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Lower bounds to the pionic contribution to the anomalous magnetic moment of the muon are derived. The
bounds incorporate alI the existing reliable experimental data on the electromagnetic form factor of the pion
or, at will, only a part of them. They also incorporate the phase of the mm elastic P wave and the
theoretical analyticity and normalization properties. The procedure developed in the paper allows a proper
error analysis; that is, it allows the assignment of an uncertainty to the bound which depends upon the
experimental errors of the data used. A reliable estimate of the bound gives a„(m+m ) & (46, 1+4.0) X 10- '.
Comments on this result and other possible estimates are made.

I. INTRODUCTION

One of the most important sources of theoretical
uncertainty in the computation of the anomalous
magnetic moment of the muon is the hadrcmic
contribution to the photon propagator. In spite
of its relative smallness compared with the total
anomaly, the hadronic contribution is responsible
for approximately three quarters of the theoretical
error. " As me shall see later, the computation
involves all the intermediate hadronic states
weighted in such a may that the low-energy states
are strongly enhanced, so that the two-pion state
gives the main part of the hadronic contribution
to the anomaly since it dominates over all other
intermediate states in that region.

Thus, a more accurate knowledge of the two-
pion contribution is necessary if me want to reduce
the theoretical uncertainty of the muon anomaly
and compare the computed value with experiments.
The increasing accuracy of present and future
measurements' makes the effort of refining the
analysis of the tmo-pion contribution relevant.

At the same time, this analysis leads to the
study of mathematically interesting problems
related to extrapolation of analytical functions
and, in general, to the exploitation of analyticity
properties in order to optimize the information
that can be extracted from a partial (experimental)
knowledge of functions whose analytical structure
is known.

To make clear the experimental and theoretical
input used in deriving the bound, let us briefly
recall the expression of the hadronic contribution
to the muon anomaly a„(had)

the form

z(t) =
x'(1 —x)

x'+ (1 —x)t/m„2

=2-4( y4g(2(-1) ln4$

6(2 1 (1 t 1)l/2

(1 ]-l)1/2 1 (1 ( 1)1/2

with $ = t/4212~ + 1~

But o„,d(t) is a sum of terms, each one of them
being associated with a possible hadronic inter-
mediate state

o„,~(t) = o'„, (t) + v„(t)y ~ ~ ~

so that, owing to the positivity of the cross sec-
tions and the kernel K(t), we can write

a,(had) =- a, (11'm )

(1.4)

In conclusion, the two-pion contribution to the
muon anomaly depends on the squared modulus
of the electromagnetic form factor of the pion
in the following way:

a,(v'v ) = dt p(/) iF(t) i2 (1.6)

dto... (t)K(t).

The cross section o„, (t) is related to the elec-
tromagnetic form factor of the pion F(t) through
the expression'

'20

a„(had) = —,— dt cr„~ (t) IC (t),
4mg2

with

where a„,„(t) is the total cross section for the
reaction e+e" hadrons and the kernel Z(t) has the asymptotic behavior of the function p(t) being
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The problem we face is to get a lower bound
for the quantity a„(v'v ) using the following avail-
able information:

(i) The form factor F(t) is a real analytic'al
function in the cut t plane from. 4+i, to infinity.

(ii) It is normalized at t=0 to the charge of the
pion in units of e, i.e., F(0).= 1.

(iii) The phase of F(t) is known at values of f
in which the only intermediate hadronic state is
the I= I two-pion state. In that case, the Watson
theorem' ensures that the phase of F(t) coincides
with the mv P-wave elastic phase shift up to in-
t.cger multiples of z:

phase (F(t))=6', (f)+ri, .'~ =0, +1, ~ ~ ~ . (1.9)

(iv) The modulus of the form factor IF(t) I
is

quite accurately known on a certain range of the
timelike region (t&4m, ') from m asurements
of the reaction e+e -g p . This range covers
essentially the p and m regions and knowing this
allows us to compute directly a piece of the
integral in (1.4).

(v) The form factor is known on a certain space-
like range from pion electromagnetic experiments
eQ - e-nm+.

