PHYSICAL REVIEW D

VOLUME 17, NUMBER 9

1 MAY 1978

Symmetry breakmg and naturalness of parity conservation in weak neutral currents '
in left- right—symmetric gauge theories

R. N. Mohapatra,* Frank E. Paige, and D. P. Sidhu
Brookhaver. National Laboratory, Upton, N.Y., 11973
(Received 29 August 1977)

We discuss the symmetry-breaking patterns and the naturalness of parity conservation in- weak neutral-
current interactions in the left-right-symmetric SU(2), ® SU(2)z ® U(1) gauge theories. Two Higgs systems
are discussed which enable us to achieve the desired breaking of the gauge symmetry. We show by a detailed
analysis of the Higgs potential that the more economical of the two Higgs systems, that involving left and
right Higgs'scalar doublets, fails to'meet the criteria of naturalness of parity conservation in neutral-current
interactions. We find that with the second Higgs system neutral currents conserve parity naturally regardless
of the structure of the physical charged-current weak interactions. Implications of this for the computability
of induced parity violation in higher orders and the search for parity nonconservation in atoms are also

discussed.

I. INTRODUCTION

Recently, gauge theories based on the group
SU(2) . ® SU(2),® U(1) have been proposed'-*
serious candidates for the unified description of
the weak and electromagnetic interactions. Such
theories have a number of attractive features which
are not shared by the standard SU(2)® U(1) theo-
ries.* These theories are parity conserving before
spontaneous symmetry breaking and also after-
wards at asymptotic energies. The asymmetry
in the low-energy charged-current weak interac-
tions, i.e., predominance of the left-handed inter-
actions over the right-handed ones, is a conse-
quence of the symmetry breaking thus leading to
a-conceptually different picture of parity violation
in weak interactions at low energies.

It was shown in Ref. 1 that one of the symmetry-
breaking schemes in SU(2),®SU(2),®U{(1) gauge
theories leads to a very interesting structure of
the weak neutral-current interaction such that one
massive neutral vector boson (Z,) couples only to
axial-vector currents and the other (Z,) couples
only to vector currents.® Specifically, the neutral-
current interaction Lagrangian is of the form

£hth - WZA“ (a eY,¥se +a, VY, YV +ay q?,.n,q)
._—ie———Z (v z e+v, VY, V+0.GY,q)
singf Ve \VeTuE T UINY UYLl
+(}.L~'€), . (1‘1)

where q =u,d,c,s,... . This form of the interac-
tion will yield an effective neutral-current Ham-
iltonian which is clearly parity conserving having
the form £y = VV +AA with no terms of the type
VA +AV which involve vector—axial-vector inter-
ference. However, one of the notable features of
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the model is that in spite of the parity-conserving
neutral-current interaction, the neutrino and an-
tineutrino neutral-current cross sections are pre-.
dicted to be unequal. The inequality here of the
two cross sections is a direct consequence of the
fact that the two massive neutral vector bosons
have definite and opposite charge conjugation.

This ia a counterexample to the statement that

one W,N)# 0y (7,N) necessarily implies that neu-
tral currents are parity violating. Note that in the
neutral-current interaction Lagrangian of Eq. (1.1),
there is no parity-violating electron-nucleon coup-
ling and, hence, this model predicts that there be
no parity violation in atomic physics to O(Gg). The
results of two recently completed atomic~physics
experiments® are such that the present upper
limits on the parity-violating eN interaction are

an order of magnitude below the prediction of

the Weinberg-Salam model.*

Parity conservation in neutral-current interac-
tions was obtained in Ref. 1 by & particular choice
of thie vacuum expectation values of the Higgs
fields. It is important to know whether this choice
is “natural,” i.e, whether it can be obtained for
a finite range of the parameters of the Higgs po-
tential and is stable under renormalization. In
this paper we show that the Higgs system proposed
in Ref. 1 does not lead naturally to parity-con-
serving peutral currents. However, there is
another Higgs system which does naturally glve
parity~conserving neutral currents.

