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Minimal electromagnetic coupling for massive spin-two fields
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The minimally coupled spin-2 -wave equation. is shown to lead to noncausal propagation even: if the correct
number of constraints are obtained.

It is well known now that fields with spin greater
than or equal to unity may show noncausal propa-
gation in the presence of certain types of interac-
tions due to the constra. ints inherent in the equa-
tions of motion. ' ' In some cases propagation
ceases a,nd the equations lose hyperbolicity and
are no longer suitable for the description of wave
propagation. Such difficulties will lead to incon-
sistencies when the theory is quantized as had been
shown by Johnson and Sudarshan in the case of the
minimally coupled spin- 2 field. In Ref. 2 Velo and
Zwanziger exhibited tha. t the minimally coupled
spin-2 equation loses some constraints, thereby

increasing the number of independent field com-
ponents to six. Later, Tait"' and Hagen' demon-
strated that the correct number of con.straint equa-
tions are obtained by using the correctly symme-
trized spin-2 equation of motion. We complete the
investigations of Tait and Hagen by deriving the
characteristic determinant for their Lagrangian. .
The purpose of this note is to calculate the char-
acteristic determinant for the minimally coupled
spin-2 equa, tion and to ghow the existence of non-
causa, l modes of propaga. tion.

We start with the equation of motion as in Refs.
5 and 6,

(II'+ m') Q,„+ 2 (II,II'Q,„+II'll, p,„+II„II'p,„+II'll, Q„)

—,'-(II, II„+ II „11.)g-y,. g „„ll'll'y,.+ (11'+ m')g. „g"y = 0,

where Q is the 10-component tensor of rank 2 and
m is the mass of the particles with spin 2.' This
is derived from the Lagrangian proposed by
Bhargava and Watanabe' by replacing i8, with H„:

C„=— — O'L1

. m

= (II'Q„—II„Q) + —,'fe, (F'

i9 II =i& + eA (2)
F'„ll'y,. F„ll'y)

--,'e j(s F' )Q, „—(&'F' ) p, .—(s'F„,)p]
and by requiring the symmetrization for the II's.
Here the equation of motion is in the quadratic
second-order form. Therefore we can specify the
values of five components of Q along with their
time derivatives at all points in space at a given
time. The other five components of P and their
time derivatives must be deriyed from these data
through Eq. (1). This means that 10 constraint
equations should be obtained from Eq. (1), i.e. ,
constraint equations containing higher space deri-
vatives but only first-order time derivatives of .

the components Q.
Qf the 10 constraint equations, four are associ-

ated with L,„and four more are obtained by oper-
ating with II' on L of Eq. (1):

=0

P = —:,'-e—', I(s.F")II'y,. (s'F-)rl. y,.
+(9 F )II8$]

+ e', (F"F'.y,. ,' F.,F"y). —
m' (4)

Here we utilize the relation

where Q=g"Q„. The ninth constraint equation is
derived from Eq. (3) by operating with II' on it:
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11 11'y„—n P= —m y, ()
I

which is easily obtained by taking the trace of the
equation of motion (1). The tenth constraint equa
tion comes from Eq, (4) by operating with II, on it
together with H,C„=O and I,-,. =O. A t:edious but
straightforward calculation shows that II,Q is ex-
pressed as

iiop = d~IIogoq+ dq, IIOQ~,

+ (no time derivative terms),

in which d„and d~, are de/fined later [see Eqs. (11)
and (12)]. It is important to note that II,Q does
not contain a term proportions, l to Q„.' By sub-
stituting Eqs. (3), (5), and (6) into Eq. (1), we get
the tr ue equation of motion:

L,„=II,'p „+—,(II,II„+II „1I,)@ —, i e ,—[II,—(F"II p, „—F'„lI'p,.—F„,II'Q) + (p —v)]

+-,'e, (ll [(s.F' )0,„(s'F'„)y„(O'F.,-)4]+(g—v)]

(II,'+ m') Q „——,
' m'g, „P+ 2 ie (F' P p „+F'„0p, )

(7)/

It should be noted that the II,&j& terms contained in Eq. (7) must always be replaced with Eq. (6).
In order to get the characteristic determinant, we explicitly write the 10 equations of motion by taking

the specific frame II„=(11„0,0, 0):

Loo= Ho 4'oo+ a 0 4'os+ datHo ~at+ ' ' '

2 2 2
Los =f0;OHO ~oo+fa; WHO 4'ot+fa; g Ho ~i + ' ' '

(8)

(8)

L ~, = IIO' Q ~, + ~ ~ ~, (10)

where the dots stand for the terms containing no second time derivatives. Here we define d„, d~„ f, .„
f, „and f, ,„a..s follows:

d„=-e—[iso(& x B)~+3eF,~E,].
+ —,e'- (m'(& x B),+ —,-iem'[(Vx B) x B],+ —,'e'(& x B) BB,.)[3s,F,.„+6,.~& ~ E —(s„E„.)],

j. 2

d„, = —,
' e—[2i(9 Es, ) 3+e(F„,. F„—E L,)].

1

, e' (m'(& x B),. + ,'iem'[(& x B) x B—],+ 'e'(V' x B) BII,] ]6,, [(V x I3),p 4g„E,]+ (S„F,))
1 2

f, ,= —,'ie(l/m')E, ,

f„., = 6„+ ,'se(1 m/')( „F, +—E„d,), -

(12)

(14)

' f, ,„=—,'ie(l/m')( E,6,„+E,d,„),
with

'+-'e' 3/ B/' — (txH|'- -'e' —'[('v x 8| 8]'I;

(15)

(16)

~, =m (&n e iBi ),
in which B and E are defined by

& = ~ &~,aF, u a«E~=+o~ ~

(17)

(18)

The characteristic determinant is obtained by re-
placing II„with a Lorentz vector n, in the highest
derivatives. ' Moreover, we take the frame n„
= (n„0,0, 0). After lengthy calculations, we obtain
the characteristic determinant D(n, ) from Eqs. (8)
to (10):
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a(m, ) =(n,')"[( 'e'-, ()) (') .

In.covariant form this. becomes

(19)

2 9 2 9 2
,D(n) = (n')' n'+ -' e',. (n F')'.

J.

where

. (20)

2

(n') .,'+ l.-l'+ n, ' —,'. , I

I

(22)

This has the solutions n, = a
l
n l, in which the char:—

acteristic surfaces are the light cones. The other
solutions come from the second factor in the
square brackets of Eq. (22),

/

n, = ~
l
nl'/(1 —[-,'e(1/m')

l
B

l
]'@~2. (23)

The solutions (22) tell us that if 1 —[
—', e(1/)n')

l
B

l

]'

(21)

The characteristic surfaces are normal to n-, . By
solving for n, we find

&0, then we have real solutions for n, which lie
inside the light cones, therefore the characteris-
ti.c surfaces in this case are spacelike and the
propagation is noncausal; If, 'however, 1 —[—,e(1/
'm')

l
8

l
]'&0, then n, is complex and the equations

of motion cease to be hyperbolic.
Ih conclusion, the'minimally coupled spin-2

equations lead to noncausal modes of propagation
even though the correct constraint equations are
used. To get the correct constraints, we must

, demand the Lagrange formulation based on the
symmetric tensor of rank 2 in the quadratic se-

, cond-order forms.
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