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The expression l%'„(0)l' = (2ls)'"E„'"(dE„/dn)/4rr', relating the square of the nth s-wave wave function
at the origin to the bound-state reduced mass p, and the excitation energy E„, is derived semiclassically. The
relation is theri used to obtain several sum rules for electron-positron annihilation and an expression for the
contribution of a given flavor of heavy quark to the photon-nucleon total cross section.

I. INTRODUCTION

Nonrelativistic models have been remarkably
successful in describing many properties of me-
sons composed entirely of heavy quarks. A good
deal has been learned by applying simple Schrodin-
ger-equation physics to the charmonium system, '
and one expects the nonrelativistic approximations
used with so much success for that system to be
even more reliable for the recently discovered Y

family. "
It was our interest in families of quark-anti-

quark states that led us to survey' the behavior of
simple quantities such as the excitation energy F-„
of +-wave states and the squares of their wave
functions at the origin g„(0) l' as functions of the
bound-state reduced mass p, and the principal
quantum number n. These investigations were
carried out for potentials of the form V =ar' (Ref.
4) and for a potential V = Cln(r/r, ).s (The latter
has the interesting property that it gives a level
spacing independent of quark mass for which there
is some evidence in Q(i) systems. ') In discussing
behavior as a function of n, the semiclassical
(WKB) approximation' was found to be particularly
helpful. "' A potential-independent relation for
the number of narrow quark-antiquark states be-
low flavor threshold also was derived with the aid
of the WEB approximation. '

In the present article we point out an interesting
relation between lC „(0)l' and E„that is independent
of the potential, as long as that potential is not
singular at the origin. This relation follows from
an application of the WEB approximation entirely
analogous to those of Ref. 4, but the possibility
of a more general result was overlooked there.
We were led to search for a more general result
by an exhortation at the end of an interesting paper
by Farrar et al. , which discusses the seemingly
unrelated subject of sum rules in electron-positron
annihilation. The relation between

I
@„(0)

I
and E„

obtained here in fact implies the existence of a
family of sum rules derived in a somewhat differ-
ent manner in Ref. 9 and in severalotherworks. ""
From these sum rules it has been possible to infer
that the mass m, of the charmed quark is rather
low (see also Ref. 11): rrt, =1.2 +0.1 GeV/c'.
Moreover, the relation for lk„(0)l' permits an im-
mediate (though probably rough) estimate of the
contribution of higher QQ vector-meson states in
a vector-dominance model" for &z(yp), the con-
tribution of a given flavor of heavy quark to the
photon-nucleon total cross section.

The expression for l4„(0)l' is derived in Sec. II.
Section III treats the sum ru)es for electron-posi-
tron annihilation, while Sec. IV is devoted to an
estimate of &o(yP). Section V contains a brief
discussion.

II. RELATION FOR I+„(0)I

For a two-body nonrelativistic bound state with
reduced mass p., it can be shown" that

dU

dr

We shall construct a simple semic1.assical approxi-
mation for (dV/ds")„. This may be written

dVdr = J,' dr(d V/dr) [uw„n(r)]
'

(2)
wKa( )]

where r, is the cia, ssical turning point.
The reduced radial WKB wave function uvIKa(r)

contains a factor [E„—V(r)] ' ' times an oscilla-
tory term the square of which approximately aver-
ages to -2. Then

dV J o dr(dV/dr)[E„— V(r)]
(3)dh „J"o

d~[E V(~)]-t I

The integral in the numerator of (3) is elementary,
as noted in Ref. 4, and yields 2E„' '. We are de-
fining V(0) = 0. This derivation fails if V(0) = —~,
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V

1&(~) =- A ~X/(1+&)"'.
,
0'

but alternative results which apply to certain sin- ' . , where
.gular potentials are noted in Ref. 4.

The quantization condition (10)

J
f 0

dr (2 p[E„.—V(r)] }' ~' = (n ——,') v
0

may be differentiated with respect to +:

(2 ii)" ' dE„"o dr
2 dn „[g„-V(r)]' ~2

(4)

(5)

The quark mass m is twice the reduced mass p, .
The zero of energy ig set at 2m, so that we have
taken M„=2m+ E„, and flavor threshold (2MD for
the charmonium system) lies at 2m+ b..

