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Radial excitations of hadronic bags
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We investigate the spectrum of radial excitations of the bag model. Breathing excitations of the surface of
the bag couple to the radially excited states of quarks in the bag, resulting in a spectrum of states which
interpolates between the energy levels of the fixed-cavity approximation, We discuss this effect in detail for
a bag containing bosons. We apply our results to fermionic systems and find that the radial excitations of
baryons contain an NP11(1410) Roper-resonance. candidate as a natural consequence of the effects of
breathing modes.

I. INTRODUCTION

I

It is generally believed that hadrons consist of
confined colored quarks and vector gluons. The
bag model is an explicitly relativistic confined-
quark model which in its static-cavity approxima, —

tion' has had great success in reproducing the
spectrum and other properties of the light had-
rons. ' In this approximation the quarks are treat-
ed as modes of a static spheriea. l cavity which
interact among themselves only via, the exchange
of massless vector gluons, the radius of the cav-
-ity being chosen to minimize the energy of the
state.

The cavity approximation to the bag has been
applied to the orbitally excited states of baryons, '
where it was found to give rise to too many states.
In an SU(6) of flavor and spin, the P wave state-s
of the cavity form both a 56 and a, 70. This is in
poor agreement with experiment, a,s a,ll of the
negative-parity baryon resonances below about
1800 MeV can be accommodated in a single 70.

However, the cavity approximation to the bag
model is just that —an approximation. In a more
general formulation of the bag model one would
find that the motion of the boundary is coupled' to
the motion of the qua, rks, a,nd that as the qua, rks
move, so does the surface of the bag. One can.
allow the surface of the bag to undergo small I'-
wave deformations away from a static equilibrium
shape and solve the resulting coupled system.
This calculation has, been carried out in Ref. 5
for bosonic systems and in Ref. 6 for fermionic
bags. Then one finds. that some excited states
of a fixed cavity are in fact translation modes of
the deformed cavity —and are hence spurious
states in the spectrum of mass eigenvalues of
the system. In the baryon spectrum, these states
form an I.= 156. When they are projected out of

the allowed Hilbert space of states, a, spectrum
of I'-wave states is obtained which is in much
better qualitative agreement with experiment. '

In this note we will use the techniques just out-
lined to investigate the lowest radially excited
states of the bag model. Our results a,re super-
ficially similar to the case of orbital excitations
but have important and interesting differences.
We find that if we allow the surface of the bag
to undergo small radial "breathing" oscillations
about an equilibrium spherical shape, these modes
will couple to states where the fj.elds inside the
bag are excited, through the field boundary condi-
tions. Diagonalizing the Hamiltonian. for these
systems, one finds a tower of excitations, the
lowest one of which is lower in energy then the
lowest excited cavity eigen, state. In the P-wave
case this mode is a translation mode of zero en-
ergy (measured with respect to the ground state).
In the radial-excitation ease, this mode cannot
have zero-energy; that would correspond to the
ground state blowing up like a balloon, manifestly
at odds with en. ergy conservation. The state is,
however, pushed to fairly low energy, as the sys-
tem "relaxes" by exciting surface modes.

This energy shift has important phenomenologi-
cal consequences for baryon spectroscopy. The
Hoper resonance NPll(1470) i.s a strong candidate
for a radial recurrence of the nucleon, as indica-
ted by photoproduction and Melosh-type analyses. '
The cavity approximation to the bag predicts both
SU(6) (66, 0+) and (70, 0') radial excitations, both
centered at around 1700 MeV. The resUlting nu-
cleon states are much too heavy to be good candi-
dates for the Roper resonance, and the ordering
of states is generally in poor agreement with ex-
periment.

The inclusion of surface fluctua, tions dramatical-
ly alters this picture. The surface modes can
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only couple to states in the same flavor-spin &nul-

tiplets as the ground state. Hence they can affect
only the 56. They reduce its energy by about 200. ..

MeV with respect to the 70 while leaving the latter
unchanged —yielding an NP11 resonance at about
1410 MeV together with the rest of its multiplet
slightly higher in energy, and a slightly heavier
still 70. The resulting picture is in good qualita-
tive and fair quantitative agreement with experi-'
ment.

-We will begin the actual calculations by consid-
ering the problem of radial excitations of a boson
bag. We have not been able to compute the energy
shift for a fermion bag, but we can investigate
the phenomenology of that system with our bosonic
results. The qualitative form of the results will
be the same in either case: Allowing the surface
to move softens the spectrum of some of the ex-
cited states of the cavity. We will then'present
the details of our phenomenological investigation
of baryon. spectroscopy.

