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Tests of the isospirt and SU(3) transformation properties of the AC = AS current and nonleptonic interaction
are given for the three-body nonleptonic and four-body semileptonic decays of a charmed hadron belonging to
the 3* representation of SU(3). The relations obtained can also be used for quasi-three-body nonleptonic and
quasi-four-body semileptonic decays thus covering to some extent higher multibody decays of both kinds.

I. INTRODUCTION

The recent discovery' of a neutral and a charged
boson of mass around 1.87 GeV seems to indicate
that two of the lowest charmed mesons D° and D*
with charm C =1 belonging to the 3* representation
of SU(3) have been found. In the charm model? an
SU(4) symmetry group,® containing the usual SU(3)
symmetry group, underlies the strong interactions
of the hadrons while their weak decays are given
by the scheme proposed by Glashow, Iliopoulos,
and Maiani (GIM).! For the purpose of this note
we will assume that the observed particles decay
via the AC = AS nonleptonic interaction of the GIM
scheme and that (D*, D° F*)formthe C =1, pseudo-
scalar §* representation of SU(3) and denote it by
P(3*).

Many authors® have already considered the con-
sequences of the GIM scheme for the two- and
three-body nonleptonic and the simple semileptonic
decays of the low-lying charmed hadrons. Recent-
ly we® have given relations for the inclusive semi-
leptonic and nonleptonic decays of a charmed had-
ron belonging to 3*, which would provide simple
tests of the isospin and SU(3) structure of the AC
=AS GIM interaction. However, the exclusive AC
=AS nonleptonic and semileptonic decay modes
may provide further tests which are more likely
to be verified in the near future. Consequently we
consider the following AC =AS decays:

P(3*)-P(8)+P(8) +P(8), (1)
P(3*¥)=P(9)+V(9) +1* +v,, (2a)
-PO)+PQ)+1* +v,, (2b)

where P(8) and V(9) are the usual pseudoscalar
octet and vector nonet, respectively, and [* =¢*
or u*. Our analysis is at the SU(3) level so that
our results will also apply for the decays of other
charmed hadrons 3*. The process (1) has been
considered by Einhorn and Quigg,® but under the
rather special assumption that the three P(8)’s are
in a totally symmetric state, and they further

assume sextet dominance’ for the AC =AS nonlep-
tonic Hamiltonian, H g, in the GIM scheme. We
give separately relations for the full H,g as well
as with sextet dominance but make no restriction
on the nature of the final state. As a result our
relations for sextet dominance are more general.
The processes in (2) have not been considered by
anyone, in detail, so far.

In Sec. II the I-spin, V-spin, and U-spin and
SU(3) transformation properties® of H.¢ in the GIM
scheme are exploited to obtain relations between
the nonleptonic amplitudes in (1) which will pro-
vide tests of its isospin and SU(3) transformation
properties. In addition we give the modification of
our results so as to apply to the decays of the
C =1 baryon B(3*), in particular to B(3*)
~B(8)P(8) V(9) as well as P(3*)~P(8) P(8) V(9).
The SU(3) relations for the semileptonic decays in
(2) and their specialization to the decays B(3*)
~B(8)+P(9)+1* +v, are given in Sec. OI. Finally
Sec. IV is devoted to discussion.

II. THREE-BODY NONLEPTONIC DECAYS

For the process (1) there are 20 decay ampli-
tudes M,, ..., M,, which satisfy AC =AS and which
are defined in Table I. Owing to the identity of the
particles in the final state one has to be careful in
doing the isospin, etc. analysis. We adopt the con-
vention that the particles in the final state have

TABLE I. The three-body nonleptonic AC =AS decay
amplitudes for P{(3*)— P(8)+ P(8)+ P(8).

My =A(D"—~K°K°K")
M12 :A(Do_‘I?OK—K')
My3=A (F*'—7"r'r")
My =A(F*— 1'%
Mys=A (F*— 1|'.7I'0‘n)
Myg=A(F*—1"nn)
My =A(F*—~ 1Kk
My=A(F*—~1'K'K")
Mlg’—'A (F""I—(OK"ITO)
Myy=A(F*—K%K*n)

My =A(D*—K ")
M, =A(D*—~EK%*1")
My =A(D*—K*n)
M, =A(D*'—~K'K'K")
M5 =A (D=~ K 1*n")
Mg =A (D= K0
My =A (D"~ K 1)
Mg =A(D"—K"*n)
My =A (D"—Kn)
Miy=A (D"—=K'm)
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momenta p, g, k, in order of their appearance in
the amplitude. The simple M, are reserved for
the ordering given in Table I; thus, e.g., M,

= A(D*—=K°(p)nt(q)n°(R)) is different from
A(D*~ K°(p)n°(g)n* (k). The latter will be denoted
by simply M,(K °r°n*) according to our conven-
tion. Note that for the particular assumption of a
purely symmetric final state in the three P(8)’s,
as in Einhorn and Quigg,® the amplitudes will be
symmetric in the momenta also so that M,

=M, (K°r°1"), etc. and the relations obtained
would be less general.

