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A calculation of the effects of first-order symmetry breaking on unstable hadrons shows that the total
widths should obey the Gell-Mann-Okubo formula. This prediction is accurate to 7 MeV for the vector
mesons, to 10 MeV for the tensors, and provides a new constraint on the octet-singlet mixing angle. A new
relation is derived for the widths of the %* decimet, which is accurate to 1 MeV.

1. INTRODUCTION

The Gell-Mann-Okubo mass formula' in com-
bination with octet-singlet mixing? has been re-
markably successful in explaining the mass shifts
observed within SU(3) multiplets. It is sometimes
the principal method for classifying new reso-
nances when spin-parity information is lacking.
To obtain an additional tool, it is natural to in-
quire how hadronic widths are affected by the sym-
metry breaking. When the total width is thought
of as a sum of partial widths each of which has
symmetry breaking in the decay amplitudes, the
wave functions, and the phase space, this becomes
an intractable question. A common approximation
is to neglect all symmetry breaking in the am-
plitude and in the wave functions, but to use the
physical masses. Such an approach can fit the
partial-width data and does test SU(3) somewhat,
but it is not sensitive to SU(3) breaking. The pre-
sent paper, in contrast, considers only the total
hadronic width. The total width is calculated from
the location of the pole in the scattering amplitude
and is thus put on a more equal footing with the
mass. It is then simple to calculate the effect
of first-order symmetry breaking. We find that
within any multiplet whose members decay via
strong interactions the same pattern of symmetry
breaking should occur in the widths as in the mass-
es.?

This relation is derived in Secs. II and III and
then tested in Sec. IV on the seven multiplets that
are complete. We find that the error in the width
formula (in MeV) is generally the same as the
error in the mass formula (in MeV).

One certainly would not expect first-order per-
turbation theory to work so well. After all, mass-
es are only split by 20%, whereas widths differ by
more than a factor of 2 in every case. The actual
calculation, however, is of the shift in the com-
plex position. Since the masses are large, this
position undergoes a fairly small change (~20%)
so that first-order perturbation theory should be
no worse for the widths than for the masses. Of
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course why it works for the masses is not well
understood, but probably due to the fact that the
first-order calculation is merely a way of para-
metrizing the exact calculation in which both octet
and 27-plet pieces would occur. The success of
the Gell-Mann-Okubo formula amounts to the dom-
inance of the 8 over the 27.

II. PERTURBATION THEORY

A. Perturbation theory with eigenstates of H,

As usual the strong-interaction Hamiltonian may
be split into H=H,+V, where H is SU(3)-sym-
metric and V transforms like the /=Y =0 member
of an octet. Each SU(3) multiplet in the spectrum
of H, is degenerate. The lowest multiplets, viz.,
the 0" mesons and the 3* baryons, are stable under
H,. The amplitude for scattering these states will
have resonance poles on the second sheet at en-
ergies

1. )
E(o)=M(o) - 22I-‘(o ,

corresponding to an SU(3)-degenerate multiplet
that is unstable under H, with common mass M ©
and common width '’ 4 InpartB a straightforward
calculation of the effect of the perturbation V on
the location of these poles is given. Before that
calculation, however, we present a less famil-
iar but more direct method by introducing states
of complex energy satisfying

H, 'E}o) Y=E© IE,(°) ).

These states are not in the usual Hilbert space
but in a larger space corresponding to the second
sheet of the scattering amplitude. Of course in a
Hilbert space a Hermitian operator cannot have
complex eigenvalues because

(E@|E@ YE© = (E@|H, |E©)
=E(o)*(E(o)|E(o) )

forbids it. But in a larger space, states with com-
plex energies but zero norms are possible. Full
details of this description of resonances are con-
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tained in Ref. 5. All that is necessary here is that
the states come in pairs with conjugate energies
and satisfy

(E® |E,§°’ ) =(E}°’* IE;O)*)__:O,
( E}°)*IE,§°)) =5y.

In the presence of the symmetry-breaking in-
teraction V, the second-sheet poles occur at non-
degenerate energies

E;=M;-3iT;,
and may be described at states satisfying
H|E,Y=E,|E;).

To calculate E; to first order in V then requires
diagonalizing the matrix

Hy=E©8,, + (EQ” | V|EL). 1

This is the central result. The implications are
twofold: First, for a stable multiplet E©’ is real,
the term linear in V is real, and consequently there
is a first-order shift in the mass, but not in the
width. On the other hand, when E®’ is complex,
the term linear in V is also complex. Thus if the
particles are already unstable under H, then V

will produce a first-order shift in both the mass
and the width.