II. RADIAL EXCITATIONS OF BOSONIC SYSTEMS

A general treatment of the motion of the bag in
the limit of small boundary oscillations is pre-
sented in Refs. 5 and 6. We indicate here only
the most relevant steps for the derivation of the
spectral equation governing the radial, spherical-
ly symmetric oscillations of a bosonic bag.

The static cavity is conveniently parametrized
in terms of a pair of conjugate variables: q, the
total charge of the system, and 0, the phase of the
bosonic field ltd(r, t) inside the bag. Precisely,
Q(r, t) is expanded as

e- te(t) 7tr 87rr
0(r, t) = P, (t)csin —+ g g„(t)v 2 sinr

(2.1)

where Q, (t) is real, Q„(t), n =- 2, generally com-
plex, and R is the radius of the bag. In the static-
cavity solution

1
Ql (t) = Coils tall't = 1/ q

2 21/

R = constant = B ' 'Q
v2

(2.2)

8 being the bag constant. To study the small os-
cillations of the system one replaces lt, (t) and
R(t) with new coordinates

4, (t) = 4, (t)—
2&21/

'

r(/) p(t) p 1/4ql/41

v2

and expands then the Hamilton H up to second-
order in all canonical variables except the charge
Q, which is considered to be the large variable
of the expansion. (8 is a cyclic variable and does
not appear in H. )

In this way one finds

2 1/4q3/4
3

j. /2
+&2.a«4q-l/4 4r3 — + p "(t 3+, 3)

Q
Fl+ ll+

n=l

OO

+ g 2(f. '+/t. ')-
n=l

(2 4)

H appears as the Hamiltonian of a collection of
oscillators, with momenta p„, arid coordinates
x„,. These variables are related by a linear can-
onical transformation to the field inside the bag
and its conjugate momentum. The excitation, of
an (n, +) oscillator corresponds to the promotion
of a quantum of the field to a higher radial mode
inside the fixed cavity, whereas the excitation of
an (n, -) oscillator represents the creation of a
pair of quanta of opposite charge, so as to leave
the total charge Q of the system unchanged.

As noticed in Ref. 5, the system is a constrained
system, and the r variable in H cannot be consid-.
ered as an ordinary coordinate. Because the
boundary of the bag carries no kinetic energy,
the momentum p conjugate to r is related to the
field momentum by an equation of constraint, which
in the limit of small oscillations linearizes to

n+1 "' " n+1 '/'
p —p-1/4ql /4t —Q 2 (—)nt „—Q 2 — p = 0

n=l 0 tl =2 1I,
(2.5)

The dynamical effect of the constraint is most easily found as follows. By a linear canonical transform-
ation one takes P itself as a new momentum variable. This requires a change in the canonical coordinates

2(n *1)"'
x -x =x + ( )"2a"'q "" (2 6)

and the Hamiltonian becomes
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412 ~B,/4@2/4
3

+r&B"'q "' Q 2(I„,'+e„.')+Q 2(P. '+e. ')

(2 7)

I~

I
~

n~~

~

I
~

n=l n-"2

N N I

—2rB' Q
' 'P (x+()' '(-) x„.rQ (x —()' '(-)'x„+4r'(BJQ)' (N+'()I,

n=1 n=2

where a cutoff has been temporarily introduced to remove a formal divergence. The constraint P= 0 im-
plies the consistency condition

(H, P)=0,
which gives

N N

Z(n+ I)' '(-)"x„,+ Z(n—
' 4(N+ 1)

1)1/2( )n~

(2.8)

(2.9)

Substituting back into H one finally finds

B1/4@1/4 Vr2 Bl/4q -1 4/(4 2w "n
f ..'+~„.')+ g (P„'—+ e. ')

n=2'

N

(yg+ 1)1/2( )nX + ~ (& 1)1/2( )nX )2-

4(N+ 1)
(2. 10)

n(n+1)"'( ).
-(O'C„, = —n2C„, +

2 ( 1)
C

(

with

(2.12)

C = g (n+ 1)'/'( —)"C„,

It is apparent that the net effect of the motion of the
the boundary is to produce a coll'ective coupling
among the modes of the field.

H is diagonalized easily by looking for solutions
to the equations of motion of the form

(2.11)

The equation d 2x„,/dt2 = (H, (H, x„,j'I gives immed-
iately

~,' =0.645 77. . . ,

m3 = 2.53968. . .
Also, Eq. (2.12) can be solved with ~„"=)2, C = 0.
We find tIlerefore that in the limit of small radial
oscillations, the bag is still described by a col-

. lection of oscillators, but with characteristic
frequencies given by the sequences ~„' and ~„".

