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Influence of form factors on the energy bounds for thleytons
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Dileptons originating from the three-particle decay of scalar, spin-1/2, and vector particles are considered.
The influence of form factors on the energy bounds of Pais and Treiman is investigated. The analysis shows

that no large deviations from the case without form factors are to be expected as long as the form factors are
symmetric functions of the dilepton momenta.

I. INTRODUCTION

In recent years, dileptons have been observed
in several processes. They have been produced in
e'e annihilation, ' inelastic v(P)N, ' pN,

' and .pp
scattering. ' In any of these processes the most
likely explanation seems to be the production of
some new particles. There is no difficulty in
identifying these particles with particles in al-
ready existing theories since gauge theories of
unified weak, electromagnetic, and possibly strong
interactions provide us with a very rich particle
spectrum, even if one excludes the scalar Higgs
particles. For example the observed e p. events
in e e annihilation can be explained by the pair
production of heavy charged leptons, ' the e and p.

originating in the leptonic decays of the two
charged heavy leptons, respectively. These heavy
leptons then could be identified with the charged
heavy leptons introduced in steinberg-Salam-type
SU(2}xU(1}models with three left-handed quark
doublets. There an additional charged lepton is
needed if one insists on cancellation of triangle
anomalies, which is required for the renormal-
izability of the theory. But the same e p. events
can be explained by the pair production of charged
red quarks of the Pati-Salam model, ' each of
which decays sequentially into a charged lepton
and two neutrinos. In this case it is the existence
of charged exotic gauge bosons, coupling to quarks
and leptons and mixing via a symmetry-breaking
mass term with the charged weak gauge bosons
which makes the above decays possible. Since the
decays are of sequential type one has also to as-
sume the existence of colored vector mesons (glu-
ons) with mass below the mass of the charged red
quarks.

In inelastic p.N scattering, dimuons can be ex-
plained by the production of a charmed particle
with semileptonic decay. '

Most of the data for high-mass dilepton pairs
originating in proton-nucleus collisions seem to
be explainable by the production of J/g and g

'

particles and a color-added parton model. ' Here

the occurrence of p. -e events could be a sign for
pair production of charmed mesons.

High-energy neutrino and antineutrino interac-
tions are also a source for dilepton production. It
looks as if the observed events could be explained
by the production of a new (charmed) particle at
the hadronic vertex, which decays semileptoni-
cally. ' Of course, as in the other cases of dilep-
ton production, there exist also other. possible ex-
planations for their origin. Among these, the pro-
duction of neutral heavy leptons decaying into two

leptons and a neutrino has been discussed as a
possible mechanism responsible for dilepton
events. ' Subsequently, this mechanism has been
ruled out by Pais and Treiman' on the basis of
the experimental value for the ratio of the expect-
ation values for the two lepton energies. Assum-
ing the most general four-fermion pointlike inter-
action for a spin--,' heavy lepton they derived low-
er and upper bounds for this ratio incompatible
with the experimental results. In the same way
Daumens and Noirot' obtN. ned similar results for
spin-& neutral heavy leptons. Bounds on ratios
for higher moments of energy expectation values
of the two leptons have been calculated by Nilles"
who also obtained conditional bounds by relating
the bounded quantities. For a spin--,' neutral
heavy lepton, the influence of a mass for the as-
sociated neutrino on the result of Pais and Trei-
man has been discussed by Baulieu" and found to
be at most 2(P/p, which is still outside the experi-
mental result. Assuming a sequential type of de-
cay for the neutral heavy lepton of the form L
-L p, 'v„, where L is another charged heavy
lepton which in turn decays via L —p. P„v~, he
obtains for the energy ratio a value within the ex-
perimental limits for appropriate mass ratios of
the two heavy leptons.

This whole discussion shows that the observa-
tion of dileptons and their energy ratio may give
quite an amount of information on the basic (and
composite} particle structure of the underlying
theory. It seems therefore worthwhile to investi-
gate the results of Pais and Treiman in even more