The sum rules (9) may be tested for the char-
monium system, in which. the narrow states con-
81st only of

But Eq. (5) permits one to evaluate the denomina-
tor in Eq. (3). With the help of Eq. (1), we then
find that

dE
I~ (0)l' =

4n' " dn
(6)

Equation (6) is our central result. ' It is a con-
cise summary of expressions obtained previously
for power-law potentials. ' As an illustration, for
a linear potential (d &/dr) iS independent of the en-
ergy level and hence so is lC „(0)['. Thus 8„'~'
(dE„/dn) = constant, and 8„-n' ', which is the
correct nonrelativistic result.

III; SUM RULES FOR ELECTRON-POSITRON
ANNIHILATION

/

It is expected that the onset of the production in-
c 8 annihilation of new quark flavors will be sig-
naled by discrete narrow peaks (like g, P') in
the cross section. Then, as the threshold for
production of pairs of flavored mesons is passed,
the peaks become broader and eventually merge
into the multiparticle continuum.

It has been noted by several authors' "that one
can write sum rules for leptonic widths of the
narrow states below. flavor threshold. We shall
use Eq. (6) to derive a fainily of such sum rules.

The leptonic width 1'„of the nth 'S, QQ vector
meson may be related to the corresponding square

, of its wave function at the origin": if e+ denotes
the quark charge,

g(3095): 1'„=4.8 +0.6 keV,

g'(3684): 1„=2.1+0.3 keV.

For each value of p ~ 0, we find a range of values
of the charmed-quark mass m, for which Eq. (9) is
satisfied. (We take 2MD =3730 MeV. ) .These
ranges are shown in Fig. 1. Notice the very slow
increase of the quark mass with increasing P.
Very large values of P, which give all weight to
the contribution of the g, do not make sense in
view of the discreteness (and sparse nature) of the
spectrum. [Recall that our discussion is a semi-
classical one, wherein we approximate the sum in
Eq. (8) by an integral. This step is perhaps an
unwarranted exercise in boldness for charmonium.
We are comforted by the expectation that such a
sum will include more states for heavier quarks. ']
The sum rules for small values of P also appear
unreliable, if only for their rapid variatioti with p.
But between P=3 and P=14, the central value of
~, varies only between 1.1 and 1.3 QeV. We are
thus led to the inference that m, =1.2 +0.1 QeV.

A small value of the charmed-quark mass has
been deduced before from related sum rules. "
We have also encountered the poss1bility that m,

1.1 QeV within the context of a potential model

i
;t

lA
I

r„=16~&'e,' fe„(O) l'/M„'.

One may then form a weighted sum over the states
below flavor threshold:

ryM'= J ~"""
narrow
states

Q4 ~2~ 2~3/2 6 ggE1/2m, (2m +E)'"~

N
O

(9

E

0.8 I .I I I I . I 'I I I 'I I I

S~ —= , , Z ~ =(2w)' ~v 2Ip(h/2m),
iarroar
states

P

FIG. 1. Ranges of charmed-quark masses m, implied
by the sum rules of Eq. (9).
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that reproduced features of both the g and T fam-
ilies. ' (This value was favored by the leptonic
width of the P in that model. )

The sum rule (9) for P =3 and h/2 m &~ 1 is ex-
tremely similar to one derived in Ref. 9 in a simi-
lar limit, when one neglects effects due to the
strong interactions. In Ref; 9, however, the term
corresponding to the right-hand side of Eq. (9)
is evaluated with the help of a vacuum-polariza-
tion Feynman diagram. Evidently some of the in-
formation contained therein is of a very general
and simple nature since we are able to reproduce
it semiclassically.

transforming it to an integral over I-'„

~3 /2 Ei /2d@
oo(~P) = ~(~P) -4„.— (4«eo')

2

oo(~P) = ' o(~P).
4 2

(16)

Equation (16) would underestimate the total pho-
ton-nucleon total cross section (& 100 pb) if we
were to ascribe it mainly to the coupling of the
photon to the p and. e families:

(15)

The integral in (15) can be evaluated by elementary
means, and leads to the simple result