The problem of analyzing the breathing modes
of a bag containing fermions is much more diffi-
cult than the bosonic case, for several reasons.
Recall that fermion fields obey linear (n„ is an
inwardly directed normal to the bag's surface)

n=1

N

+ Q (n —1)' '(-)"C„. (2.13)

in„y"(t)= (t)

and quadratic

(2.16)

If C B-'0, evaluating C„, from Eq. (2.12) and insert-
ing it into Eq. (2.13), one finds the spectral equa-
tion

N

1=g 2 2 —N.
n=1 n —~ (2.14)

Notice that the cutoff can be removed, and Eq.
(2.14), in the limit N —~, becomes simply

-)T~ cot()l&u) = 1, (2.15)

which is solved by a sequence of eigenfrequencies
~„, n=1, 2, . . . approaching n —& as n-~. Numer-
ically one finds

n„s ((l)(i)) =2B (2.17)

boundary conditions at the surface of the bag. The
linear boundary condition involves velocities and
therefore cannot be imposed as a holonomic con-
straint on the degrees of freedom of the system.
Moreover, the quadratic boundary condition re-
lates the velocity of displacement of the surface
of the bag to the gradients of the fields. But be-
cause Eq. (2.17) contains the velocities (and not
the accelerations) of the boundary coordinates,
these cannot be taken as independent canonical
variables and should be expressed in terms of the
field degrees of freedom. Finally, fermions simp-
ly do not have any "large" quantum numbers which
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one can use to characterize a zero-order solution.
These facts in'troduce complexities which we

have not been abl. e to master satisfactorily. We
expect, however, that thephysical effects of the
motion of the boundary of a fermionic system will
be analogous to those which occur in the bosonic
case. This expectation is supported by the P-
wave analyses of bosonic and fermionic systems
of Hefs. 5 and 6. Therefore we will proceed,
a.da,pting to the more rea. listic system of qua. rks
and gluons our calculations in the bosonic sector.

III. BARYONIC PHENOMENOLOGY

The lowest radial excitations of the bag are
those with two quarks in the ground (lS,&,)
state and one quark excited to a (2S, &,) cavity
eigenmode. Their wave functions are easily con-
structed by coupling together three-quark flavor,
spin, and space wave functions to form totally
symmetric combinations. Explicit forms of the
wave functions may be found in Ref. 4.' Thehe
radial excitations form a 56 and a 70 in the SU(6)
of flavor and sp,in.

In. the absence of gluon interactions, states of
nonstrange quarks are good SU(6) eigenstates.
The wave function of any quark in an SU(6) eigen-
state is a linear combination of (1S,&,) and (2S«,).
However, these states are not eigenstates of the
Hamiltonian if one (or two) of the quarks are
strange, since for any n, &d„(strange) c&a„(non-
strange). A and E radial reeurrences are mix-
tures of pure 56 and 70 states in which the strange
quark lies completely in a 1S or a, 2S cavity eigen-
state.

Gluon-exchange contributions to the Hamiltonian
are shown in. Fig. 1. They are two kinds: direct
[Fig. 1(a)] and exchange [Fig. 1(b)] contributions.
The exchange contributions in the (1$»,)2(lP, &,)
calculation were found to be small and we expect
them to be negligible here too. Therefore we
keep only the direct-interaction terms and write

1S

IS

(0)

2s 2S

)S-—~ ~ 2S

2S' IS

(b)

FIG. 1. One-gluon-exchange contributions to the en-
ergy of (1$&y2) (2$&g2) cavity eigenstates. (a) Direct
interaction. {b}Exchange interaction.

the NP11 states are poor candidates for the Roper
resonipce: They are too heavy and too nearly .

degenerate. Moreover, the physical states are

NP11(1543) = (I 56&- I7o&),
2

NP11(1646) = ( I
56&+

I
70)),

1 (3.2)

the heavier one having a vanishing photoproduction
matrix element. ' As both the lighter experimen-
tally observed NPll states, the N(1470) and
N(1780), are seen in photoproduction experi-
ments, " the NP11 bag states do not seem to be
good candidates for the states of experiments.

However, this is not the whole story. In anal. ogy
with the boson calculation, we expect that the
coupling of quark radial excitations to surface
breathing modes will lower the energy of radially
excited states by an amount ~. Since the brea, th-
ing-mode states are excitations of the surface of
the bag, and do not involve the quarks' flavors or
spins, their SV(6) structure is a 56. Thus, they
can. couple only to the radially excited 56 and not
to the VO. We are led naturally to the result that
the radially excited 56 should be driven down in

'energy, while the 70 should rema. in centered at
about 1700 MeV.

We include this effect in our phenomenology by
8 n,

AEI, = ——' o,. ~ o,. M, , (m, R, m,. R),
f&j

(3.1) 2.0

where n, is the color coupling constant, x,/R is
the eigenvalue of momentum of quzrki, and I„.
is given by Ref. 3. Gluon matrix elements be-
tween the various eigenstates may be obtained
from Ref. 4.

