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We discuss the syinmetry-breaking patterns arid the naturalness of parity conservation in weak neutral-
current inter'actions 'iri the left-right-symmetric SUt,'2)L SU(2)~ U(l) gauge theories. Two Higgs systems
are discussed which eriable us to achieve the desired breaking of the gauge symmetry, We show by a detailed
analysis of the Higgs potential that the more economical of the two Higgs systems, that involving left and
right Higgs'scalar doublets, fails to'meet the criteria of naturalness of parity conservation in neutral-current
interactions. %e. find that with the second EIiggs system neutral currents conserve parity naturally regardless
of the structure of the physical charged-current weak interactions. Implications of this for the computability
of induced parity violation in higher orders and the search for parity nonconservation in atoms are also
discussed.

I. INTRODUCTIQN

Recently, gauge theories based on the group
SU(2)~IR SU(2)sS U(1) have been proposed' ' as
serious candidates for the unified description of
the weak and electromagnetic interactions. Such
theories have 2 number of attractive featuxes which
are not shared by the staridard, SU(2)S U(1) theo-
ries. 4 These theories are parity conserving before
spontineous symmetry bx'caking and also after-
wards at asymptotic energies, The a,symmetry
in the low- energy charged- current weak interac-
tions, i.e. , p, edominance of the left-handed inter-
actions over the right-'handed ones, is a. conse-
quence of the symmetry breaking thus leading to
a conceptually different picture of;parity violation
in weak interactions at low energies.

It was shown in Ref. 1 that one of the symmetry-
breaking schemes in SU(2)~SSU(2)n@U(l) gauge
theories leads to a very interesting structure of
the weak neutxal-current interaction such that one
massive neutral vector' boson (Z„)couples only to
axial-vector currents and'the other (Zr) couples
only to vector currents. ' Specifically, the neutral-
current interaction Lagrangian is of the form

P

Z~a (tt 8f~'y, 8+ tt vj', j''ev+ tt tf'y~p5tf)
2 sin8

ie Z tr~ (Ue8f~ 8 + tt~ Vj'~ V + tt tf "yntl )sln2 8

+(P -8),
where q =-u, d, e, s, . . . . This form of the interac-
tion will yield an effective neutral-current Ham-
iltonian which is clearly parity conserving having
the form S„c= VV+AX with no terms of the type
VA +A V which involve vector-axial-vector inter-
ference. However, one of the notable features of

the model is that in spite of the parity-conserving
neutral-current interaction, the neutrino and an-
tineutrino neutral-current cross sections are pre-,
dicted to be unequ. al. The inequality here of the
two cross sections is a, direct consequence of the
fact that the two massive neutral. vector bosons
have definite and opposite charge conjugation.
This ia, a counterexarnple to the statement that
(TNc (v(~N) 0 O'Nc (vaN) necessal lly implies illa't Ilell-
tral currents are parity violating. Note that in the
netttral-current interacilon Lagrangian of Eq. (1.1),
there i.g no parity-vio J.ating el.ectron-nucleon coup-
ling and, hence, this model predicts that there be
no par1ty violat1on in atom1c physics to O(G1,). The
resul. t. of two recently compl. eted atomic-physics
experiments' are such that the present upper
limits on the parity-violating eN interaction are
an ordex of magnitude below the prediction of
the Weinberg-Halam model.

Paxity conservation in neutral-current jnterac-
tions was obtained in Ref. j. by a particular choice
of the vacuum expectation values of. the Higgs
fields. It is important to know whether this choice
is natural, " i.e, whether it can be obtained for
a finite range of the parameters of the Higgs po-
tential and is stable under renormalization. In
this paper g7e show that the Hi.ggs system proposed
in Bef. 1 does not 1,ead naturally to parity-con-
serving neutral currents. However, there is
another Higgs system which does naturally give
pax'lty-consex'vlng neutral currents.

The plan of the rest of this paper is as follows: .