A lot of work has been devoted to the problem
of bounding g (m v ) (Refs. -5-7), but ln each case
sorn. e of the theoretical properties or experimental
information listed above are missing. On the
other hand, the important problem of the errors
in the experimental input and its repercussion
on the bound has been forgotten or incorrectly
treated in almost all works dedicated to this
subject. However, the error analysis is crucial
because the information used as input is, in
principle, more than sufficient- to deterroine com--
pletely the pionic contribution to the muon anomaly
and pot orily a bound. Therefore, the problem is
overdetermined if the experimental input is exact,
and only upon taking th error-s into account are
all the pieces of information compatible, Qn the
other hand, to. give a meaningful estimate of the
bound requires control of its dependence upon
slight modifications in the input compatible with
experimental errors, that is, it requires a cor-
rect analysis of the errors of the data used. '

We think that the present work permits the
incorporation of all the available theoretical and
experimental information. The bound is given as
an explicit functional of the experimental input,
which appears in the form of averages of known.
quantities weighted with smooth functions. This
property allows the performance of a proper

estimate of the errors affecting the quanti. ties which
appear in the bound, respecting the "smoothed"
nature of the experimental data and the statis-
tical meaning of the experimental errors.

Finally, it is worthwhile pointing out that the
approach preserited in this paper is universal,
in the sense that it can still be apphed when one
or several pieces of the experimerital input are
eliminated or some more information is added.
We shall illustrate this point with one particular
example in which all information about the modulus
of the form factor i.n the timelike region is ig-
nored.

This paper is organized in the fo11owirig way:
In Sec. II we perform all the mathematical ma-
nipulations leading to the expression of the bound.
In Sec. III we discuss the experimental input and
the choice of a class of functions necessary in
the ccmputation of the bound. Finally, in Sec.
IV we describe and comment on the results, and
we compare ther@ with preceding works.

J(t) = exp-
4m. 2

where

5(t') = 6,'(t') for 4m, ' ~ f' ~ f, ,

6 (t') - 0 when t' -~ .

(2.1)

(2.2a)

(2.2b)

So the phase 5(t') coincides with the P-wave
mz elasti(: phase shift and consequently with the
phase of the form factor F(t) on the range (4m, ', f, )
and is arbitrary above t, with the only restrictioii

o q~na to t~

R, t (CeV~).

FIG. 1. The analytical structure of the form factors
E(t) and G(t). E(t) has a cut from 4m, 2 to ~ and Q(t)
from t& to ~. On the range (4'~, t&) the phase of the
form factor is assumed to be known, " on (to, t&) modulus
and phase are known and from t& to t& only the modulus
is known.

II. THE BOUND

First of all, we consider the problem of the
phase of the form factor. Let us assume that
the phase is known from threshold to a certain
va, lue of t, t =f, (see Fig. 1). That is, we assume
that the only intermediate hadronic state present
at energies lying on the range (4m, ', f, ) is the
J= 1 two-pion state. In order to incorporate that
information, let us build up the associated Omnes-
Muskhelishvili function'.
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of vanishing at infinity. That implies that J(t)
has the phase of F(t) up to f = f, and then it goes

'asymptotically to a constant

subtraction is needed.
Thy normalization property provides a known

subtraction constant at t=0, so that we c'an write

J(f) ~ exp
t+ 0O

(2.3) Re G(t) =1+ — df'
7T

1

(2.7)

Now the function

G(f) -F(f)/J(f), (2.4)

which is a kind of "normalized" form factor,
is analytical on the whole complex t plane except
for a cut going from f, up to infinity. Since J(t)
can be computed for a,ll values of t, G(t) is known
wherever F{t) is known. Moreover; the. choice
of the subtraction point in the exponent of J(t)'
(2.1) is such that J'(0) = 1 and the normalization
property F(0) = 1 translates without any change
to G(t).

Therefore, the information about the phase of
the form factor is completely incorporated when

G(t) is assumed to be analytical anywhere except
for a branching point at t =t, . We can now re-
express a„(v'v ) in terms of the "normalized"
form factor G(t):

Y

where the integral has to be-understood in the
principal-value sense when t &t,.