The relation for the full H.g, since it satisfies a
pure |aT|=1 and |AT[=1 rule, can be obtained
from I -spin and U-spin analysis. We give the re-
lations under the subheads of type I=1,~1,+1,+1,
or U=U,-~U, +U,+U,, where I, (U,) is the isospin
(U spin) of the decaying charmed particle and I,
(U,), i=1,2, 3 the isospin (U spin) of the particles
in the final state. We further separate out rela-
tions between amplitudes or sum rules from other
relations called the symmetry relations. The lat-
ter follow from the identity of the particles as in
process (1) while the sum rules will be valid for
any decay of the type in the subhead. The sym-
metry relations in general would become relations
between different decay amplitudes in the case of
nonidentical particles.

(@) Isospin relations. We give all the isospin
relations as these are fairly simple. Further,
the symmetry relations involve the interchange of
particles in the same isospin multiplet (i.e., par-
ticles of nearly the same mass), and they are
statements about the connection between different
parts of the Dalitz plot of the various decays and
would be verifiable. These are summarized in
Table II. The amplitude relations in Table II would
lead to obvious inequalities among |M, |2, the
transition rates at a given distribution of momenta,
which are related to the density of points in the
corresponding region of the Dalitz plot. However,
for the F* decays into KKw, in addition to such
inequalities, one has directly the result

My, |2+ Mg |2 > |Mg|% . (3)

(b) U-spin relations. As pointed out earlier,
these relations are also valid for the full Hg;
however, of the many relations we only give in
Table I the simpler ones, i.e., those involving at
most four or five decays. The symmetry relations
in this case, unlike isospin, will not in general
provide useful tests since the particles in a given
U-spin multiplet have large mass differences.

(c) V-spin relations. For the full Hg the rela-
tions obtained using V-spin analysis are not sim-
ple. Members of V-spin multiplets (like U spin)
have large mass differences, so that the inequal-

TABLE II. I-spin and U-spin relations valid for the
full Hog. The superscripts (a) and (b) denote, respec-
tively, the amplitude and symmetry relations.

Ic=%-§+ 1+1:
V2 (Mg—Mq)=My—Ms, (I1.1) @
My =—=VZ [My+ My (K'1*)]

=VZ [M5+ M5(K 7))

= —2Mg+ My + M7 (K'r°1*) (1.2) ®
—ﬁMz(I?OWOW')=\[§M5—M7+M7(I_{07\'-7r*) . (II3) ®

I, =3—~3+1+0:
My=Mg+VZM,. (11.4) @

s

My (RKK*)+ My (K "EK*) =M (KR K°)

+M(KK%*). (1.5 ®

I,=0—1+ 3+3:
My — Mg =V2Z Mg (i’ K°K?) . (11.6) @

Us,=0— l+3+%:
VZ My =Mg(r'r* K7) = V3 Mgm*K”)

+VZMp (KKK . a.7)@

LSS S S O
Ue=2—"2+2+32:

M+ My3=Mg(KnK*) + Myg(KK*7*) . (11.8) @

TABLE III. V-spin relations valid under sextet domi-
nance. The superscripts (@) and (b) have the same mean-
ing as in Table I.

—VZMy (K n*1*) =V2 M (K* KK
=M, (r°K ) + V3 M3 (') .
V3 M3 (K 1) — V3 My (r* ) = M, (n* B ')

e

Ve=0—1+3+

(m.1) @

-M,(Br*x% .  (u1.2)®@

Ve=3—3+3+3:
Mu(l_(OI—(OKO) = -—M13(7r’1r'1r') , (I11.3) (@
My(R'* 1) = —M; (" KK , (1m1.4) @
—My3(r*m* ™) = Mo( K n*17) + My (r* B 'n7) (11.5) ®

Ve =3 —3+14+1:
M5 Km0 + VB Mg (r* K™n) = Myg + V3 My, (111.6) @
Myp(BR°KK*) = ~M (' K'K) (r.7) @
Mg+ V3 Myg=VZMg(r"KK*) —VZ Myp(r*K'K) . (111.8) ®

Vo=3—3+1+0:
V3M;5(r*K1%) — Mg(r*K™n) = = V3 Myg + My, . (1m1.9) @
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ities for |M 4| obtained from amplitude relations,
though true in the exact-SU(3) limit, are bound to
be rather approximate. We thus do not present
any relation for the full H.g; however, simple re-
lations are obtained for sextet dominance’ in which
case H.s; becomes a V-spin singlet, and these are
listed in Table III.

