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A stopping-power formula is presented for magnetic monopoles with charge |g| = 137¢/2 and
|g| = 137e. Close- and distant-collision effects are considered and the estimated accuracy in an absolute

sense is +3% for 8 20.2 and 7y < 100.

In an earlier paper' the total stopping power
and the restricted energy loss of magnetic mono-
poles with charge | g|=137e was estimated by
using the classical impact-parameter approach of
Fermi? as modified by Tompkins® to be appropriate
to magnetic charges. Close-collision effects were
taken into account by suitably choosing a quantum-
mechanical minimum impact parameter. While
this approach works reasonably well for small
electric charges,? it fails miserably for extremely
large charges where significant deviations of the
Rutherford from the Mott cross sections are en-
countered.® (For Z,=100 and 8~ 1 the correct
stopping-power formula is ~20% larger than that
given by the Bethe-Bloch formula; refer to Ref. 5
for a discussion of this point.) One might expect
higher-order quantum electrodynamics to similar-
ly affect magnetic monopoles. The absence of a
good theory for electron-monopole interactions in
the relativistic regime has thus far prevented the
analysis of this problem. Recently, Kazama,
Yang, and Goldhaber® (KYG hereafter) have used
the Dirac equation for an electron moving in the
magnetic field of a fixed monopole to obtain the
differential scattering cross section. If the mag-
netic-monopole charge-to-mass ratio is com-
parable to or smaller than the corresponding nu-
clear value, as one would expect for a ’t Hooft-
type monopole,” then the use of the KYG cross sec-
tion should be as reliable as the Mott cross sec-
tion for calculating the close-collision contribu-
tion to the stopping power. Both of these cross
sections should become inadequate to this task for
v>100, beyond which spin effects, internal-struc-
ture contributions, primary-particle bremsstrah-
lung, radiative corrections, and kinematical com-
plications become important.

By using the tabulated values for the KYG cross
section® one finds, after an appropriate angular
integration, that the close-collision energy loss is
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N is the electron density, mc? is the electron rest
energy, —e is the charge of the electron, and g is
the charge of the monopole. The monopole velocity
is Bc,y=1/(1 = B2)'/? and w,, = 2mc?B%? provided
my <M where M is the monopole mass. The en-
ergy transfer below which it is no longer valid to
use the free electron approximation is denoted by
w,. It is interesting to note that the QED correc-
tion, K (|g|), is independent of the monopole veloc-
ity and is only mildy dependent on charge. This
follows from the velocity independence of the KYG
to the classical cross-section ratio.®

In order to obtain the total energy loss, the
distant-collision energy loss must be added to the
close-collision loss as given by Eq. (1). The
analogous problem for incident electric charges
is solved by treating the interaction between the
particle and the atom in the first Born approxima-
tion.® All collisions are characterized by momen-
tum transfer, and Bethe’s generalized sum rule
allows an unambiguous joining between the distant
collisions (which are treated in the dipole approxi-
mation) and the close collisions (which are treated
in the free electron approximation). The situation
is somewhat more complicated for incident mag-
netic charges due to the complexity of the quan-
tum-mechanical formalism for these particles.
I therefore adopt the semiclassical approach of
Landau® in which the distant collisions are con-
sidered from the point of view of classical macro-
scopic electrodynamics but are characterized by
momentum transfer rather than impact parameter.
This characterization is made possible by inter-
pretation of the vector Kk which appears in the
Fourier transforms of the classical fields as the
wave vector of an exchanged photon.

The magnetic-monopole analog of Eq. (85.15) of
Ref. 9 is easily shown to be
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where w,=(4mNe®/m)'/? is the plasma frequency
of the medium, 7gq, is the maximum momentum
transfer for which the above treatment is valid,
and £=w(0)/7, where w(q) is defined by

([ ( wlg)) -1/8%]=c%* , 3)

where ¢(w) is the complex dielectric constant of
the medium. The quantity £, plays the role of the
mean excitation frequency and is defined by

lnﬂ,,,:z—zf wIm| e(w)]1n(w?+ £2)* %dw . (4)
w2 J,
It has been assumed that the medium is non-
permeable, i.e., p=1.

In those cases for which there are two roots to
Eq. (3) with ¢=0, that value of w(0) with the
largest imaginary part is to be used in the defini-
tion £=w(0)/i. Hence, if B2<1/¢, [where ¢,=€(0)],
£=0, and if B2 >1/¢,, £ is defined by B%¢(i§)=1.
For conductors, €,=«, so that the latter value of
¢ should always be used.