The plan of the rest of this paper is as follows: .
In Sec. II we define the various Higgs multiplets
and discuss the structure of the neutral currents.
In Sec. III we examine the implications of left-right
symmetry for the fermions. We find that the ori-
ginal definition of left-right symmetry leads to
left and right generalized Cabibbo rotations which
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are related by complex conjugation, but that the
definition can be modified to allow the two rota-
tions to be independent. In Sec. IV we prove that
the Higgs system proposed in Ref. 1 does not lead
naturally to parity conservation in neutral cur-
rents. In Sec. V we show that with a different
Higgs system such parity conservation can be
achieved naturally. Finally, in Sec. VI we discuss
the implications of our results.

II. HIGGS SYSTEMS AND THE STRUCTURE
OF NEUTRAL CURRENTS

We consider a left-right—-symmetric gauge theory
based on { the _group SU(2),®SU(2),®U(1) with gen-
erators TL, TR, and Y corresponding to the three
subgroups. The electric charge is defined as

Q=T +Tp+2Y. 2.1

Here, by left-right symmetry we mean the symme-
try of theory which yields g =gz naturally. The
left- (right-) handed fermions are assigned to
doublets under Ty (T%). To generate masses for
the fermions, we need a Higgs multiplet of the type

(320, - (2.2)
where the numbelfs in the parentheses are the val-

ues of (Tz, Tg, Y). Corresponding to each ®, mul-
tiplet, there is a ®, multiplet defined as

(2,2,0), (2.3)

which transform like ®,. To obtain a general mass
matrix for the fermions, it may be necessary to
introduce more than one ®,-like Higgs multiplet;
this is an inessential complication. Fermions ac-
quire masses after the symmetry is spontaneously
broken by given nonzero vacuum expectation value
(VEV) to the &, (3, 3, 0) Higgs field. The most
general VEV is of the form

_[xei® 0
<<1>1>-< 0 mw). - (2.4)

After this first step, the symmetry of the theory
is broken down to U(1)z, X U(1)y, i.e., there are
two massless neutral vector bosons. We are inter-
ested in breaking the symmetry further down to
U(1) so that we have only one massless neutral
vector boson, the photon. ' There are two alterna-
tive ways to achieve the above objective of sym-
metry breaking down to U(1) of electromagnetism,
differing in the selection of the Higgs fields used
to trigger the second step of symmetry breaking.

Case (i): Xi(3,0,1) and Xz(0, 3, 1) Higgs fields.
The choice of VEV which breaks the symmetry
down to U(1) and also leads to the parity-conserv-
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ing structure of the neutral current is
0 . [y
A

X =0 = (2.5)

In Sec. IV we shall show that {x ;) ={xz does not
hold naturally, at least for the particular defini-
tions of left-right symmetry which we have con-
sidered. Thus in general the neutral-vector-bo-
son eigenstates are linear combinations of Z; and
Z4, and parity is not conserved.

To construct phenomenologically viable models,
it is sometimes necessary to include other Higgs
fields such as 0,(1, 0, 0) and 64(0, 1, 0) with the
following VEV’s,"

(6,)=0,
/0

6=l v ). (2.6)
’ 0

This type of VEV’s contributes only to the charged-
gauge-bosons (mass)® matrix and make the right-
handed charged W bosons heavier than the left-
handed ones. This is certainly required in the
four-quark model of Ref. 1 in order to suppress
the unwanted right-handed currents. However, in
the multiquark models, one may dispense with 6
and 0 Higgs multiplets if Wi connect the known,
light fermions only to very heavy ones.

Case (ii): (3, 3,2) and p'(3, 3, —2) Higgs fields.
The following set of VEV’s of these fields’ breaks

* the symmetry down to U(1) and gives the desired

structure of the neutral current,

<p>=<° 0)
a 0

and ’ (2.7) |

(p")= <0 b).
\0 0

Note that because of the nonzero hypercharge, p
and p’ do not contribute to the fermion masses.
Just as in case (i), one may still need triplet
Higgs fields 6,(1, 0, 0) and 64(0, 1, 0) with the VEV’s
given in Eq. (2.6) to make the model satisfactory
phenomenologically.