Dispersion relation (2.7) contains the analyticity
properties of the modified form factor G(t') and

'

therefore is one of the main tools in finding con-
straints on a (v'v ). In fact, (2.7) is quite dif-
ficult to handle as it stands, owing to the mixed
nature of the constraint, local for the real part
and integral for the imaginary part, and also
owing to the presence of the singular Cauchy
kernel. One way of handling analyticity con-
straints which has been successfully used in an-
other context' consists in considering averages
of the dispersion relation (2.7) rather than the
dispersion relation itself. To do that, let us take
a known arbitrary smooth weight function &0(t)

and let us replace (2.7) by

where

df q(f)
i
G(f) i', (2.5)

(2.6)

dt (u(t) (Re G(t) —1)=, dt' ~(t') Im G(t'),

(2.6)

where ~(t) vanishes for values of f between t= 0
a,nd f =4m, ' and 00(t') is

The asymptotic behavior of J(t) (2.3) ensu'res
that the new functions appearing in (2.5), q(t) and

G(t), behave asymptotically just as the old ones
p(t) and F(t), respectively.

We can assume, without loss of generality,
that F(t) and consequently G(t) satisfy a once-
subtracted dispersion relation. Indeed, if a dis-
persion relation for G(t) needs more than one
subtraction, then the integral (2.5) giving a„(v'v )
diverges. As we look for a lower bound, that
asymptotic behavior cannot be assumed and there-
fore we need to consider only unsubtracted or,
at most, once-subtracted dispersion relations.
In fact, the function q(t) in (2.5) is strongly peaked
at low energies so that the form factor G(t) which
will give the lowest value for a (v'v ) will saturate
the maximal asymptotic behavior allowed by the
convergence of (2.5), i.e., it will require a sub-
traction. So we shall start by writing down a
once-subtracted dispersion relation for G(t) and,
as a ~atter of fact, we shall see later on that
even if we start by assuming that G(t) satisfies
an urisubtracted dispersion relation, we are
led to the conclusion that a lower bound cannot
be reached with such an asymptotic behavior,
the saturation of the bound occurring only when

/

the asymptotic behavior of G{t) is such that a

(2.9)

g (v+~-) g (0) + g (1)

where

(2.10)

Of course, the averaging of the dispersion re-
lation weakens the constraints contained in it,
but in exchange we obtain something much easier
to handle: one integral sum rule for the form
factor with nonsingular kernels. 'The important
point is that, as shown in, it is possible to re-
cover all the constraining power of the-dispersion
relation (2.7) by va. rying, at the end, the arbitrary
function ur(t) in a sufficiently large functional
space. For the moment w(t) will remain a. fixed
arbitrary function and the only theoretical cons-
traint on G(t) to consider is (2.8).

Let us now assume that we experimentally
know F(t), and therefore also G(t) via Eq. (2.4),
on a spaeelike range running from t=t~&0 up
to f =0, and the modulus ~F(t)

~

at values of f
from f =t0 to t =t., (f» t, &4m, ', F'ig. 1). Since the
information on the modulus allows us to compute
a piece of the integral (1.6) giving a„(v'v ), let us
define clearly the quantity to bound by splitting
the integral in (2.5) into two parts:
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'dtq(t) fc{t)f', (2.11a)

dtq(t) fc(t) f'ia,"'= dtq(t) fc(t) f'.
(2.11b)

Since a„"' can be directly computed by injecting
the measured values of fc(t) f

into (2.11a), the
only quantity to be bounded is a,"' which contains
the very low energy and the asymptotic contri-
butions to a (v'1& ).

Before applying the I agrange-multiplier meth-
od to our problem, it is convenient. to define

Q[~] =
tp &p2(t)

q(t)
+

&»2{t)+ a&2(t)

q(t)
(2.17b)

R[&d, M] =
'

dtM(t) f~(t) f

P[&d, Ej = 2 L, Q[&d]+ sign(L)R[«1, M], (2.16)

where the functionals P[&u, E], Q[~], R[&p, M] have
the following form

0

P[&d, F] = dt &p(t) G(t) — dt &p(t), (2.1Va)
tM

n (t) = Re G (t),

p(t) =1m G(t), p(t) =ofort&t, .
The pr oper Lagrangian is

tp
dl q(t) n'(t) + dt q(t) [n'(t) +p'(t)]

tftff
2 f2

t2
, dt x(t)[n'-'(t)+ p'(t) —M'(t)]

to

(2.12a)

(2.12b)

t2
dtM(t) f~'(t)+&d'(t)]' '. (2.17c)

(2.18)

Since Q[&d] and R[&p, M] are positive, Eq. (2.16)
has a solution only if

f P[&d, F]
f
&R[&o,M] .