In Sec. II we define the various Higgs mul. tiplets
and discuss the structure of the neutral currents.
In Sec. III we examine the implications of left-right
symmetry for the fermions. We find that the ori-
ginal definition of left-right symmetry leads to .

left and right generalized Cabibbo rotations which
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are related by complex conjugation, but that the
definition can be modified to allow the two rota-
tions to be independent. In Sec. IV we prove that
the Higgs system proposed in Ref. 1 does not lead
naturally to parity conservation in neutral cur-
rents. In Sec. V we show that with a different
Higgs system such parity conservation can be
achieved naturally. Finally, in Sec. VI we discuss
the implications of our results.

II. HIGGS SYSTEMS AND THE STRUCTURE

OF NEUTRAL CURRENTS

(2, z, o), (2.2)

where the numbers in the parentheses are the val-
ues of (Tz„T„,Y). Corresponding to each 4, mul-
tiplet, there is a 4, multiplet defined as

1. 1
2 T2 I . 2 ~ (2y 2y 0) p (2.3)

which transform like 4, . To obtain a general mass
matrix for the fermions, it may be necessary to
introduce more than one 4,-like Higgs multiplet;
this is an inessential complication. Fermions ac-
quire masses after the symmetry is spontaneously
broken by given nonzero vacuum expectation value
(VEV) to the 4, (-„-,', 0) Higgs field. The most
general VEV is of the form

We consider a left-right-symmetric gauge theory
based on the group SU(2)z, SSU(2)sSU(l) with gen-
erators Tz, Tz, and F corresponding to the three
subgroups. The electric charge is defined as

(2 1)

Here, by left-right symmetry we mean the symme-
try of. theory which yields g& =g naturally. The
left- (right-) handed fermions are assigned to
doublets under Tz, (Ts) To gen. erate masses for
the fermions, we need a Higgs multiplet of the type

ing structure of the neutral current is

(2.5)

In Sec. IV we shall show that (yz) =(ys) does not
hold naturally, at least for the. particular defini-
tions of left-right symmetry which we have con-
sidered. Thus in general the neutral-vector-bo-
son eigenstates are linear combinations of Z~ and
Z&, and parity is not consei'ved. -

To construct phenomeriologically viable models,
it is sometimes necessary to include other Higgs
fields such as &z(1, 0, 0) a'nd &s(0, 1, 0) with the
following VEV's,

(6g =o,

(2.6)

This type of VEV's contributes only to the charged-
gauge-bosons (mass)' matrix and make the right-
handed charged 5' bosons heavier than the left-
handed ones. This i.s certainly required. in the
four-quark model of. Ref. 1 in order t;o suppress
the unwanted right-handed currents. However, in
the multiquark models, one may dispense with &~

and && Higgs multiplets if 8'„'connect the known,
light fermions only to very heavy opes.

Case (ii): p(~, ~, 2) and p'( —,', ~, -2) Higgs fields.
The following set of VEV's of these. fields' breaks
the symmetry down to U(1) and gives the desired
structure of the neutral current,

(2."I)

0 X'e' ' (2.4) Io oj

After this first step, the symmetry of the theory
is broken down to U(1)z, „&U(l)», i.e., there are
two massless neutral vector bosons. We are inter-
ested in breaking the symmetry further down to
U(1) so that we have only one massless neutral
vector boson, the photon. ' There are two alterna-
tive w'ays to achieve the above objective of sym-
metry breaking down to U(1) of electromagnetism

. differing in the selection of the Higgs fields used
to trigger the second step of symmetry breaking.

Case (i): Xz(2, 0, 1) and y~(0, —,', 1) Higgs fields.
The choice of VEV which breaks the symmetry
down to U(1) and also leads to the parity-conserv-

Note that because of the nonzero hypercharge, p
and p' do not contribute to the fermion masses.
Just as in case (i), one may still need triplet
Higgs fields ~z(1, 0, 0) and &s(0, 1, 0) with the VEV's
given in Eq. (2.6) to make the model satisfactory
phenomenologically.