If it assumed that there exists a value of g, for
which both the close- and distant-collision ap-
proximations are valid (with w,=7%?%g,?>/2m), then
the stopping-power formula is obtained by adding
Eq. (1) to Eq. (2):
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where the magnetic mean ionization potential and
density-effect correction are given by
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The corresponding electric stopping power is given
by (to the first Born approximation)

dE| 47Nz 2et 2mc3B2y?
%], - T (w2 et
e

e MY
(5”)

with the electric mean ionization potential and
density-effect correction
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The dielectric constant is usually expressed as a
sum over the oscillators of a given atom,?
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where f, is the oscillator strength of the nth transi-
tion, #w, is the transition energy, and I is the
damping constant. In the limit w,—0 it is clear
that Ime ~Im(-1/¢), and therefore I,,~I, and 5,
-8, (for p~1) in this limit. Thus, the magnetic
ionization potential is the same as the electric
ionizatinn potential in gases for all 8 and the den-
sity effect corrections are also the same for g~1.

To investigate the relationships of these quanti-
ties in condensed media, let us restrict our atten-
tion to nonconductors for simplicity. (Sternheimer
and Peierls!® show that the distinction between con-
ductors and nonconductors is of no practical con-
cern for the case of incident electric charges;
this is probably not true for magnetic charges be-
cause of the absence of longitudinal screening.) In
this case ¢, is finite and there is a sharp dividing
velocity below which there is no density effect cor-
rection, namely 8,=1 /\/e_; . I, is then just the ex-
perimentally determined ionization potential. [xf
one demands equality between Eq. (5), with 5,
=0 for B< 1/‘/2: and experimental results, shell
corrections are included in I,; however, for large
enough velocities these shell corrections are small
enough to be neglected for all but the heaviest ab-
sorbers.?] Sternheimer!! has expressed I, in terms
of f, and w,:

1nIe=Zf,,ln[iiw"(1+w,2f,,/w,,2)”2] . (9)

By making use of the small damping expression
for Im[ e(w)],®

lim Im[ €(w)] =702 )" f,6(w?-w?), (10)
r—-o n

the analogous expression for I, is obtained:
Inl, =) f,Inkw, . (11)
n

Since the f,, w, refer to isolated atoms it is clear
that the low-velocity energy loss for monopoles is
the same per g/cm? for the same type of material
in either gaseous or condensed form while this is
not true for electric charges. The difference in
behavior is due to the absence of a longitudinal in-
teraction between the monopole and atomic elec-
trons. As a consequence there is no dielectric
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screening such as that experienced in the interac-
tion between electric charges in a condensed
medium.

The relationship between I,, and I, can be ex-
pressed as

I,=I,exp(-D/2) , (12)
where
D=Z Faln(l+ wl2f, /w?) . (13)

Sternheimer*! has estimated the magnitude of D
for several solids. He finds that D(Li)=0.34,
D(C)=0.22, D(Al) =0.056, D(Fe)=0.14, D(Cu)
=0.13, D(Ag)=0.09, D(Sn)=0.05, and D(W)=0.07.
Sternheimer emphasizes that these values are ex-

tremely uncertain because of the sensitivity of D
to the distribution of energies of the outer shells.
However, it seems that the amount of error in-
curred in the dE/dx formula is of the order of 1%
or less if one uses I, in place of I, for absorbing
media heavier than carbon.

In a similar way it can be shown that the error is
quite small if one uses d, in place of §,,. Hence, in
the regime for which it is legitimate to separate
the problem into the distant and close collisions as
has been done above, Eq. (5) gives the correct
value for dE/dx to within 1% with®!2

(12Z,+7) eV, Z,<13 (14a)
(9.762,+58.82,"%'%) eV, Z,=13  (14b)