Turning to the structure of the neutral-current
interactions, we note that there are three neutral
gauge bosons in SU(2); ®SU(2)z ®U(1) gauge theor-
ies denoted by W3, W3, and B coupled to the neu-
tral generators T,;, T,z, and Y, respectively.
The (mass)® matrix for these bosons receives con-
tributions from the ®; and from X and Xz or p and
p’; there is no contribution from 6, and 0;. If we
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have either the X, Xz Higgs system with {xp ={xg
“or the p, p’ Higgs system, then the mass of eigen-
states are R

sin6

A, = i (WL,1+I/VR,,)+coseB,J ,
cosé
vu= 75 (WL‘,+WR,J)—sm()B (2.8)
; 1 3
ZAu ‘[—2 (WLu WRu)s

where g, =gzr=g=V2¢/sin8=g’=e/cosf. For the
neutral weak interactions to be parity conserving
we require that the massive neutral vector boson
Zyy (Z4,) couples to a purely vector (axial-vector)
current. We expect this to be true for each ele-
mentary fermion field in the Lagrangian including
the neutrinos. . As can be easily seen by writing
down the interaction Lagrangian, each species of

" fermions ¥; must have definite values of T,; and
T,r with

TaL(ZPi) = TgR(Zpi) L (2-9)

This requirerhent is met in the four-quark model
but not in the six-quark model of Ref. 1. If it is
satisfied then the neutral-current interaction La-
grangian involving the fermion fields v,, ¢, #, and
dis

ie ’ —_ - —_ —
£hi = mZAp(er Ys€ = VyyYsV +AY, Ysd — Uy, Vsih)

ie - .
—mzm[ - c0S268y, é+ vy, v
- 3(1 -4 cos?0)iry,u

- 3(1+2cos®0)dy,d].

(2.10)

IIl. LEFT-RIGHT SYMMETRY AND FERMIONS

We define a left-right symmetry as any discrete
symmetry of the Lagrangian which requires the
equality of the SU(2), and SU(2); coupling con-
stants. The equality is then naturally preserved
under spontaneous symmetry breaking except for
finite and calculable corrections.® Evidently it is
necessary only that the symmetry interchange W,
and Wy, and that it be consistent with gauge in-
variance. The particular symmetry considered in
Ref. 1 is

WLu “WRMG

iz =¥ir,

& -], (3.1)
XL Xr,

8,0,

FRANK E.

PAIGE, AND D. P. SIDHU

1=

If p and p’ are used in place of Xz and Xz, then they
transform as

p—p'T. (3.2)

Left-right symmetry must be broken to account
fdr the observed parity violation in charged cur-
rents. Two patterns of symmetry breaking can be
considered. In the first, W5 are made much hea-
vier than Wj. (This requires the presence of the
Higgs multiplets 6, and 65, with (55 > (5;).)

Then the right-handed fermion multiplets enter on-

"1y in the neutral currents except at very high ener-

gy. One possibility of this type is manifest left-
right symmetry, in which the left and right gen-
eralized Cabibbo rotations are identical.

In the second pattern of symmetry breaking, W;
and W; have comparable masses. Then it is nec-
essary to put the light quarks in right-handed
multiplets with new, heavy quarks, so that parity
is violated at low energy. We shall see that this
pattern is not possible with the left-right symme-
try in Eq. (3.1) but that it can be obtained with a
different definition of left-right symmetry if de-
sired.