17 216



17 INFLUENCE OF FORM FACTORS 0% THE EIXKRGY SOUNDS

detail. The gene ral picture that emerges, if one
looks for dijAnptoa decays of neutral particles in
unified gaege theories, is that such transitions
may occur, even for certain spin--,' particles,
with interrml structure. In the spin--,' case one

may, for example, consider neutral "heavy lep-
tons" participating in strong interactions. The
strong iateractioas in this case may be specific
to the "heavy leptons"' or just a consequence of the
unification of weak, electromagnetic, and strong
interaeticns in an appropriate energy range. "
Therefore the effective phenomenological La-
grangian for these decays will contain form fac-
tors. To see in a not-too-specialized way what
the influence of such form factors may be on the
bounds for the energy ratio, one may just multiply
the pointbke matrix elements with an overall mo-
mentum-dependent form factor of suitable struct-
ure. In Secs. II, III, and IV the conseqtuences of
such a procedure are calculated for neutral spia-

spin 0, and spin- 1 particles, respectively. In
all three cases the masses of the decay products
are neglected, which allows an exact calculation
of phase -space inte grals with arbitrary positive
powers of the external momenta. In addition, not
the most general effective four-particle interactioe
is considered, but only a typical part giving differ-
eat energy spectra for the charged lepton and arki-
lepton, s inc e inclusion of all possible inter act ions
is net likely to change the result significantly. The
general emerging picture is that only in the case
of an overall form factor, depending asymmetri-
cally on the two charged-lepton momenta, can con-
siderable deviations from a pure pointlike struct-
ure be expected. This puts obvious general re-
strictions on the decay mechanism of the neutral
particles if the experimental value of the energy
ratio for the two leptons is outside the bounds for
an effective pointlike structure, as is the case in
high- energy neutrino interactions.

For completeness, the relevant phase-space in-
tegrals needed in the calculations are given in the
Appendix.

II. DILEPTONS FROM SPIN-2 PARTICLES

The first case considered, and probably the most
interesting one, is the decay L' - p.

'
p, v, where

L' is a heavy spin--,' neutral particle ("heavy lep-
ton"). Since, in the following, only decays of the
above structure, that is, A- p.

'
p. B, with A. and 8

some neutral particles, will be investigated, the
momentum variables and masses are fixed once

and for all to denote

Pg Py P p Pyy Pp+ P27 Pp (2.1)

rn„= m, m„& =m~ =0 (2.2)

(p, u}" . (2.5b)

Results for more general functions can be obtained
in principle from the above functions by taking
yower series, this will be done for some special
cases.

(a) First, the case (2.5a) is considered. Taking
the phase-space integral of (2.4) over the second
lepton and neutrino momenta using Eq. (A4), the
momeutum distribution of lepton 1 in the rest sys-
tem of the Cecaying leyte is givea by

For simpUcity, obvious from (2.2), mass influ-
ences of the decay products are neglected. In
general, the notation follows that of Ijorken and
Drell. '4

Assuming left-han6ed neutrinos, the most gen-
eral invariant decay amplitude originating from a
vector- and axial-vector interaction is (in the
charge-retention order) of the form

f =NFN(A')y&(1 - y5)u(P}u(P, )y" (1 —Xy5)v(P2), (2.3)

%here a urnpoiatlike structure has beea approxi-
mated by an overall form factor F. N denotes
some normalization factor which does not influence
any results since it cancels in the calculation of
energy ratios. In general, for simplicity, a factor
N will always denote some overall normalization
constant (absorbing all uninteresting factors)
which drops o@t in the energy ratios and hence
does not infiuence any results Sqs.aring (2.3),
Summing over final-state polarizations but keeping
the spin s„of the initial lepton, gives the well-
~owe result

Q lf l'=Nlr l'i, "p2((1-wag„„[p p) ms -p, ]

+(1+&)'(P,P, „-ms, P, „}I. (2.4)
At this point one has to make an assumption about
the form factor E in order to be able to calcu-
late the relevant phase-space integrals. The two
most simple choices are a symmetric and an
asymmetric dependence on the charged-lepton mo-
menta, which means that one has to calculate the
energy distribution for the charged lepton with
form factors of the kind

(2.5a)

p!"..t*, ~)=f,, zz" &tp-u. -&)EIfI'

=N ~( 2~ 3)
&""(1+&') g(x, S,X) -2 -(,)

(1 —x)(1+» eos6), (2.$)
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with

(1+1)' 1 —4K+a', (1+xP
g(x 8 X) =3(1 —x)+—

4(1 +x'} (4x —3)+e cos8
1+%.' (1-x)—,",--—' 1-4m+x' (-x —1) 0 &x=2E /m &1

(2.7)

where & denotes the degree of polarization of the decaying lepton, and 6) denotes the angle between polari-
zation direction and p, . The energy expectation value for lepton 1 in the system of the decaying lepton
moving with velocity v is obtained from (2.6}by making use of the Lorentz-transformation properties of
the involved expressions, that is,

1
7r

(E,)„„=w dx sin8d8x'(1 —v cos8)p',"„(x,8)
0 0

2(n+ g)
=N 2„,2 5 ](X +1)[3(13+11n+2n ) —(e ~ v)(3 —n)] +2k(n+l)[3+(e v}(2n+9)]], (2 8)

(2 9)

where e is the polarization vector of the decaying lepton and the result has been rewritten in a rotationally
invariant form. The corresponding expectation value for lepton 2 is obtained by just changing the sign of
A. in (2.8). This allows one to calculate bounds for the energy ratio R of the two charged decay leptons by
taking the extrema of the resulting expression over all occurring variables. In Table I the result of such
a procedure for three different types of the form factor F is given. The restriction to ]b ]&1 in thethird
row of Table I is necessary since one has to use a power-series expansion in P, p, in order to obtain the
result. Obviously there are only small deviations from the case without form factor, where one has ~R
c 2.