Turning to the structure of the neutral-current
interactions, we note that there are three neutral
gauge bosons in SU(2) zSU(2)s SU(l) gauge theor-
ies denoted by WJ., 8'~, and & coupled to the neu-
tral generators T, L,, T», and F, respectively.
The (mass)' matrix for these bosons receives con-.

tributions from the 4; and fry' g& and X& or p and
p'; there is no contribution from P~ and 6„.If we
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have either the y~, g„Higgs system with (yg =(y„)
or the p, p' Higgs system, then the mass of eigen-
states are

A
sin8

(W~,„+W„'~)+ cos BB„,'2
cos 8

Zv~ = (W~u+ W~~) —sinBa, ,
2

.1
Z „= (W'„—W'),

v2

(2.6)

where gr, =gs=g =u 2e/sinB=-g =e/cosB. For the
neutral. weak interactions to be parity conserving
we require that the massive neutral vector boson
Z~& (Z~„)couples to a purely vector (axial-vector)
current. We expect this to be true for each ele-
mentary fermion field in the Lagrangian including
the neutrinos. As can be easily seen by writing
down the interaction Lagrangian, each species of
fermions g; must have definite values of T, z and
T,R w1th

7'.i(4 ) = &,s(4 )- (2.9)

NC 'I

Z„„(ey&y, e —v y„y,v+dy&y, d- uy& y u)2 sin9

ie Z„„I —cos2 Bey„e+ vy„vsin28
——,'(1 —4 cos'8) uy„u
——,'(1 +2 cos-'8) dy„d].

(2.10)

III. LEFT-RIGHT SYMMETRY AND FERMIONS

We define a left-right symmetry as any discrete
symmetry of the Lagrangian which requires the
equality of the SU(2)~ and SU(2)ii coupling con-
stants. The equality is then naturally preserved
under spontaneous symmetry breaking except for
finite and calculable corrections. ' Evidently it is
necessary only that the symmetry interchange 8»
and W~& and that it be consistent with gauge in-
variance. The particular symmetry considered in
Ref. 1 is

5'» 5'R~,

4L PiR s

This requirement is met in the four-quark model
but not in the six-quark model of Ref. 1. If it is
satisfied then the neutral-current interaction La-
grangian involving the fermion fields v„, e, u, and
d 1S Zii= Q F,~" Q r.4'ng, ii+H. c. (3.3)

We assume that CP is conserved before spontan-
eous symmetry breaking, so that the I'~,"- are real.
Then invariance under the left-right transforma-
tion of Eq. (3.1) implies

y (n) ~(n)
fi (3.4)

' for each n. Fermion masses are generated by
spontaneous symmetry breaking as usual. The
fermlon mass matr1x ls

~mass $Q,~gfggg +H i c ~
p (3

where

(3.6)

We shall show in the following section that there is
a finite range of the parameters in the Higgs poten-
tial for which the (4„)are real and another finite
range for which they are complex. Thus I can be
either real or complex, but in either case it is
symmetric because of Eq. (3;4).

For any matrix M we can write

M = Uz.DU (3.7)

If p and p' are used in place of X~ and X~, then they
transform as

(3 2)

Left-right symmetry must be broken to account
fo'r the observed parity violation in charged cur-
rents. Two patterns of symmetry breaking can be
considered. In the first, 8'~ are made much hea-
vier than W~. (This requires the presence of the
Higgs multiplets &z, and &ii, with (5s)» (5~).)
Then the right-handed fermion multiplets enter on-
ly in the neutral currents except at very high ener-
gy. One possibiLity of this type is manifest left-
right symmetry, in which the left and right gen-
eralized Cabibbo rotations are identical.