The most general gauge-invariant and renor-
malizable Higgs-boson—fermion interaction is

Ly= Y Fy® 0 +H.c. (3.3)

We assume that CP is conserved before spontan-
eous symmetry breaking, so that the F{ are real.
Then invariance under the left-right transforma-
tion of Eq. (3.1) implies

F{P=F (3.4)

“‘for each n. Fermion masses are generated by

spontaneous symmetry breaking as usual. The
fermion mass matrix is

£mass=$iLlwij¢jR +H.c. ’ (3'5)

where
Z Fe ). (3.6)

We shall show in fhe following section that there is
a finite range of the parameters in the Higgs poten-
tial for which the (@ - are real and another finite

- range for which they are complex. Thus M can be

either real or complex, but in either case it is
symmetric because of Eq. (3:4).
For any matrix M we can write

M=UDU}, , (3.7

where U, and Uy are unitary and D is diagonal and
has real, non-negative elements. If M is real and
symmetric, then U, =Uy is a real orthogonal ma-

trix. Hence the left and right generalized Cabibbo



rotations are equal, and one has manifest left-
right symmetry.®

If M is complex and symmetric, then U; and Uy
are not equal, but if there are no degenerate
masses, then

Up=U%, (3.8)

which means that the left and right generalized
Cabibbo rotations are equal but the phases are
equal and opposite in sign, and one has pseudo-
manifest left-right symmetry. To see this we set
M =MT* and use Eq. (3.7) to obtain

(URUD =D(URUL)" . : (3.9)
The Hermitian conjugate of this gives
(URU) D =D(UR,) . (3.10)
But
Dy =Mby, M, >0 (3.11)
so that
(URUL) My =M (URUL) 5, (3.12)

(URU) My = M(UEU,)

ji
with no surm on ¢ or j. For M # M, i #j, it fol-
lows that

(ULUD; =0, i#j, - (3:13)

which implies that Up = U¥.

Thus, making (¢, complex does not substantially
change the nature of the model. In particular it is
still necessary to make W} mich heavier than
W% to suppress the righi-handed charged currents
at low energy. However, it may be useful to take
(@,,) to be complex in order to introduce CP viola-
tion in the fermion mass matrix.*

If one wants the left and right generalized Cab-
ibbo rotations to be independent, then it is neces~
sary to change the definition of left-right symme-
try. The simplest change is to require invariance
under ‘

R (3.14)

J
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while keeping the rest of Eq. (3.1) the same. Then
the Higgs-fermion couplings in Eq. (3.3) must
satisty

PP =F@. (3.15)

If (@,)+(®,) this provides enough freedom to con-
struct an arbitrary mass matrix. Another set of
Higgs fields, ®, and '

¢, =7,8%7,, (3.186)

is needed to make the mass matrices for the upper
and lower fermions independent, -but this is an in-
essential complication.

1V. MODELS WITH x AND & HIGGS FIELDS

In this section, as in Ref. 1, we consider mod-
els in which the Higgs multiplets are ®,,®,, x;, Xz
and perhaps 6;, 65, the notation being that defined
in Sec. JI. For the neutral currents to be parity
conserving it is necessary that

)= Xa)s ' 4.1)

We shall see that for either of thk definitions of
left-right symmetry considered in the previous
section, this condition cannot be satisfied natur-
ally, although of course it can be arranged by
adjusting the parameters in the Higgs potential.

We first consider the definition of left-right sym-
metry given in Eq. (3.1), i.e., that with &, —&].
Then since the left and right generalized Cabibbo
rotations are related by

'

Up=U¥, : (4.2)
it is necessary to use 6, and 6; to make W ; much
heavier than W}. For simplicity we impose’ ad-

ditional discrete symmetries under

6, =0 and 65~ —0g . (4.3)

" Then the most general gauge-invariant, CP-in- |

variant, and renormalizable Higgs potential is

) T 2t 267, o ;
V= Z U‘iiz Tr(q’iq)j) - HtZ(XLXL +X;ZXR) - uzzkﬁlﬁf, + 5;61%)* Z Mf(XI‘biXR*' X?@‘:XL)

ij=1,2

ijkl

71,2

+ Z (A Tr(@ jq’j)Tr(q’;r‘I’t) + A Tr(@ o 1‘1’;‘1’1)-’ + xx(XZX)_ +Xnxr) + AZ(XZXL)(X;;XR)