(Z, is the atomic number of the absorber), and'®

J
lnﬁzyz—zln(ﬁfj )+a(X1—X)"'_1 (X, < X<X)), (15a)
szﬁe— ’
I
2 2_ e - 15b
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and 6, =0 if X<X_, where X =log,, By and a gen-
eral expression for X, X,, a, and m is given in
Ref. 10 (the accuracy in dE/dx for electric charges
is claimed to be ~1% with this general expression).
The validity of the various assumptions and ap-
proximations, both implicit and explicit, which led
to the derivation of Eq. (5) will now be considered.
(a) The existence of an intermediate momentum
transfer g, which satisfied both the close-collision
and distant-collision approximations relies on the
monopole velocity being much larger than the
atomic electron velocities. The dipole approxima-
tion is implicit in any application of macroscopic
electrodynamics so it must be true that g,q, is
small (a, is the atomic size). Fano® shows that for
incident electric particles the applicability of
Bethe’s generalized sum rule'® is consistent with
sucha g, only if the above velocity constraint
holds. For small velocities, shell corrections be-
come important. Shell corrections of the 1%
level accrue at® $=0.075 for Z,=6, at B=0.2
for Z,=26, and at =0.475 for Z,=82. Al-
though a generalized sum rule has not been
derived for a magnetic-particle interaction,
it is not totally absurd to assume the existence of
one, just as Bohr did in 1913 for electric par-
ticles. (In physical terms, the sum rule implies
that on the average, a momentum transfer %q which
is greater than 7ig, results in an energy transfer
of 7#2¢?/2m; Bohr reasoned that this must be so on
the basis of the ratio of the collision time to the

orbit time, which is quite small for these inter-
mediate-momentum-transfer collisions.)

(b) Another implicit assumption in the use of
classical electrodynamics is the linear relation-
ship between D and E. This is basically the re-
sult of a first-order Born approximation, and an
idea of the size of the errors which arise from
this assumption can be gleaned from the distant-
collision Z,® corrections calculated by Ashley,
Ritchie, and Brandt,'® Hill and Merzbacher,'® and
Jackson and McCarthy.!” These corrections are
due to the polarization of the atoms and amount to
a fractional correction of the order (aZ,fiw,)/
(mc?B®) where « is the fine-structure constant and
7iw, is the atomic energy. If one naively replaces
Z,a/B by ga/e, which is the usual prescription for
comparison of magnetic to electric particle prop-
erties, this correction is of the order of 2% for
7w,=100 eV and $=0.1 if g=137e. However, it is
apparent that this is an enormous overestimate of
the distant-collision monopole correction when one
considers the directions of the forces involved.
For electric particles the interaction is longitu-
dinal and hence either drags the electron closer
to the incident particle or pushes it away. The
electric field due to the monopole is transverse
and only shifts the electron sideways which, to a
first approximation, cannot change the separation
of the monopole and electron and, therefore, should
not affect the energy transfer. In fact, the sym-
metry of the problem actually forbides a g* cor-
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rection (or any odd-power correction) to the
distant-collision energy loss. For these reasons
we can feel quite safe in using the macroscopic
approach. [ This is particularly well suited to the
energy loss problem in which €(w) already con-
tains the quantum-mechanical sums which ensure
the correspondence between the classical and quan-
tum-mechanical treatments.]

(c¢) Lindhard!'® has pointed out that close-colli-
sion polarization effects lead to corrections of the
same order as the distant-collision corrections
for electric particles. For the same reasons
given above, this correction should not be rele-
vant for monopoles.

(d) By setting u(w)=1 we have demanded that the
electron spin have negligible interaction with the
magnetic monopole for distant collisions. Landau
and Lifshitz® emphasize that it is justifiable to set
u =1 for incident electric charges since matter
does not exhibit magnetic properties at frequencies
important with regard to ionization and excitation
losses. This statement also applies for the mag-
netic monopoles. Of course, at low velocities the
spin interaction dominates, since the electric field
at the electron due to the monopole is proportional
to 8. However, ionization ceases before this hap-
pens. To be more quantitative, the energy loss
rate to electric dipole transitions induced by the
spin—-magnetic-field interaction is ~y*\?/

(26°b,2 Inb,,,./b,) (where X =7i/mc) times smaller
than that induced by the electric-field interaction,
where b, is the impact parameter which separates
the close from the distant collisions. (We do not
need to consider those transitions for which only
spin flip occurs because of the extremely small
amount of energy absorbed in these transitions.)
Since b, must be larger than ~ 3a,=31/(aZ,'/?)

in order for the distant-collision dipole approxima-
tion to be valid, the above fraction is smaller than
(vZ,'/3/10008)?. For Z,=82 this amounts to 1% or
more for $<0.04 or ¥ >25. Therefore, for the
largest part of the range of velocities considered
in this paper, it is of no consequence to complete-
ly neglect the electron spin for distant collisions.