In the second pattern of symmetry breaking, 8'~
and W~. have comparable masses. Then it is nec-
essary to put the light quarks in right-handed
multiplets with new, heavy quarks, so that parity
is violated at low energy. We shall see that this
pattern is not possible with the left-right symme-
try in Eq. (3.1) but that it can be obtained with a
different definition of left-right symmetry if de-
sired.

The most general gauge-invariant and renor-
malizable Higgs-boson-fermion interaction is

Xg Xz ~

&L, —&~.

(3.1) where U~ and U„areunitary and D is diagonal and
has real, non-negative elements. If M is real and
symmetric, then UL = U„is a real orthogonal ma-
trix. Hence the left and right generalized Cabibbo
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rotations are equal~ and one has Manifest left-
right syxQGletry.

If (&I is complex and sym. metric, then UJ and Uz
are Hot equal~ but lf there are no degenerate
masses, then

(3 3)

(U~(J~)D = D(UiiUJ)

The IIermitian conjugate of this gives

(3.9)

R
I

. which means that the left and right generali ed
Cabibbo rotations are equal but the phases are
equal aQd opposite ln sign~ and one has pseudo-
manifest left-right symmetry. To see this we set
M = 'M' and use Eq. (3.7) to obtain

while keeping the rest of Eq. (3.1) the same. Then
the Higgs-fermion couplings in Eq. (S.S) must
sa,tl sl y

, I;(t) . y(")
tj (3.15)

If (e,) x (e,) this provides enough freedom to con-
struct an arbitrary mass matrix. Another set of
Higgs fields, 43 and

4 ~2 3 2& (3.16)

IV. MODELS VII'I'8 X AND 5 HIGGS FIELDS

is needed to make the mass matrices for the upper
and lower fermions independent, but this is a,n in-
essentia, l complication.

But

(U~UI) D = D(UiifJ~) .

ha.t

(Ulif~~)*, &'J0 = J'&-i(U-ii VZ )j0.

(3,10)

(s.11)

(Xr.) =-& X~& (4 1)

In this section, as in Bef. 1, we consider mod-
els in which the Higgs multiplets are 4,4„X,X
and perhaps 6, , 6„,the notation being that defined
i.n Sec. G. For the neutral currents to be parity
conserving it i8 necessary that

(U~„,
'
t),~;IVY, = M;((J.~, U~), i-. ,

with no suIQ OQ I. Or J. Fol «~:j, ~ ii.7j„&+),
lo% t At

(U~UI, );, =0, i & j, (s;, 13)

(3.14)

ich ilYlplies that QP~ = 7J@ ~

Thus, making (4,,' comp]. px does not substantially
change the nature of the model. rn part::culhr it is
still neces.-;wry to make VV.,: much heavier than
W', to suppress the right, -handed charged currents
at low energy. However, it may be useful to take
(,'4 „)to b,e complex in order to introduce C.~". viola-
tion in the fermion mass I&atrix. '-"

If one wants the l.eft arid right generalized Cab-
ibbo rotations to be independent, then it is neces-
sary to change the definition of lqft-right symme-
try. The simplest change is to require invarlance
under

it is necessary to use 5~ and 6R to make Ã~ much
heavier than S"~. For simplicity we impose'ad-
ditional discrete Symmetries under

-5I and 5g~ —5~ (4 3)

.Then the most genera1. gauge-invariant, CP-in-,
variant, and renormalizable Higgs potential ls

We shall see that for either of thb definitions of
left-right symr11'etry consj.dered in ihe previous
section, this condition cannot be satisfied natur-
aj.ly, although of course it can be arranged by
adjusting the parameters in the Higgs potential.

%e first consider the definition of left-right sym-
raetry given in. Eq. (3.1)„i.e. , tha, t wi.th e0, —e, .
Then since the left and right generalized Cabibbo
rotations are related by

tj=-102
&i& T"(e

~ @&) —l'i (XJ.Xi; +X».X ) —
R92 (fir. 'Sr. + ~RfiR}+ Q I"i(xre'ixii+ X-lie'; ,XI.)