B. Perturbation theory with eigenstates of K

Using states with a complex energy allows a
quick demonstration of the energy shift formula
(1), but it is not really necessary to introduce
them. It may therefore be worthwhile to derive
(1) in a more conventional manner.

The unperturbed Hamiltonian H, is SU(3)-sym-
metric but is extremely complicated because its
eigenstates are unstable. Imagine splitting H, into
two parts by setting H =K + U, where K is chosen
so that its spectrum consists entirely of stable
hadrons. Thus, for example, the pseudoscalar,
vector, and tensor mesons are all stable under K
and it is U that induces transitions. [In a quark
theory K might consist of the kinetic'energy of the
degenerate quarks plus a phenomenological poten-
tial that produces binding. Then U would contain
the negative of the phenomenological potential
plus the gauge coupling of the quarks to the vector
gluons. The details of the split are unimportant
because K and U will be summed to all orders in
deriving (1).] Let the common (real) mass of a
given multiplet be p and set

KloY=ple;).

Define a projection operator p onto the multiplet
and its complement ¢ by

p=2 le oy,

g=1-p.

Now the states Icp, ) have unphysical masses (u)
and unphysical widths (0). To find the true mass-
es and widths we look for poles of { ¢;|(E
~-H)'¢,). Let|¢!) be the linear combination
of |@; ) that diagonalizes this resolvent. Then

' 1
(o

E—-H
where H®f is an energy-dependent operator®:

1
'}
"’f> S E— (ol TEIgly

HY*(E)=K +p(U +V)p

1
+p(U+V)q E_E—qU+V)q qU+V)p.
The exact masses and widths are solutions of
E,=(o] |H*(E,)|0]).

The first-order symmetry breaking comes from
keeping only terms linear in V:

H'(E)=K +p[U +UqR(E)qU]p
+b[UqR(E) +1] V[1 +R(E)qU]p

+0(V?),
where
_ 1
R(E)= E-R-qUq"

Now expand E as a power series in V,
E;=E +E{" +O(V?).

Then the unperturbed energy is the second-sheet
solution of

E® = 4(o] |U+UgR(EDqU|9]).

The correction to the energy that is first order in
the symmetry breaking is then

Ef’=(¢} [VaR(E) + 1]V[1 +R(ENU]| 0/)/N;,  (2)

where the factor N; comes from the implicit de-
pendence of E on V and is given by

N;=14+(¢; |Ug[R(E)qU 0}) .

Equation (2) is an explicit verification of (1). Note
that all orders of U have been summed so that E©’
and E depend only on H°=K + U and do not de-
pend on K and U separately.

III. APPLICATION TO SU(3)

The precise pattern of this symmetry breaking
can be deduced from the Wigner-Eckart theorem.
The matrix element of V in (1) or (2) is just the
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product of a real Clebsch-Gordan coefficient and
a complex, reduced matrix element. For baryon
octets there are three complex, reduced matrix
elements (including E ) that determine four com-
plex energies. There is thus one complex con-
straint whose real and imaginary parts are

IMy +iMp=3M, +35 M, (3a)
%FA*'%r:::%rn'*%rz- (3b)
The treatment of nonets, like the vector mesons,
requires one additional step because the mixing
of ¢ and w means that Hj, is not diagonal. The
diagonalization is accomplished by expressing

the I=0 eigenstates as ¢,cosf +w,sinf and -¢,sinf
+w,cosf. Because

— 1.
H =My, - 2l s

is complex, the mixing angle 6 will be complex
unless the matrices M and I' commute. To show
this one may use the norm operator of Ref. 5,

QE?IEQ (Ey |+ }; |E#)(E#],

and observe that H and QHS? are simultaneously
diagonalizable. Consequently [H, QHQ]=0, which
guarantees that the mixing angle is real. The

real and imaginary parts of the constraint equation
are then

$(M,c0s%0 + M, sin%0) + sM, =M . *, (4a)
$(Tycos?0 + T, sin?0) + 5T, =T *. (4b)

Note that if the symmetry breaking applies to the
square of the masses rather than to the masses
themselves, then these become equations for M?
and MT, respectively. Since the agreement of

the linear and the quadratic formulas with the data
is about the same, only the simpler form (4) will
be treated here.

IV. COMPARISON WITH THE DATA

In the following tests of (3) and (4) the review of
SU(3) multiplets by Samios et al.” was used. The
masses and widths are from the Particle Data
Group® and are the pole positions whenever avail-
able.

