separated so that its interactions may
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be ignored. We therefore must calculate the de-
tachment time t~. For this purpose we go. to the
particle's rest frame, where the detachment time
is the time required for it to-be separated by a
distance of order one Fermi from its nearest
neighbor. assuming a logarithmic multiplicity,
nearest neighbors are separated by a. finite. rapidity
gap &, . and so the. rest frame detachment time 70

will-:be of order 10 "sec. In a fixed frame this
corresponds to a time tq l(~(C)/~]vo, and there-
fore to a position (q, /rn)7'o', as stated in SeI: I.
and depicted in Fig. 1..

We must s.till a.seertain whether the step from
(3.1) to (3.2) is valid foi the time span of interest
to us; i.e., whether, the spreading of tQe packet is
ignorable. The time interval 2" over which (3.2),
holds is found by requiring the corrections to the
exponent to be small, i.e.,

or

l~~(k' &,)'~(&)l- &,

8~5
I~aya (k. )a)

(3.4)

In estimating this, remember that we are only con-
cerned with energetic secondaries, and for these
q»&q ' =q, . Setting 0, ™&,=—~,~ k~-6~=-e~rn
as in (2.3), and setting' 4'~=0, one finds

80)
Bl e)(t( +6~2)

(3.5)

T~, ,— t, .8
'ffI T e( (6( +e ~ )

This result shows that by appropriate choice of
~& and ~~ one can construct final-state packets that
maintain their shape and move along the classical
trajectory for a time far longer than that required
for the detachment of secondaries. '

We must point out that when detachment as de-
fined above occurs, the wav'e packets of neighboring
particles still overlap. At detachment the distance
between neighbors is (&, —&,)t~ = &0&/coshy, where-
as our wave packets have a size &z = 1/&,
=(md, y coshy) ' where hy =&,. Thus separation of
the packets (as compared to cessation of interac-
tion) only occurs after a time or order t~/e, ~7$.
As one sees from (3.5), even over this longer time
interval spreading of the packets may be neglected.

From the foregoing one might suppose that one
could localize the packets so well that "visible"

separation and detachment of secondaries occur
at the same time. To achieve this one would set
&p =&& =1, and argue that-this will not destroy the
validity of Eq. (2.8) because in the central region
one-body inclusive cross sections do not depend on

In the following section we show that this is a
false argument. The detachment region is neces-
sarily blurred.

IV; THE OFF-FORWARD MUELLER AMPLITUDE
a

I

We now turn to the variation of. the production
amplitudes. What appears in (2.6) is a nonforward
Mueller. -type absorptive part,

(&.)" (&~)(2&)'~'(P —~&a)

x(e,'e, " e,lIP, 'P,')"(e,e," ~,I3itIPp, &.,

(4.2)
I,et us take a collision axis defined by the cen-

ters of the wave packets Q, and Q~ We .may then
characterize all momenta by their rapidity and
transverse components. We assume the nonfor-
ward Mueller amplitude A. resembles the forward
amplitude in that it is a smooth function of P~'s,
varying over a scale comparable with hadron
masses, and hence large compared with our 4P, 's.
Similarly, we assume that A is a smooth function
of rapidities, varying over a scale of order unity
except in the triple-Regge region. Even there our
analysis is valid provided et ~ lymax yl. Of course. ,
our analysis fails in the resonance region, lya»x
-yl=o( ').

We thus conclude that our kinematic description
is valid for almost all final particles, provided
~~«1. This restriction on &~ is necessary even if
«/4f is essentially y-independent, because the
Mueller discontinuity will, in general, depend also
on X, -X, . Thus wave-packet separation at the .

particle-separation point eanriot be achieved by
the suggestion at the end of Sec. III, for that re-
quires ~& -1.
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There is in general no local particle-densify operator,
but one could carry our procedure through with an
effective density operator constructed from Newton-
Wigner states.

One might worry that form factors in t„~(q, q') depart

significantly from unity, but this is not so. According
fo (2.7), t =(q —q ) —ki+ (1-'v )ki, and since k&.

«nz, and (1-& 2) &~ «m, t remains very
small throughout. Thus we may safely substitute
t „(q) =—' t „(q,q) for t, (q, q') in (2.8).

'"As long as q&~«~, q& & 0 does nof alter the conclu-
sion that T &t„.

6The definition of spreading that we have used is spec-
ific to inelastic processes. That is, we have not used
the q distribution, as given by do/dq in (2.8), to com-
pute a total spreading. Bather, we have attached a
wave packet density, in a natural way, to each momen-
turn q. This has the effect of slightly retarding the
spread, compared to what we would have obtained had
we first projected states of given x and q with approx-
imate Newton-signer functions. However, the dif-
ference would not be significant.