0

+ P IX„.„Tr(e,'e,.) Tr(e,'e, } + X,'.„,Tr(e,'e,e",e, )]+X,(X,'X, + X„'X,)'+X.,(X.'X.)(X,"X,)
fjkl

+ Q lxsi)(XI XI. + XRXa) T~ (e'i~@0) +x0i0(xr@i@i XI. + X''i@ '0Xi0)j
fj =1,2

+ X,(r.,'.C, + n„'a,)'+X„(f0b, }(f„'f,)+ X„,(i,'f, + r, V„)Tr(e te, )

+X.(X'X. +X~XR)(f'4 = fR@)+X.((X,'X, )(o-."o,)+(X~X~)(&,'&a}l,
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where all of the couplings are real and satisfy

~igkl ~igloo ~gikl ~g ilk y

~iyk& ~a yk

(4 5)

I
A,3;,. = X3~, ,

Note that the terms invoke. ving X~~C,.y~+ y~4, X~ might
be eliminated bg imposing another discrete sym-
metry under X~- -X~ or X~- —X„,but then V
would have an extra U(1) symmetry acting on g~ or

This symmetry wouM be broken by the
vacuum expectation value, giving rise to an un-
wanted Goldstone boson.

To Bllow 'tha't (Xl ) = &Xll) canllo't be sa'tlsf led
naturally, it is sufficient to study V with 4,. =-0;
the cross ter~s involving 4,- will not affect the
conclusion. It is then straightforward to show
that a,t the mini&mum of V,

»1(&Xi)(Xi)—&Xl'. )&X~) )

+g(&~,')&n, ) &~,') &~ ))=-O (4.8)

Since we must have &()„)»(6~)to make W~ much
heavier than W~, we can have (y,, ) =&y~) only if
A. =0.

%"hen higher-order graphs are con"idered, an
additional poroblem arises. Since the left-right
symmetry is spontaneously broken, one is guar-
anteed that there are no infinite counterterms of .

dimension four which violate the symmetry. '
T'hus the equality of the SU(2)~ and SU(2)~ coupling
constants and the symmetries of the four-Higgs-
fields couplings are preserved except for finite
corrections. However, there may be counter-
terms of lower dimension which violate the sym-
metry, and in fact the X~ and X„masses are sep-
arately renormalized. Consider the graphs shown
in Fig. 1. For smallXX', W~ andQ'I are ap-
proximate mass eigenstates. Using dimensional
regularization, we find for the difference of the

Xl and X~ self-encl gles
2

(4.7)

0
X . XL

WR

&x &=

ycosP j
(Xe*"

&x~&= ~

(y sinP j
(Xr e on'-0 )

i n'j Xe '

(4.8)&11 &= &&
' &4)= 4

o Lo

with (yl, ) = (y„)corresponding to p = w/4. When
these expressions are substituted in V, the terms
xnvoj. vlng Q and Q Q,re

FIG. 1. Graphs contributing to the infinite renorma1-
ization of M& 2- M& 2.

Xg Xg '

where reg denotes terms which are finite a,s n- 4. Thus the y~ and y„mass counterterms must
be adjusted separately in each order of perturba-
tion theory if the equality of the masses presumed
in Eq. (4.4) is to be maintained.

The present experimental limits os parity viola-
tion in atoms are not so stringent a,s to make the
possibility that &1t~) and &ys) are only approximately
equal unreasonable. %e discuss this possibility in
the Appendix.

To see that &4,) can be either real or complex,
we note that the most general neutral vacuum ex-
pectation value for the Higgs fields is

V = -411»2XX' cos(n + o ') + p. ,' X' sin2p X' coen'+ p2' X' sin2p Xcosa.