IV. PHOTOPRODUCTION OF NEW FLAVORS 3Q
o, (rP) - 4~—x .«(pP) = 50 pb, (17)

The suppression of charmed particle production
in hadron physics is an obstacle to the study of
new-flavor spectroscopy with hadron beams. No
such suppression is seen in electron-positron an-
nihilation above charm threshold, and there are
suggestions"" thBt charmed-particle pairs also
are photoproduced above threshold, possibly at
a rate of several percent of all hadronic interac-
tions. "

There have been numerous estimates of the pho-
toproduction of new flavors, both of charm and of

I

the new flavor that is presumably associated with
the quarks in the Y family. "' %'e would like to
focus on just one of these estimates, "in which the
relation (6) allows the immediate expression of an
electromagnetic cross section in terms of a had-
ronic one. It is not our purpose here to make a
critical study of Inodels of photoproduction.

We express o@(yp), the contribution of the new
flavor to the photon-proton total cross section, as
a sum of contributions of vector mesons U. %ithin
a family, each vector meson is taken to have the
same total cross section &(UP) for scattering on the
proton. Using vector dominance, "we thorn find

&o(rP) = o'o(UP) Q, = ~o(UP) dn
4m 4m

rl'= ~~ & tl An

(12)

Here the nth-vector-meson-photon coupling eM„'/g„
is related to F„by

o~(1'P) = ~ x —,'8 x g((gP) = 5.6 pb, (18)

TABLE I. Cross sections for photoproduction of new
fjavors (at asymptotic energies).

where we have taken o(pp) =o(up) =26 mb. 2~ In

fact, the coefficient of no'(pP) in (17) which is
ascribed to the whole p family is smaller
[3/(8&2) =0.27] than that expected from the first
term alone (4w/g~'= 0.4) in the sum (12). This cer-
tainly indicates the crudeness of our approxima-
tions for light guarks. We expect matters to im-

' prove somewhat as the qIuark mass increases, the
nonrelativistic approximation gets better, and the
semiclassical approximation is more justified.

Let us assume that vector-meson-nucl. eon total
cross sections scale as M, ', where M, is the mass
of the ground state of the QQ system. " Equation
(16) then predicts the results shown in Table I. It
is important to note that the predictions for heavy-
quark production apply far above threshold. ' Con-
siderations such as those in Ref. 23 lead one to
expect the charm production cross section to attain
half its maximum for photon energies somewhere
between 50 and 100 GeV, and the cross section for
the production of pairs of quarks in the Y not to
reach half its asymptotic. value until at least 200
(and possibly as much as 500) GeV. One can im-
prove these estimates of energy dependence some-
what with the help of the photoproduction sum rules

4m e2
F ———

fl 3 2

and to (4'„(0)(' by

, =48~e,'~e„(0)['/~„'.
gn

Lowest QQ
states

Q (1020)

@(3095)

l.4.8 mb

1.6 mb

&q(VP)

6.4 pb

2.8 pb

But now, with the help of Eq. (6), we can evaluate
the integral in Eq. (12) in closed form, first

I

& (9400) 1.74 p b
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derived in Ref. 24, or with- the aid of the more
specific models considered in Ref. 19.

We have derived a semiclassical expression for
the square of the s.-wave bound-state wave function
at the origin, in terms of the level density, There
is another semiclassical expression which incor-
porates the level density. It is the relation be-
tween the potential and the bound-state energies":

(u) . ( )

Substituting Eq. (6) into:this relation, one obtains
a consistency condition

x/

ie(0)i V E

The potential thus derived must reproduce the ob-
served energy levels. While we believe the char-
monium data are too sparse to permit a test of
this relation, bound states of heavier quarks (as
in the Y) may prove rich enough. At present we
are exploring alternative rrieans of estimating
the quark-antiquark potential (if such a concept
makes sense) in a model-independent way with the

help of the inverse-scattering formalism. '6

The relation between sum:rules such as those
we have derived in Sec. III and duality has been
stressed by several authors. 9 " Duality relates
an integral over bound states or resonances to an
integral over the continuum. It is amusing that t:he
result (6), based on a simple semiclassical approx-
imation to nonrelativistic quantum mechanics,
makes contact with the duality between bound-state
and free-quark creation. It would be interesting
to know the degree to which such semiclassical
arguments are responsible. for the success of dual-
i.ty in other contexts.
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