- ¥ ‘ , ¥
+ Z D\sii(XL.XL+X;XR)Tl“(q’:\‘pj)*”)\sij(x‘},d’iq’}h +X;®i®j><]€)]

ij=1,2

(00, + By 0) + 25(076,)(0R0R) + 37 Ngyy(610, +0365) Tr(® @)

ij=1,2

+ X7 (XD Xz + XEXR) (B 61 + B 6) + Ag[ (xS x)(056,) + (xhxa) (52021, (4.4)
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where all of the couplings are real and satisfy
Bit =00,
Niger =M= Xgint =ik (4.5)

Ner = g = Neri; = Mt s

Agij =Rgjis A3ij=Agjis Meij = Agji -
Note that the terms involving XI‘IHX R+ chpjx ; might
be eliminated by imposing another discrete sym-
metry under x; - —~X; Or Xg—~ —Xg, but then ¥V
would have an extra U(1) symmetry acting on y, or
Xg- This symmetry would be broken by the
vacuum expectation value, giving rise to an un-
wanted Goldstone boson.

To show that (x.)=(xz) cannot be satisfied
naturally, it is sufficient to study V with &, =0;
the cross terms involving ¢; will not affect the
conclusion. It is then straightforward to show
that at the minimum of V,

22, ((XZ Xxe) - <X;, ><XR> )

+2g(@7)(8,)— (8L (0x))=0. (4.6)

Since we must have (8g) > (b, ) to make W ; much
heavier than W;, we can have (x;)=(xz) only if
Ay =0.

When higher-order graphs are considered, an
additional problem arises. Since the left-right
symmetry is spontaneously broken, one is guar-
anteed that there are no infinite counterterms of -
dimension four which violate the symmetry.t
Thus the equality of the SU(2), and SU(2); coupling
constants and the symmetries of the four-Higgs-
fields couplings are preserved except for finite
corrections. However, there may be counter-
terms of lower dimension which violate the sym-
metry, and in fact the x; and x; masses are sep-
arately renormalized. Consider the graphs shown
in Fig. 1. For smallXX’, W} and W } are ap-
proximate mass eigenstates. Using dimensional
regularization, we find for the difference of the
xz and Xp §elf—energies
ig? 1

Py, x, (P)-T (l))=Epm(f’nw;—mw;)*‘mgs

XRXR

(4.7)

4

WL
1_%2
°
XL XL Xt
Wr
o + o
XR xR xR

FIG. I. Graphs contributing to the infinite renormal-
ization of MXI2-MXR2.

where reg denotes terms which are finite as =

— 4. Thus the y; and xp mass counterterms must
be adjusted separately in each order of perturba-
tion theory if the equality of the masses presumed
in Egq. (4.4) is to be maintained.

The present experimental limits on parity viola-
tion in atoms are not so stringent as to make the
possibility that (x.) and (xz) are only approximately
equal unreasonable. We discuss this possibility in
the Appendix. :

To see that (®;) can be either real or complex,
we note that the most general neutral vacuum ex-
pectation value for the Higgs fields is

0
<XL>= < 0 > ’ <XR>: < > ,
X cosf \ x sing
@)= (% °.>, @y= (T 0 )
0 Xet 0 Ke i

0 0
<6L>: ()L ’ <~6R>: 6R 3 (48)
0 0

with {x;)={xz) corresponding to g =n/4. When
these expressions are substituted in V, the terms
involving « and o’ are

V= —4p,,250% cos(a +a’)+ ul x* sin2B %’ cosa’ + ju y? sin2p Kcosa

+ X (K2 + KKK cos(a +a’ ) +X, K2K™Z cos2(a +a’) +(8hy 1, +4A] 1) X2KK cOs(a +a’)