+X,(X2 +X")XX'cos(o. +o. ')+112 X'X"cos2(o, + a')+(8A2 12+4112' „)y2XX' cos(o. + n')

+ 2X, 12(5~'+ 6~')XX' cos(o. + o. '),

~1 ( 1112 ~1121 ~2212 ~2221) (~1112 ~2221) &

2 ( 1212 1221 2112 2121) ( 1212 2121) '

Evidently the first derivatives vanish at n = e' =0, '
and the signs can Qe chosen. to make this point either a,
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maximum or a minimum for a finite range of the parameters.
%e now consider the second definition of left-right symmetry given in the previous section, i.e., that

with C,—4, . For appropriately chosen. fermion mi»ngs, +'~ and W~ can be comparable m mass, so that
6~ .and 6~ are not needed. Then the most general Higgs potential is

.2 . l t f 2
Px (Xr&Xr. +XRXz)+ P.(XrÃ xXs+ Xz@2Xr + "z@zXr. +Xr@2Xz)+X&(XrXr. + XIX@) +X2(Xr Xr )(XzXz)

+ "3( Xr Xr: + Xz Xs) Tr (C' x
C' x) + ~3 (Xr Xr. + Xz Xs)l Tr(C'x C'2) + Tr (@p4' g) ]

+ &4( X.4'.4'.X.+ Xd' 4"XR) + &4( Xic'24'2 Xi+ XR4'i 4'.Xs)

4 ( XL@P2XL XR. 2 1XR .Xr+2 1 Xr XR 1@1XR) ( 1&@2)0

f/

where F(4„4,) contains all the terms not involving X'~ and X„.
From this form of V it follows that (X~)= (XR) can hold naturally only if X = X' and a = an', if' at all. To

see this, we substitute the vacuum expectation values, Eq. (4.8), in V,

V = —pg X + p, X sln2p(XcosQ +$Q costx ) + XrX + g X2X sin 2p+ X3X (X ++ ) + 4X~ X XX cos(ck+ (y')

+ X,X'(X"cos'p+ X' sin'p) + X,'X'(X' cos'p -I-X" sin2p) + 2X,"X'Xpc' cos(n+ e') + F(e„e,) . ,

Evidently P = v/4 is a stationary point for arbi-
trary A.4 and X,' only if &=X'. For p, 'Wo, X=X'
can be a stationary point only if e' = +e, since-
every other term i.s symmetric under X—~~. But
then the fermion mass matrix is either Hermitian
or symmetric, 5~ and 5„areagain required, and
the natural equality of (Xr) and (X~) fails as be-
fore.

%e have not attempted to prove that there exists
no definition of left-right symmetry for which
(X~) = (X„)holds naturally. However, it seems
simpler to use the, p, p' Higgs system, which we
discuss in the following section.

V. MODELS PATH p (—,2 2) AND p' (—,2 -2) HIGGS FiELDS

In this section, we discuss the second Higgs
system introduced in Sec. 11 (case ii) which can
be used to break the residual symmetry U(1)r,

„

18 U(1) after 4 (-,'-, —,'-, 0) field picks up a nonzero
VEV given in Eq. (2.4). In some sense, the
p(-,', —.';, 2) field which carries nonzero Y can be
thought of as a clever combination of the two
hypercharge carrying Higgs fields Xr, (—„0,1) and
X~(0, —,', 1). With this Higgs system not only the
nonmanifest but also the manifest left-right-
symmetric theories can possess naturally parity-
conserving weak neutral-current interactions.
Models could contain as few quarks as four. In
the manifest case, one must introduce triplet
Higgs fields 5~(1, 0, 0) and 5~(0, 1, 0) with VEV's
given in Eq. (2.6) in order to make the model vi-
able phenomenologically but the inclusion of such
fields does not change the naturalness of parity
conservation in neutral-current interactions.