The diagonalization of the Hamiltonian which
includes quark kinetic energies, gluon. correc-
tions, and the zero-point energy Z,/R is shown-
in Fig. 2. The four parameters of the theory, B
the bag consta, nt, Z„n„and m, the stra, nge-
quark mass, are fixed by the fit to the light had-
rons of Ref. 3. As Bowler and Hey" have noted,

g I.e—
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FIG. 2. Spectrum of (1$&~2) (2$&y2) bag states in the
static-cavity approximation. States are labelled by
their angular momentum and flavor.
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TABLE I. Mixing matrices. between fluctuating-surface
bag eigenstates and SU(6) eigenstates, wit5 &=0.3547t.
SU(6) eigenstates are further labeled by an SU(3} quan. —. ...

tum number.
I

)vP13(1756) =
I 70, 8 &

(
ÃPll(1603) ., 0,.09 0.996 i 56, 8 &

)VPll(1410) 0.996 —0.09 [ 70, 8 &

&P33(1572): =
I 56, 10 &

&P31(1652)' =
I 70,. 10 &

&P03(1910) =
I 70, 8 &

Bag, 6 = I. I I-

««/ Experiment.

I: I

A X

FIG. 3. Spectrum of (1S~y2) (2S&y2) bag states with
the inclusion of boundary fluctuations. States are
labeled by their angular momentum and flavor. Shaded
regions indicate the positions of established baryon
resonances as given by Ref. ll; the number of asterisks
indicates the trustworthiness of the state's existence,
as quoted by that reference.

adding a new term to the effective Hamiltonian:

(56 IH„„,„,I
56) = —A/It,

&70 IH„„,„„,, I
vo) = 0,

&voice„„,„,l56) =0.
(3.3)

(Taking & to be a constant is equivalent to ignor-
ing quark mass effects in the derivation of Sec.
II.) We may take A from the boson calculation

& = 0.354m = i.11, (3.4)

A calculation of the spectrum of radial recur-
rences in the bag with the former va, lue for &

is shown in Fig. 3. We also show the positions
of currently accepted experimentally observed
positive-parity baryon resonances for which our
states are candidates. " Table I gives the mixing
angles of our states with respect to the SU(6)
eigenstates of Ref. 4.

We see that the fit is in good qualitative agree-
ment with experiment. Our Hoper resonance has
a. mass of 1410 MeV. The -ordering of states is
in agreement with observation; however, our high-
er NP11 a,nd both & states are a, bit too light. The
lightest AP11 and ZP11 are nearly pure 56. The
heavier A's and Z's are mixtures of SU(3) multi-

which is remarkably close to the value which would
be obtained if it were fitted to the mass of the
Hoper resonance:

4 =1.05.

&"1P01(1796) 0.17 0.83, .-0.53 56, 8 &

I
AP01(1694) I=

I
0 27 0.48 0.84

(AP01(1537}) (0.95 -0.29 0.14) (I 70, 8 &

ZP13(1870) 0.25 -0.97 (I 56, 10 &

~P13(168;) -0.97 -0.25 ), I 70, 8:

(ZPli(1788)) (0.20 -0.94 0.28) (i 56, 8 &)

I
»»(»39) I=

I
0 11 -0.26 -0'96'll

1
70, 10

(ZPll(1579)) (0.97 0.23 0.05) (', 70, 8:/

plets, due to the effects of the quarks' kinetic
energies, as we have expla, ined above. The heav-
iest experimentally seen states of Fig. 3, in. par-
ticular the AP31(1910), may be members of dif-
ferent, heavier SU(6) multiplets. That being the
case, an additional, lighter &P31 is required of
experiment by the model.

Qur solution to the radial-recurrence problem
is still incomplete, since we have not yet com-
puted ~ for fermions. Nevertheless, the near
equality of calculated and observed Hoper masses
is a strong encouragement that the general pro-
gram is a success.

We see that, as in the case of the P-wave baryon
resonances, the inclusion of boundary fluctuations
has resulted in a marked improvement in bag
spectroscopic calculations over the cavity ap-
proximation. We may draw two conclusions from
our analysis. First, the static-cavity approxima-
tion is a poor repr'esentation both of the spectrum
of excited states of the bag model and of the spec-
trum of excited states of 'baryons. Allowing the
shape of the confining region to fluctuate results
in a new calculational approximation whose spec-
troscopy is in much better agreement with obser-
vation. Second, we expect that the sort of effects
we have described here will be found in any sys-
tem in which the confining mecha, nism ha, s dynam-
ical degrees of freedom. The spectrum of states
of systems in which the confining degrees of free-
dom are excited may be quite different from the
spectrum which arises only from the excitations of
the confined quarks.
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