(e) Whenever one uses a scattering cross sec-
tion to predict event rates it is assumed that the
incident beam has a cross-sectional area which
completely covers the scattering center. In quan-
tum-mechanical jargon one requires an approxi-
mate plane wave with lateral extent greatly ex-
ceeding the scattering center size. In order to
apply the Mott cross sections and KYG cross sec-
tions to the energy loss problems, the lateral ex-
tent of the electron waves, which are of the order
a,, must be much larger than the effective size of
the scatterer. Bloch'® has shown that the relevant
parameter for electric charges is Z,a/B, and that

for Z,a/B<«<1 Bethe’s formula'® obtains and
for Z,a/B>1 Bohr’s formula' obtains. Bloch’s
correction, which bridges the gap between the two
results, is given by (1) — Reyp(1+iZ a/B) [¥(Z) is
the logarithmic derivative of the gamma function?]
and this expression is added to the contents of the
parentheses in Eq. (5'). Since the strength of the
monopole-electron force is roughly g8/Z e times
as strong as the analogous electric particle force,
it seems reasonable that the Bloch parameter
should become ga/e for monopoles. In any case,
it pushes dE/dx in the correct direction for large
values of |g| since the Bloch correction is nega-
tive (if we multiply a cross section by a flux which
does not cover the whole scattering center, we
will be overestimating the amount of scattering).
For |g|=137e/2, y(1) - Red(1 +iga/e)=-0.248,
and for |g|=137e, ¥(1) - Rey(1 +iga/e)=-0.672.
Including the Bloch correction B(|g|), the
monopole stopping-power formula is

dE 2 2p2,,2
v 4”5‘5232 [m 2’”3 BY k(lg)/2-14
~o/2-B(lg)], (16)
where
0248, |g|=
B(Igl)=(( 248, |g|=137e/2 (17a)
lo.672, |g|=137¢ (17b)

and K, I, and § are given by Egs. (1a), (14), and
(15), respectively. In view of the relatively large
number of ~1% errors mentioned above and the
uncertainty of the Bloch correction, Eq. (16) is
probably accurate to within ~3% for ¥ <100 and

50

__ 40
€
J
~
>
[
o 30
o
2
s
€ 20
x
X
S~
w
el

10

0 | 1 1 . | l | 1

0 0.2 0.4 0.6 08 10 1 2 5 10 20 50 100
B Y

FIG. 1. Theoretical stopping power for magnetic
monopole with g=137e in water. Bottom curve is taken
from Eq. (16) using Sternheimer’s density-effect cor-
rections. Upper curve is calculated using the technique
of Ref. 1. The curves correspond to average values for
the stopping power.
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B large enough so that shell corrections can be
safely ignored. This places a lower limit on 8
from ~0.1 to 0.5 depending on the atomic number
of the absorber.

In Fig. 1, dE/dx is plotted as a function of 8 and
y for a monopole with g=137¢ in water. Shell cor-
rections will probably become important for 8
<0.1, but interpolation between =0 and §=0.1
should give reliable results since the monopole
ionization rate is a monotonically increasing func-
tion of velocity. The parameters to be used for
water in Eq. (16) were taken from detailed cal-
culations by Sternheimer®: I=74 eV, C=-3.47,
a=0.519, m=2.69, X, =2, and X,=0.23. For com-
parison, the technique from Ref. 1 has also been
used to compute dE/dx. The separation of the
two curves at low velocities is due primarily to
the Bloch correction. The two curves join at large
v due to the different manner in which the density
effect correction was calculated.

The curves of Fig. 1 correspond to the average
energy loss. This should be the same as the most
probable energy loss for thick detectors as deter-
mined by the requirement

~ cm? g \?
G=0.15(z,/4,) T pt<e—B—Y> 1 (18)

where A,/Z, is the absorber nucleon-to-electron
ratio, and pf is the absorber thickness in g/cm?.
If G« 1, one would expect to be in the Landau
regime and the most probable energy loss would
cease to increase with y at some point. Refer to
Fano'’s review article® for a summary of energy-
loss fluctuations for electric charges. Condition
(18) was obtained from the analogous electric-par-
ticle criterion by replacing Z,e by g8 which, to a
first approximation, describes the behavior of
monopoles relative to that of electric charges.

To further improve the calculation of dE/dx for
monopoles it will be necessary to rigorously derive
the magnetic analog to Bethe’s generalized sum
rule and to Bloch’s corrections. Owing to the com-
plexity of the electron-monopole interaction in a
quantum-mechanical treatment, these seem to be
nontrivial exercises.
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