+22 .15(5L2 +057)XK cos(a +a’),

X =400 + Aaoy HAop1p + Age01) +2(N {115 + M55y

Xo =8 ia15 + X ino1 T Aa11p + Ag101) F 4 (M 510 +A415y) -

Evidently the first derivatives vanish at a =a’ =0, and the sighs can be chosen.to make this point either a
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maximum or a minimum for a finite range of the parameters.
We now cons1der the second definition of left-right symmetry given in the previous section, i.e., that

with & --»<I>

For appropriately chosen fermion mixings, W; and W ;, can be comparable in mass so that

o, and 0y are not needed. Then the most general Higgs potential is

V== 020 + X ) * 1@ axm * X 5B oz * X1 X X218 ,5Xp) + M (Xa X+ XRxe) 2 (e ) xan)
#05(X2xz + Xaxe) TE@ @) + X (X + xixe Tr(8]@,) + Tr@ e ,)|
(X2 @ XL+ XA B ,XR) + X 18,87 X, + XE‘I’i ®,xr) o T
A (X2 PoXs + XARED 1 Xp + XIP2R ] Xz + XRO I @ XR) + (@4, 8,), . « (4.10)

where F(®,,®,) contains all the terms not involving ¥z and ¥gz.
From this form of V it follows that (x;)=(xz) can hold naturally only if X =%’ and ¢ =+a’, 1f at all.” To
see this, we substitute the vacuum expecfatlon values, Eq. (4.8), in V,

V=—p 2%+ 1 x sin2B(Kcosa + &' cosa’) + A, x* + £, % sin®28 + A, x* (%2 +R2) +A0] Y*KH cos(a +a’)

+ 2,3 (K "2 cos?B + 3(12 sin?B) + A [x* (X2 cos?B-+ %2 sin’ 2R)+ 207 yPx cos(a+a')+ F(d,,@,). ,,:Y(4.~1'1)v

Evidently B=7/4 is a stationary point for arbi-
trary 2, and 2] only if X=X’, For u’+0, X=X’
can be a stationary point only if o’ =+, since
every other term is symmetric under X-— &/, But

then the fermion mass matrix is either Hermitian
' or symmetric, 0, and 0y are again required, and
the natural equality of (y,) and (xg) fails as be-
fore.

We have not attempted to prove that there exists
no definition of left-right symmetry for which
{xz) = (xzy holds naturally. However, it seems
simpler to use the.p, p’ Higgs system, which we
discuss in the following section.

V. MODELS WITH p (5. 3> 2) AND p’ (3, 3 -2) HIGGS FIELDS

In this section, we discuss the second Higgs
system introduced in Sec. II (case ii) which can
be used to break the residual symmetry U(1),,
® U(1) after &(3, 3, 0) field picks up a nonzero
VEV given in Eq. (2.4). In some sense, the
p(%, ,2) field which carries nonzero Y can be
thought of as a clever combination of the two
hypercharge carrying Higgs fields x,(3,0,1) and
Xz(0, 3,1). With this Higgs system not only the
nonmanifest but also the manifest left-right—
symmetric theories can possess naturally parity-
conserving weak neutral-current interactions.
Models could contain as few quarks as four. In
the manifest case, one must introduce triplet
Higgs fields 6,(1,0,0) and 64(0,1,0) with VEV’s
given in Eq. (2.6) in order to make the model vi-
able phenomenologically but the inclusion of such
fields does not change the naturalness of parity
conservation in neutral-current interactions.

The p(3, 3,2) and p’(3, 3, 2) fields can be written
as in matrix form as

r

' (p; p;*)
p= ) e
o\ e/ (5.1)
pm o pl® :
pr=( ")
* pé pz

The only allowed pattern of VEV consistent with
the charge conservation is

00>. . :
() = 0 )

and ; (5.2)

0d
<p'>=< )
00

The neutral vector bosons (maés)_2 matrix receives
contribution from {®,), {0, and (p'’) and has the

-form

. Wi W B
Wi [&5(x+y) -g%x~y) -2gg'y C 53)
Wi | -8°(x =y) gi(x+y) -2gg'y
B -228'y  -28g'y 48’y
where x =3 (%%+ %'%) and y=3(c%+d?).
For arbitrary values of x and y the eigenstates

of this matrix are just the A, Z,, and Z, defined
in Eq. (2.8) with masses

mA2: ’
my?=2(g%+2g'%y, (5.4)
myZ=2g% .