.The p(,'-, —,', 2) and p'( —,', 2, 2) fields can be written
as in matrix form as

(p+ p++)
p= I

Ep: p." l'
pf - pIO

pi-
p I p I )I

The only allowed pattern of VEV consistent with
the charge conservation is

(0

and

t'0 d)
&p') =

I

(0 oi

(5.2)

g'(x+ y) -g'(x - y) 2gg'y-
-g'(x —y) g'(x+ y) -2gg'y

where x =-,'(X'+X") and y=~(c'+d').
For arbitrary values of x and y the eigenstates

of this matrix are just the A, Z~, and Z& defined
in Eq. (2.8) with masses

m~ =0,
Spiv' =2(g +2g )y~

Pl~ = 2g x ~

(5 4)

Since A, Z~, and Z& do not depend on x and y,
they are in fact the eigenstates for the most geI1er-
al (neutral) vacuum expectation values (C;), (p),

The neutral vector bosons (mass)' matrix receives
contribution from (4;), (p), and (p ') and has the

. form
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and (p') and thus are not"dependent on any detailed
properties of the Higgs potential.

Having the neutral bosons given by Eq. . (2.8) is
not sufficient to ensure parity conservation; we
~ust also have g~ =gR =g. This is guaranteed na-
turally up to finite and calculable higher-order
corrections by the left-right symmetry defined in
Eqs. (3.1) and (3.2). To see that this symmetry can
be imposed consistently, we consider the gauge-
invariant kinetic energy terms for' p and p',

' 8
pp

= -Tr[(&&P) (u" &)] —Tr[(a&P') (&"p')],

(5.5)

w'here

x)pp= epp-2zgWI, L
~ 7p+Bigp~ Wpz-iglB pp,

R„p'= s„p'--, ig%„~~ vp'+ &igp'7 W„~+ig'B„p'.
(5.6)

Under left-right symmetry p p' and W» —W»,
so

m„p-o„p"--2'W» ~p'+-,'sgpI'w W„,-i@a„p'
= (&„p')'. (5.7)

Hence Spp is invariant by the cyclic property of
traces. The only other terms in the Lagrangian
involving p and p' are terms in the Higgs poten-
tial, and these can clearly be chosen to be invari-
ant. Since we have already noted that the neutral
boson eigenstates are independent of the exact
form of the Higgs potential, we need not study it in
detail.

The parity-conserving neutral-current interac-
tion in Eq. (2.10) follows immediately from g~ =gs
=g together with Eq. (2.8). Parity conservation in
this model is evidently natural, depending only on
left-right symmetry and on the representations of
the Higgs mesons, which force the neutral-vector-
boson (mass)' matrix to have the form given in Eq.
(5.3).

The discussion of manifest vs nonmanifest sym-
metry breaking in Secs. II and III applies equally
to the X~, X~ and the p, p' models since neither
set of Higgs fields contributes to the fermion mass
matrix. In particular, additional Higgs mesons 5~
and 6~ will be needed in the manifest case to make
~"& heavy, but these do not affect the neutral-cur-
rent sector of the model.

I

VI. CONCLUSIONS

In the context of SU(2)~ x SU(2)s && U(1) gauge the-,
ories several conditions are necessary for the neu-
tral-current weak interactioiis to conserve parity
naturally:

(i) There must be a spontaneously broken. left-

right symmetry to ensure that the coupling con-
stants for SU(2)z, and SU(2)z are naturally equal.
Depending on the choice of this symmetry; the gen-
eralized Cabibbo rotations for the left-handed and
the right-handed fermions may be either related
by complex conjugation or independent.

(ii) Each fer'mion must appear in a left-handed
and a right-handed multiylet and have T» = T~.

(iii) The Higgs system must be chosen so that the
neutral vector bosons have definite parity. The

p, p' Higgs system described in Sec. V achieves
this naturally. The X~, x~ Higgs system originally
proposed in Ref. 1 does not, at least for the defin-
itions of left-right symmetry which we have con-
sidered.