When condition (2.18) is fulfilled, the solution of
(2.16) is

ca

+L) dt &p(t) [n(t) —1]— @~(ply(pI;
L I P[&d, F] I -R[pp, M]
2 Q[ &p]

6g 6g
6(n(t)) 6(p(t)) (2,14)

which imply that Z(t) must be positive in order to
have a lower bound and that the functions n(t),
P(t) saturating the bound a,re

n(t)=- 2, 4m, 2 &t&t,
L&d(t)

2q t

n(t) = -M(t) x sign (L &p(t)), t, & t & t,
M(t) &p(t)n(t) [. 2( ) 2(t)] 1/2 x sign(L)

M(t) &p(t)
p(t) = . &t2 x sign(L)

(2.15a)

(2.15 )

t &t&t

(2.15e)

The value of L can be explicitly worked out by
introducing expressions (2.15) into the constraint
(2.8). This gives

(2.13)

where M(t) is the experimentally known modulus
of G(t), L is the Lagrange multiplier associated
with the constraint (2.8), and X(t) is the Lagrange
multiplier function associated with the constraints
coming from the knowledge of fc(t) f.

It is straightforward to write down and solve
the Lagrange equations

I

&» (IP[cu, F] I -R[&d, M])'
Q[~]

(2.21)

which is our final expression for the bound. As
remarked in the Introduction, it is given as a
simple algebraic function of the quantities P[&p, F],
R[&p, M] which are smooth averages of the form
factor and its modulus on the regions, respective-
ly, where they are experimentally known. There-
fore, it is easy to compute the errors on P[&d, E]
and R[&p, M] coming from the errors of the ex-
perimental data and, consequently, to determine
the overall uncertainty on a'" associated with

For functions &o(t) not satisfying inequality
(2.18), the solution is L =0. Then the signs of
n(t), P(t) on the range (t„t,) are not fixed by
Eqs. (2.15b) and (2.15c), and it is possible to
saturate the constraint (2.18) by choosing proper-
ly the signs on that range and taking out n(t)
= p(t) =0. Therefore in those cases the analyticity
constraint (2.8) is trivially satisfied and does not
require the form factor G(t) to be different from
zero on the ranges (4m, ', t,), (t„~}and the bound
for a„",' is zero.

In concusion, nontrivial bounds for a„"' can be
obtained only if inequality (2.18) holds. In that
ease, from (2.11b) and (2.15), we get

a&1) ) 1 I 2
Q[&p] (2.20)

and introducing the value of I. given in (2.19)
into (2.20)
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the experimental errors in the -iriput. By assuming'
that uncertainty to be small, it is approximately
given by the following expression:

g {1) 1 f26a'" =2 ——"-- (hp[~, I]+&R[co,M]).
q[(u]

(2.22)
I

The control of 4a"' is a crucial point. Indeed,
it is perfectly possible to find functions &u(t)

:naking the bound (2.21) as large as we want, that
meaningless result being a consequence of the
overdetermined nature of the problem. Qf course, ,

'

sue:h functions & (t) also give nonsenSe results for
4a„"'. In order to give a meaning to the bound,
it is then necessary to combine the excess in
the input with the experimental uncertainty ac-
companying that i.nput. .

Since 4a"' measures the stability of the result
under variations in the input of the order of the
experi. mental errors, a meani. ngful result is ob-
tained if we require the function v(t) to produce
smaD values for the quantity 4n{". Qn the other
hand„ that gives a reasonable estimate of the
uncertainty of the result coming from the ex-
perimental errors in data.

Therefore, we shall restrict ourselves to func-
tions &o{t) satisfying inequality (2.18) and making
hei '," in (2.22) smaller than a fixed value. Then
we shall vary a&(t) within the class of funci, ions
eai.isfying those two conditions in order to optimize
the bound.