Since A, Z,, and ZA do not depend on x and y,
they are in fact the eigenstates for the most gener-
al (neutral) vacuum expectation values (&;), {0,
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and (p’) and thus are not dependent on any detailed
properties of the Higgs potential.

Having the neutral bosons given by Eq. (2.8) is
not sufficient to ensure parity conservation; we
must also have g, =gz =g. This is guaranteed na-
turally up to finite and calculable higher-order
corrections by the left-right symmetry defined in
Egs. (3.1) and (3.2). To see that this symmetry can
be imposed consistently, we consider the gauge-
invariant kinetic energy terms for p and p’,

L&y = - Tr[®,0)T ®*p)] - Tr[(®,p)" (©*0)],

(5.5)

where
D,P=8,0-3ig W,y - Tp+5igpT+ Wyp —ig'B P,
D0 =0,0" ~3ig W, - 70" +3igp'T+ Wyp +ig'B,p’ .
; (5.6)

Under left-right symmetry p— p’' and V-V”Lo—- Wyrs
S0 -

Dup~8,0"" - éigWuR T T+ %igp'TF- VTIuL ~igB,p'"
=®,0)". (5.7

Hence £,y is invariant by the cyclic property of
traces. The only other terms in the Lagrangian
involving p and p’ are terms in the Higgs poten-
tial, and these can clearly be chosen to be invari-
ant. Since we have already noted that the neutral
boson eigenstates are independent of the exact
form of the Higgs potential, we need not study it in
detail. i

The parity-conserving neutral-current interac-
tion in Eq. (2.10) follows immediately from g, =gx
=g together with Eq. (2.8). Parity conservation in
this model is evidently natural, depending only on
left-right symmetry and on the representations of
the Higgs mesons, which force the neutral-vector-
boson (mass)? matrix to have the form given in Eq.
(5.3). :

The discussion of manifest vs nonmanifest sym-
metry breaking in Secs. II and III applies equally
to the Xz, Xz and the p,p’ models since neither
set of Higgs fields contributes to the fermion mass
matrix. In particular, additional Higgs mesons 6
and 0y will be needed in the manifest case to make
Wz heavy, but these do not affect the neutral-cur-
rent sector of the model.

VI. CONCLUSIONS

In the context of SU(2), X SU(2)g X U(1) gauge the-
ories several conditions are necessary for the neu-
tral-current weak interactions to conserve parity
naturally: '

(i) There must be a spontaneously broken left-

right symmetry to ensure that the coupling con-
stants for SU(2); and SU(2); are naturally equal.
Depending on the choice of this symmetry, the gen-
eralized Cabibbo rotations for the left-handed and
the right-handed fermions may be either related

by complex conjugation or independent.

(ii) Each fermion must appear in a left-handed
and a right-handed multiplet and have T,; =T 3.

(iii) The Higgs system must be chosen so that the
neutral vector bosons have definite parity. The
p,p’ Higgs system described in Sec. V achieves
this naturally. The x;,xr Higgs system originally
proposed in Ref. 1 does not, at least for the defin-
itions of left-right symmetry which we have con-
sidered.

If parity violation is naturally absent in lowest
order, then it must be finite and calculable in high-
er order. We expect the parity-violating effective
interaction to be of order aG, in models containing
6, and 0z and having W, much heavier than Wj.

In models without 6, and 0z, parity would be con-
served in the limit of equal quark masses, so we

expect the parity-violating effective interaction to
be of order Gp°Am,?, where Am,? is a difference
of quark masses. The latter possibility is analo-
gous to the Glashow-Iliopoulos-Maiani** mechan-

ism for the suppression of strangeness-changing

neutral currents.