A. Meson nonets

The J¥€=1"" nonet is the best known and consists
of p(773/152), $(1020/4), K*(892/49.4), and w(783/
9). (Note that 9 MeV is the total hadronic width of
the w; the other 1 MeV is electromagnetic.) It is
immediately obvious from these widths that (4b)
is reasonably well satisfied no matter what the
mixing angle is. The fit which makes the error
in (4a) and (4b) the same is cos26 =0.59. Then

(4a) becomes 885 =892 and (4b) becomes 42.5
=49.4. Thus both relations are satisfied to within
T MeV.

The 2** nonet consists of 4,(1310/102), f'(1516/
40), K*(1421/108), and f(1271/180). A fit to (4)
gives cos20 =0.67. Then (4a) becomes 1404 = 1421
and (4b) becomes 91 =108. Thus both relations
are satisfied to within 17 MeV. It has recently
been reported, however,® that previous measure-
ments of the f/ may have systematically been in
error due to neglect of f,f’,A, interference in the
KK channel. The new values of mass and width
quoted are f/(1506/66). In (4) this gives cos?
=0.74, which leads to an error of only 10 MeV
in both equations.

The 0** nonet has been clarified by Morgan.'® It
is thought to consist of 6(970/50), S*(993/40),
«(1250/450), and €(1200/640). The mass formula
(4a) cannot be satisfied with such a small € mass.
However, both the mass and width of the € are
uncertain by as much as 100 MeV. Indeed before
Morgan’s analysis there appeared to be one € at
900 and another at 1250, in obvious discrepancy
with SU(3). He showed that the two states are
really one very broad resonance. The resulting
large value of T, is in excellent accord with (4b),
which demands that I',>583, independently of 6.

The only other meson nonets that are near com-
pletion are the 3", which lacks an isoscalar ¢,
and the 1**, which is uncertain because of the Q.

B. Baryon octets

There are no really well measured octets on
which to test (3), but there are two likely can-
didates with JP=3" and 3*. The 3~ octet consists
of N(1663/146), A(1830/95), =(1773/130), and
=(1940/90). With these data the Gell-Mann-Okubo
mass formula (3a) becomes 1816 =1802 and the
width formula (3b) becomes 104=118. Thus both
relations are satisfied to within 14 MeV.

The 3* octet is thought to consist of N(1688,/132),
A(1815/85), Z(1519/100), and =(2038/49). (The
mass and width of the = are the average of four
measurements in the Particle Data Tables with
the state of 2129 excluded as the Particle Data
Group suggests.) The deviation from the mass
formula (3a) is 23 MeV; the deviation from the
width formula (3b) is only 2 MeV.

C. Baryon decimets

The only complete decimet is the 3* consisting of
A(1211/100), Z(1381/40), =(1533/8), and 2(1672/
0). The approximately equal spacing of these
masses was one of the early triumphs of broken
SU(3). (Note, however, that these data are the
pole positions of Ref. 8. They are not as equally



spaced as the earlier Breit-Wigner fits, which
were found to be parametrization-dependent.!?)
Obviously the widths are not equally spaced. This
result is in accord with (2) for it predicts equally
spaced widths only when the unperturbed energy
E®©@ is complex. Here E' is actually real. This
is easily seen by using Okubo’s general formula!

M=M© +AY +B[I(I +1) - §Y?]

to calculate the unperturbed mass of the decimet
and of its decay products, viz., the 3* baryons
and the 0" mesons. One finds M‘(3*)=1375,
whereas M‘’(3*)=1155 and M‘°’(0") =376. Hence
I'©(§*)=0 because the threshold is too high. This
means, from (2) that I'”’($*)=0 and equal spacing
is not expected. The widths arise only in second
order after the first-order mass corrections have
lowered the threshold. Thus the widths should
transform like matrix elements of the I=Y =0 part
of 8 X8, i.e., like a combination of 1, 8, and 27.
There are three reduced matrix elements and
hence one complex constraint;
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3 1 3 1
Mg +3aMg=3Mz +3M,,

3 1 3 1
g +3lg=5Tz +3T,.

The mass relation gives 1454 =1453, which is a
great improvement over the crude equal spacing
of the pole positions. The width relations is eq-
ually good and gives 30=31.

There is evidence for a £* decimet with only
A(1924/258) and =(2030/180) known. These par-
ticles are heavy enough to decay even in the ab-
sence of symmetry breaking. Thus both the mass-
es and widths should be equally spaced here. One
therefore expects two new states: =(2136/102) and
Q(2242/24).
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