To conclude this section, let us point out that
a, similar analysis can be performed if. it is as-
sumed that G(t) obeys an unsubtracted dispersion
relation. In that case, the normalization con-
dition enters as an independent constraint. %hat
is found is that the solution of the Lagrange equa-
tions for the imaginary' part. P(t) grows asymp-
totically. Therefore, the unsubtracted dispersion
relation diverges in contradiction with the starting
hypothesis. That means that the function that
saturates the lower bound is certainly not to be
found-within the class of functions satisfying an
unsubtracted dispersion relation, according to the
c6'nclusion of the qualitative arguments developed
in t.he first section.

III. EXPKRIMENTAI. INPUT AND VfEIGHT FUNCTIONS

%e. have already explained in the preceding
section that the phase of.the form factor is au-
tomatically incorporated when the I'-wave wm

phase shift contained in the function J'(f) (2.1)
is subtracted. As poi:nted out in Hef. 10 that
phase is experimentally fixed with a high ac-

hen the scattering length is fixed. On
the. other hand, analyticity, unitarity, and cross-

ing, plus the experimental resu-its. for other g7t

partial vraves, permit us to conclude that the. I'-
wave scattering:, length;is. a,'=. 0.04m, ' with an.
extremely small uncertainty. "

In order to fulfill the required threshold behavior
and asymptotic vanishing for 6(t), we parametrize
that function in the following way:

I

q~' eot5(t) = --;+q'Q 'A';q", (3.1)
fl ~

t

where q'=(t —4m, '. )/4 and A„&0.: The, coefficients
A,. are fitted to the experimental. P-wave phase
shifts for 'each fixed valise of- tPe scetterj. ng length, .
In the following, we shall always a.ssurne that a,'
has been fixed at u, = 9.04m -' and-only 3t the end
of the: paper shall we comment .On the. results. ob-
tained when the scattering. length is varied.

As pointed out. before, . the uncertainty on that
phase when the scattering length is fixed is ex-
tremely small compared to that of the. modulus of
the form factor, and consequently we shall. con-
sider it as exact.

To finish with the phase specifications, we shall
assume that the phase of the form factor coi.n-
cides with the I'-wave ~7t str ong phase shift from
threshold to t, =m '. In that range we are sure
that the only intermediate hadronic state is the
I= 1 two-pion state so that the modified form fac-
tor G(t) is analytic in the complex f-plane except
for a cut from t, up to infinity.

The modulus of the form factor is quite accu-
rately known over a range of intermediate en-
ergies which covers essentially the o and a
meson region. For the sake of definiteness, and
in order to compare with preceding resu.'ts, ' we

shall take that range to go from to= 0.3 GeV' up
to t, =1.0. GeV'. There are several pararnetrsza-
tions which well describe, the data in that re-
gion. " " All of them, in spite of considerable
analytical differences, give almost exactly the
same values for the modulus of the form factor
on the region between to and t, . So we shall use
hereinafter the Benaksas et aL,"parametrization.
Introducing it into formula (2.11a), we get for the
intermediate energy contribution to the muon
anomaly

a" =- (38.0+ 3.0) x 10 '

the other parametrizations" '" giving almost ex-
actly the same: value for a ~'~. (For insta. nce, we

obtain a(~o) = 37.9x I0-9 wheB the parametrization
due to Barger et al."is used. ) The estimation of
the error appearing in (3.2) has been made ac-
cording to that performed by Barger pt a/. in
Ref. 14.

For the computation of averages on ~E(t)~ we
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take the very conservative prescription of a 10%
error on the modulus (not on the square of the
modulus) at every point t where it is assumed to
be known. Therefore, owing to the positivity.
of the functions appearing in the definition. of
R[&u, .M], we simply have

b,R[&u, M]= 0.1xR[~,M], (3.3)

0

On the spacelike region, we assume that F(t) is
known from t„=-4.0 GeV' to zero according to
Bebek et a/. " All data on the spacelike region
have been collected in Ref. 15 and a global fit has
been performed. Thus, in order to compute aver-
ages on F(t), i.e. , P[ap, F], we take the simple
pole parametrization given in that paper with a
constant error of 5% at every point on the range
(t„., 0). The relative error on the first term in
(2.17a), which is the only contribution to P(cu, F]
containing F(t) in the spacelike region, will be in
general larger than 5% due to the nonpositivity of
the weight function e(t):

ra(I)=g c,P, (1 ——,I„-I-02t

r-o
(3.5a)

(u(t}= — „Q d P„(z), t&4m, '
m=0

(3.5b)

tions &g(t) that we are going to insert in (2.17) to
numerically compute the bound.