The absence of parity violation in heavy atoms
can also be accommodated in SU(2) X U(1) gauge
theories.’” One must put the electron in a right- -
handed doublet so that its coupling to Z is pure
vector. Then the parity-violating effective inter-
action involves the axial nucleon current; hence it
is small for heavy atoms but is comparable to that
in the Weinberg-Salam model for hydrogen. An
experiment now in progress to measure the parity
violation in hydrogen should therefore distinguish
the two models.
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" APPENDIX

We have seen that in SU(2),® SU(2)r® U(1) mod-
els with x;(2,0,1) and xz(0,%, 1) Higgs fields,



(x> and {xg) are not naturally equal. In such
models the mixing between the vector and axial
neutral bosons is renormalized and hence the par-
ity violation in atoms is not calculable. However,
we can parametrize this parity violation by its val-
ue at the tree level as a function of (x;) and (xg)."
Then such models will remain acceptable provided
that the difference between (x;) and {xgr) does not.
have to-be unreasonably small.

For definiteness we consider. the four-quark and
the six-guark models of Ref. 1. We take

0 0
(XL>= AL ) <XR>= AR>,
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For: A =2z the eigenstat’es are

sind

A= T (W3 +W3 )+.cos9Bu,
Z, = °5§9 (W3, W p)—SLnGB o (A3)
X ZA:‘\/_'?—(WL;;_-‘WR;{).) [

where Z, and Z 4 have pure vector and axial-vec-
tor couplings. For Ap#Az, Zy and Z, are mixed,
the new eigenstates being

Z,=(cost)Z, - (sing)Zy ,

(A4)
(smg)ZA + (cos§ )ZV y '

xei®c 0 . ' Where
(@) = ( > ‘ . (A1) A 4
0 x'ei™ ' tant = 2p
, 1+ (1+4p%)Y2 ° (A5)
and define - - (L—¢€)cosb a2 —‘7\32 . ’
- 252 4 2507 x3) (1 ~€) sin®0 —2e cos®0 \ A 2+ag% /°
€T NT AT 20 2 The corresponding masses are
J
‘ 1+cos®0- 2 2¢ .
2_14 2 2\{: 2 _ 2\1/2 .
Mz, T2 e )[< cos?6 1—6) (ta -1 )(1+4p) ] (46)

In a heavy atom the dominant parity-violating term comes from the axial electron current times the vec-

tor nucleon current.

o2
Her = Toin® coso

To calculate the weak charge @, we need the Fermi constant.
Ge_ 1
V2 2(1+e) (A 2+ g%

Then

2(1 - €?) cosb[(1 —€) sin®0 — 2¢ cos?6] (1 + 4p?) /2

The sum of the Z, and the Z, graphs gives for this term

. = ' 1
(@r"vse)[35(4 cos®0 - 1) 7 y,u —5(2 cos®0 + 1) dy, d] sing cost <—;y—ll-§ = 2) . (A7)
. } Z2 Z,

For both of the models in Ref. 1, .

@y = sing cost (1 —€®) cos®0 - p*[(1

For small A, ~ \? this becomes
= 2(1 €)<—'—1‘—L> [Z(l 2 COSZG) +N] (AIO)

Note that @, is positive (negative) for ALE> AR
(ALZ<xz?).

The present experimental limit on parity v1ola-
tion in bismuth corresponds to®

Qy(Bi) =40+ 32 (Oxford)

=424 16 (Washington) . (A11)

—€) sin®9 ~ 2¢ cos®6)?

(A8)
[z(1=2cos®0)+N]. (A9)
I
Then using the parameters of Ref. 1,
A2 =g
L —E_1<0.15 (four-quark model)
A2+ g2
<0.36 (six-quark model). (A12)

While the difference between A % and Az® has to be
fairly small, it seems premature to rule out such
models definitely.
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