It should be emphasized that the sextet-domi-
nance relations in Table III are more general than
those derived by Einhorn and Quigg,® who made the
restrictive assumption that the 3 P(8)’s are in a
completely symmetric state. For example they
would satisfy (II.6) to (II1.9) with M ,=—v3 M,
=M ,=V3 M, and M (1" K"K*)==M ;(n*K*K ).
Furthermore an important advantage of the present
general analysis is that the relations obtained can
be easily translated to the cases where the final
state does not involve identical nonets. This is
illustrated below in terms of the B(3*) decays.

(d) B(3*- B(8)P(8)V(9). We consider the exten-
sion of our results to these three-body decays
since the relations obtained for them may be useful
for the four-body nonleptonic decays because the
vector mesons in V(9) will decay into two pseudo-
scalars. Of course this will also cover the cases
of B(3*)~B(8)P(8)P(8) as well as P(3*)

- P(8)P(8)V(9). The number of different decaysfor
B(3*)—~ B(8)P(8)V(9)is over 100 while for the case
P(3*)—~ P(8)P(8)V(9) there are 62 decays, clearly ate-
dious task eventotabulate them., However, instead of
working out all the relations in detail one can ob-
tain the simple relations for these decays from

the relations given above for process (1). This is
possible as the relations have been given under
subheads such as I, =I -1 +I,+I,, etc. so that
they can be translated for the case of other par-
ticles having the same isospins, etc. We illustrate
this by an example for the B(3*)—~ B(8)P(8)V(9) de-
cays. Let us denote the members of B(3*) by

(A", A% C3}) in the notation of Gaillard, Lee, and
Rosner.® Consider the U-spin relation (I1.8), be-
tween D* and F* decays in Table II. We choose
this example as it involves only charged particles
in the final state and would be easier to check ex-
perimentally. Now, corresponding to the single
decay amplitude M,, A* will have three decays,
namely Z7n%p*, Z*K~p*, and Z*7*K *~. Similarly,
corresponding to the amplitudes M,; and M, Cj
will have 3 and 6 different decays, respectively.
Of these 12 decays three sets of four amplitudes
correspond to the transition U,=3 -3 +3+3. Thus,
corresponding to (II.8) for identical particles, one
immediately has the three sum rules

AA* = E71* ") +A(Cl—~ = 1t p*)
=A(Cy = E T K*") +A(C} - E°K*p*), (4a)

5

AAY =T K p")+A(C; =zt npY)
=A(C! =ZK~K*")+A(C{ - pK p*), (4b)
AA* =TT K*T)+A(C -=* 7t pT)
=A(Cy - Z*K'K*")+A(C} ~pm*K*7). (4c)

In a similar fashion one can convert the other re-
lations given above for process (1) for B(3*) and
other P(3*) decays.

IIl. FOUR-BODY AC= AS SEMILEPTONIC DECAYS

We now consider the decays given in process
(2a) which are analogous to the K,, decays. To ob-
tain SU(3) relations we consider J%+P(3*) ~P(9)
+V(9), where the AC =AS current J; is treated as
a spurion and transforms as an SU(3) triplet. The
27 decay amplitudes are given in Table IV in terms
of the three SU(3) parameters g , =(8~8; (PV))
and g, =(1~1(PV)), where 85(PV), etc. mean the
symmetric octet, etc. made out of P and V. Of the
24 SU(3) relations expected 14 are isospin rela-
tions which follow from the isosinglet property of
the current, and these are shown in Table IV.
There are four SU(3) relations among the D* de-
cays alone and four SU(3) relations among the F*
decays. Of these the two simplest involving four
amplitudes are (suppressing the lepton pair)

2A(D* - 1*K*7) - A(D* =K p")
=-v6 (cos§,A(D* =K °¢) +sing,A(D* ~K %),
(5a)
tan(g, — 6, A(F*=n¢) +A(F* =7’ w)]
=A(F" =nw)-A(F* -n'¢). (5b)

The remaining two SU(3) sum rules between the
D* and F* decays are particularly simple, viz.