If we want to avoid divergences, we must re-
'quire the functions ~(t) to vanish asymptotically
at least as t ' in order to compensate for the
asymptotic behavior of G(t} allowed by the dis-
persion relation.

Notice that in that case &u(t) has the same asymp-
totic behavior up to logarithms, and the asymp-
totic behavior of the form-factor solution of the
Lagrange problem (2.15d) agrees with the starting
hypothesis of a once-subtracted dispersion rela-
tion for G(t). The actual parametrization we have
chosen is

AP[&u, F]=0.05 x dt's(u(t)G(t)i . (3.4)

The assumption of a 5% constant uncertainty on

data is a crude but realistic estimation. We have
performed a more elaborate estimation with
errors whose value depends on t and the result is
practically unchanged.

Finally, we have to specify the form of the func-

t —4m, '- t,
t —4', '+ t,

(3.6)

The P„P appearing in (3.5) are Legendre poly-
nomials and t„t~, t„c„d~are constants. The
function v(t) can be straightforwardly computed,
the result being

29(t)= ~ c —5 + —Q 1-—
l=0

+ p d t(t, t.)q (z)+ t,-(t+t,)q.(z. ) t,(t+t.)q.(z,-)
2

wt t~ —t, t+t, t+tI, (3.7)

with

t„+4m„'+ t, (3.8)

IV. RESULTS AND COMMENTS'

First, let us forbid the quantity Aa„' to be
greater than l x IO '. That will produce a total

All components entering into the computation of
the bound have been described. The only thing to
do is to insert them into (2.21) and (2.22), to fix
a maximal allowed uncertainty Aa „' and then to
vary the function +(t) (by varying the constants
t„ t~, t„c„d ) in order to optimize the bound.

uncertainty on the two-pion contribution to the
muon anomaly a„(w'm ) equal to 4x10 ', better
than the present phenomenological estimates. "'"
For a scattering length a~ =0.04~, , the result
is a„' ~ 8.1xl0 '. That value combined with the
value directly computed for a~" gives a total re-
sult

a&(m'v ) ~ (46.1+4.0)x10 ', . (4.l)
I

the function ~(t) producing the bound (4.1) being
determined by means of the parameters listed. in
column A of Table I. Intermediate results for
averages I', g, Q can be found in Table II.

Raszillier et a/. ' have recently obtained for the
same quanitity a bound of 42x10 ' which is to be
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TABLE I. The parameters defining the function cup)
according to Eqs. (3.5). Columns A and. B correspond
to bounds (4.1) and (4.2), respectively, where all the
information has been incorporated. Columns C and D
correspond to the case in which the timelike data on the
modulus of the form factor have been ignored.

A B. C

Q 1

~a

ty

&c

Cp

Cf

C2

C3

dp

d2

d3

d4

6

dv

S

0.04
0.2
0.4
0.6
1
2.829

-4.854
0.624
0.639

-1.189
0.619
0.206

-0.831
0.600

-0.458
0.371

-0.143

0.03
0.2
0.4
0.6
1
2.330

-2.124
-1.772

0.537
-0.921

0.506
0.241

-0.893
0.528

—0.244
0.092

-0.047

0.04
0.25
0.5

- 0.6
1
3.532

-4.878
—0.279

0.647
-0.994
—0.213

0.903
-0.726

0.042
0.055

—0.043
0.143

0.03
. 0.25
0.5
0 ~ 6
1
3.583

-4.806
—0.433

0.601
-0.947
—0.141 .

0.880
-0.798

0.037
0.179

-0.071
0.052-

TABLE II. We summarize the final results in rows 6
and 7 and the intermediate quantities P, R, Q defined
in (2.17) in the first five rows. The meaning of columns
A, B, C, Disasin TableI.