If parity violation is naturally absent in lowest
order, then it must be finite and calculable in high-
er order. We expect the parity-violating effective
interaction to be of order go~ in models containing

and ~z and having 8"z much heavier than
In models without 5~ and 6~, parity would be con-
served in the li.mit of equal quark masses, so we

expect the parity-violating effective interaction to
be of order G~'Am, ', where Am, ' is a difference
of quark masses. The latter possibility is analo-
gous to the Glashow-Qiopoulos-Maiani" mechan-
ism for the suppression of strangeness-changing
neutral currents.

The absence of parity violation in heavy atoms
can also be accommodated in SU(2) && tJ(l) gauge
theories. ' One must put the electron in a right-
handed doublet so that its coupling to Z„is pure
vector. Then the yarity-violating effective inter-
action involves the axial nucleon current; hence it
is small for heavy atoms but is comparable to that
in the Weinberg-Salam model for hydrogen. An

experiment now in progress to measure the parity
violation in hydrogen should therefore distinguish
the two models.
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APPENDIX

We have seen that in SU(2)z, S SU(2)a 3 U(1) mod-
els with lt~(~, 0, 1) and ys(0, 2, 1) Higgs fields,
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(y~) and (Xs) are not naturally equal. In such
models the mixing between the vector and axial
neutral bosons, is renormalized:and hence the par-
ity vi:olation in, atoms is not calculable. However,
we can parametrize this parity violation by its val-
ue at the tree level as a function of (yl, ) and (X„)."
Then such models will remain acceptable provided
that the difference be.tween (Xt,.) and (ys) does not.
have to be -unreasonably small.

For definiteness we consider, the four-quark and-

the six-quark models of Ref. 1-. %'e take

For. A.,= A~ the eigenstates -are
I

A„= .;(W3~~+:.W„'q).+ cos88„,P 2
' &0' ' &P ' P»

&P,P' (A3)

— 1Z„=~ (W „-,W„'„),

where .Z~ and Z& have pure vector and axial-vec-
tor couplings. For A.~ c A~, Z~.and Z& are mixed,
the new 'eigenstates being'

xi =
I I (xz&=

(xe' 0

0 X'e'"i

and define

2X'+2X"
~~ + A~ + 2X"+ 2X'

(Al)

Z i = (Co@)Z~ —(SlIg )Zv,

Z, = (sir@)Z„+(cosg)Z„,
where

1

taQ
2p

1+ (1+4p')'~'

(1-.)-.8
(1-e) sin 8-2e cos 8 (A~ +As' )

The corresponding masses are

(A4)

(A5)

In a heavy atom the dominant parity-violating term comes from the axial electron current times the vec-
(

tor nucleon current. The sum 'of the Z, and the Z, graphs gives for this term

H = —— . ,————(ey" y e)[-, (4cos 8-1)uy u —,(2cos 8-+1)dy d] sir/ cosfi 2 — i 2

4sln ecosO ~ " ~'
lpga SF'Z2 -Si

I

To calculate the weak charge Q~ we need the Fermi constant. For both:of the models in Ref. 1, ,

Q~ 1
2 (1+e) (A~'+ Aa')

'

Then

2(1 —E' ) cosH [(1—E') sin 8 —2E' cos 8] (1+4p )
(1 —e') cos'8 —p'[(1- e) sin'8 —2e cos'8]'

(A7)

(A8)

(A9)

Q~(Bi) =40+ 32 (Oxford)
= -42+ 16 (Washington) . (All)

For small A.~'- A.~' this becomes

Q~ = 2(l-e)~, "—, [Z(l —2cos'8)+fIi']. (A10)
i Al +AS

Note that Q~ is positive (negative) for A~'& La'
(Z~'& Xs').

The preserit experimental limit on parity viola-
tion in bismuth corresponds to'

Then using the parameters of Ref. 1,

& 0.15 (four quark -model)
AI +A~

& 0.36 (six-quark model) . (A12)

While the difference between A~' and A.„'has to be
fairly small, it seems premature to rule out such
models def initely.
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