A(F* =1*p7)=AD* =1*K*") — A(F* ~K*K*")
=A(D* =K p") - A(F* ~K"K**), (6)

and may be verifiable experimentally. In addition
to amplitude relations Table IV also yields direct-
ly relations between rates, for example the first
four D* decays satisfy the equality

[A(D* =K °¢p)|%+ |A(D* -~ K°w)|?
=|AD* =1 K*7) 2+ 5 |AD* -K p*) 2. (1)

It is interesting to note that for the ideally mixed
vector nonet (sing, =1/V3) one would expect the
F* decays involving mp, nw, and n’w to be sup-
pressed or small by the Okubo-Zweig-Iizuka (OZI)
rule as they cannot occur through a single quark
transition. This suppression would imply

V2gs - 3g,~0 for arbitrary 6, and convert (5b) and
(6) into effectively two amplitude relations which
could give a measure of this suppression.
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TABLE IV. The four-body semileptonic decay amplitudes for P(3*)— P(9) + V(9)+I'+ v,;. For compactness we have
suppressed the lepton pair I*»; in the amplitudes in the table and in the text. 6y and 6p are the mixing angles for the

vector and the pseudoscalar nonets, respectively.

I-spin-related

Amplitude gs 8a g, amplitudes
A(D'—~ T K™*) 1/V2 1/V2 0 —VZA (D*—7K*0)
=A (D'—71K*")
=VZA (D"~ r'K*)
A(D*—K"p") 1VZ —1/VZ 0 —VZA(D*—~EK%")
=A (D'~ K%")
=VZA (D'~ K"p")
A(D'—~E"9) =cosby _ 2y/2sing, _B cose, 0 A(D'—~K"¢)
2V3 2
A(D*—E%) E)1/2cosby — 1 singy —\gsinﬂy 0 A(D'—~K"w)
2
= 1 211/2 s V3 0 -
(D*— nk*% - cosfp— (5)1/°sing = cosfp 0 A (D" nk*")
A nK o3 p— P 3
1 V3
*— 2 K0 Z)/2c0s6p— sin@ = sing 0 A(DY'—=n’K*)
A(D*—=n’K*") ) e P 3 p
A(F*—1*p") —2/3 0 1 A(F*—1p")
A(F*—1%0)
A(F —K'K*") 1/3V2 1/VZ 1 A(F*—K&*0)
A(F*—KK*") 1/3V2 -1NZ 1 A(F*—E%*9
A(F*— o) ‘/%-cosovcosop+§sin(6y+9p) 0 cos(6y — 6p)
A(F" = nw) ‘/gsineycosop—%cosww 6p) 0 sin(gy — 6p)
A(F*—n'¢) ‘/—g-coseysme,,_§cos(e,,+a,,) ] —sin(gy —6,)
A(F—n'w) gsineysinop—%sin(oy+6p) 0 cos(fy—6p)

We briefly remark on the other cases covered
by our analysis.

B(3* —~ B(8)P(91*v, decays. These B,, decays

cover the case where B(8) can be the usual J¥ =4*
baryon octet or a baryon-resonance octet B*(8),
and P(9) can be any meson nonet. Table IV can be
used for such decays by replacing V(9) by B(8),
6, =0, and noting that there are no B,, amplitudes
corresponding to the amplitudes involving w since
B(8) is an octet. Translation of the sum rules for
B(3*) - B*(8)V(9)I*v, would be useful if B,; decays
are quasi-B,, decays.

P(3%~P(9)P(9)!*v, decays. These P,, decays
are interesting as they involve identical nonets,
and as a result there are only 15 decay amplitudes,
which can be obtained by replacing V(9) by P(9) in
Table IV. In doing this one should recall that the

corresponding SU(3) amplitudes g5 and g, are sym-
metric while g, is antisymmetric in the momenta
of the two final hadrons. There are seven isospin
relations and five SU(3) sum rules which are fairly
simple and amenable to experimental test. The
only decay suppressed by the OZI rule is F*
~7*7"1*v, and this would again imply V2 g5 =3g,.
Finally, if P,; decays are quasi-four-body decays
of the type P(3*)-V(9)V(9)l*v,, then amplitude
and rate relations for them can be easily obtained
from Table IV.

IV. DISCUSSION

In the foregoing sections, we have presented an
SU(3) analysis of the three-body and quasi-three-
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body nonleptonic and four-body and quasi-four-
body semileptonic AC =AS decays of a charmed
hadron belonging to the 3* of SU(3).

It may be worthwhile to summarize the new fea-
tures in the present analysis vis-a-vis some
earlier work.® The relations for nonleptonic de-
cays are cataloged in terms of /-spin, U-spin,
and V-spin properties so that it is easy to delineate
the sum rules which are valid for the full H g
from those which hold only under the assumption
of sextet dominance. No assumption such as com-
plete symmetry of the final-state hadrons is

made, so that the relations obtained are more gen-
eral and it is easy to translate them to other cases
like decays of the charmed baryons B(3*) and so
on.

For a massive state, a multibody decay involving
three or more particles in the final state is ex-
pected to be much more copious compared to a
simple two-body mode. In view of this, the isospin
and SU(3) tests for the exclusive decays considered
here and the AC =AS inclusive decays® of charmed
particles within the GIM scheme may be useful in
the near future.
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