A

-4.28
0.16
0.65
0.07
1.63
8.1
1.0

-3.98
0.13
0.55
0 ~ 06
1.25
9.4
1.0

-3.47
0.18
0
0
0.42

28 ~ 8
3.0

-3.48
0.17
0
0
0.39

31.1
3.0

compared with (4.1). The difference between the
two values might be attributed to the fact that the
phase of the form factor has not been considered
in Ref. 6. On the other hand, they do not treat the
error problem in a proper way and they do not
consider the very important experimental errors
affecting the modulus of the form factor on the
timelike region.

It is remarkable that the value in (4.1) practi-
cally coincides with the phenomenologieal esti-
mates. Indeed, assuming for instance that the
parametrization of Barger et al."or Benaksas
et al."describes the form factor over the whole
timelike region, the results for a~(w'm ) are 48.1

10 ' and 47.7&&10 ', respectively. Of course,
what we get is a bound and not a real estimate.
However, the abundarice of experimental input

entering into the derivation of the bound suggests-
that it must, not be far from the. -actual value of.
a&(m"w ). If, that: conjecture. is true, then it be-
comes important to note that the uncertainty de-
picted in (4.1')' is. approximately half of that esti-
mated in ph'enomenological' analysis.

If we now vary a,'it turns out that the bound is
a slightly decreasing function of a,', behaving al-
most linearly for values close to a,'=0.04m, '. In
order to be m'ore precise, the actual result for a
scattering length a, =0.03m, ' is

a„(v'm ) o (47.4 + 4.0) x 10 ',
the parameters and partial results relevant to the
bound (4.2) being listed in column B of Tables I
and II.

Since we have an explicit solution (2;15) satur-:
ating the bound, we can compute other interesting
parameters associated with each of those solu-
tions. In particular, we can compute the "charge'
radius" of the pion (r„')' ', which in terms of the
modified form factor G(t) has the form

(4.2)

dF(t}
N E=O

A/2

(4.3)

The actual value of the radius (r, ')'~' when in-
serting into (4.3) the expression Im G(t') given in
(2.15c) and (2.15d) depends strongly on small
variations of the function +(t}. Thus, functions
slightly different which give almost exactly the
same bound can produce quite different values for
the charge radius (r„')' '. This is easy to under-
stand from the fact that (r,')' ' is a derivative,
that is, a local property which can be modified
without introducing any substantial change in the
averaged quantities entering into the derivation of
the bound. Nevertheless, the values obtained for
(r„)' 'lie between 0.65 and 0."t5 fm, that is, in
the region of phenomenologically estimated val-
ues." This reinforces the idea that in fact the
bound can be assumed to be very close to the
actual value, and on the other hand, it implies
that the bound cannot be substantially improved by
imposing the experimental quadratic radius as a
new constraint.

In order to illustrate how the method works when
a piece of information is ignored, we have com-
puted the bound in a case in which the only experi-
mental input is the phase and the value of the form
factor on the spacelike region; i.e., we have
eliminated the very important experimental in-
formation about the modulus of the form factor
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on the p-meson region. In this case, the quantity
p[&u, M] in (2.21) vanishes, the unequality (2.18)
is trivially fulfilled, and Q[v] becomes

cu'(t)Qf~1=f, dt
(u'(t) + (u'(t)

q(t)

(4 4)

The result for a scattering length a,'=0.04m, '
and a maximal allowed uni ertainty of 3 x 10 is

a„(w'w ) ~ (28.8+ 3.0) x10-'

and for a,'=0.03m, '.
a„(w'w ) ~ (31.1+3.0)x10 '.

(4 5)

Bounds (4.5) and (4.6) are of the same order of
the phenomenological estimates in spite of the fact
that all of them are strongly dominated by the experi-
mentally observed p-meson enhancement in the
modulus of the form factor. They have to be com-
pared with the preceding bounds obtained from a

similar input. The best one is that recently de-
rived by Raina and Singh' which gives a value of
22.8x10 '. In their paper, Raina and Singh do
not incorporate the phase of the form factor as
an input, but perhaps the most important dif-
ference is that they take as spa.celike input the
value of the form factor at a few points, that is,
local information, and the derivative of the form
factor at t =0. The value of this derivative is
obtained from a. fit and therefore it is affected by.

an artificially small error coming in fact more
from the specific form of the chosen parametriza, —

tion than from the experimental errors.
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