(b) Next, the case of an asymmetric form factor, that is, Eq. (2.5b), has to be considered. The corre-
sponding equation to (2.6) is now given by

p~,"„(x,8) = N „, „3 x""(1+X') g(x, 8,A)+, (1 —x)(1+& cos8)

Owing to the asymmetry of the form factor, the momentum distribution of lepton 2 is now

n+ 2)
pi2'„(x, 8) = N 2„„x(1—x)" (1 +X')g(x, 8, -X). (2.10)

From this the energy expectation values for the two leptons, again in the system where the initial lepton
moves with velocity U, are obtained to be

2(~+2)

(E,), „=N „,2 ', ((A.'+1)[3(1 31+4n+3n ) —(e ~ v)(3+2n+n )] +2K[3(1+4n+n')+(7 ~ v)(9 +n8+n')]),n+5!
(2.11)m""'2)

(Eg, „=N „„,f(A.'+1)[3(9n +13)—(e ~ v)(7n+3)] + 23 I 3(3n —1)—(e ~ v)(5n +9)]j.
Calculation of the extrema of the energy ratio R gives the results collected in Table II. This result tells
one that using an asymmetric overall form factor, essentially any value of R can be obtained. Of course,
the above increase of R with n is just a consequence of choosing F~(p, A)", if one uses F~(p, b)" in-
stead, one would obviously obtain a corresponding decreasing R.

TABLE I. Bounds for dileptons from, spin-& particles with a symmetric form factor.

F(P)' P~)

(p .p )n/2

1+a(p&'pg+b(p, p,)

2 (Pg P2)
2b

Remarks

n 0
Extrema for n=2 or 3

a,b real

b real, )b)&1

(EgBounds for 8= '
&E, &

——R—2.21
2.2

0.45 ~R~ 2.21

0.47 «A» 2.13
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+v &~)

(P e$ )fl /2

1+a E'P, 0)

&E»B. d. f-a=&»
n+2 n+4

0.34 «R» 3.56

TABLE II. Bounds for dileptons from spin-
2

parti-
cles with an asymmetric form factor.

energy ratio R of the produced dileptons. To get
a nontrivial result, that is R 41, one has to add
to a scalar and pseudoscalar interaction term at
least a term with tensor interaction. Qf course,
this means derivative couplings, but the whole
amplitude is anyhow only to be considered as a
phenomenological approximation to the exact am-
plitude resulting from some underlying theory.
Therefore the invariant amplitude f is assumed
to be

III. DILEPTONS FROM SPINA PARTICLES

The decay of a scalar particle a' b'p'p, with
a Wa', b WP, is considered with respect to the

f =NB u(P, }tgs(l —A.y, )

-& grp), k.o" ] ~(p, ). (3.1)

Squaring this and summing over spins results in

Zlfl'=NIF I']gs'(I+&')p, ~ P, +2g,g,(p p, k p, -p. p, k p, )

+gr [2P ~ k(P P,k ~ P, +P P,k P, ) —(P ~ k)'P, P, —2ps k ~ P,k P,]}. (3.2)

Integrating this over phase space using the relevant integrals of the Appendix gives, for the momentum
distribution and the energy expectation values in the case of a, symmetric form factor (2.5a),

~gn+ 1) +&+ 1 n+4 ~ 4 n+4, n'+9n+22
PI'I„(g, g )=Ig „„4g'(I 2')+4g g ' ( —2 +g * ' ( —2*

2
+2'(

)( 4) }
(3.3}

s+I (

(E2}g „=N „—
6

'& [2gs'(1+As)(n+3)(n+5)(n+6) —2 gsgmr'(n +)6+ gmrs'(n+ )4].n+6! (3 4)

There is no dependence on the velocity U of the initial scalar particle since there exists no fixed direction
for a scalar particle. Therefore an additional term to (E(}, due to a Lorentz transformation from the rest
system, vanishes upon integration over the solid angle of lepton 1. The corresponding equations for lepton
2 are obtained by just changing the sign of gs (gs - -gs} in E(ls. (3.3) and (3.4). In the same way one gets
the following results for an asymmetric form factor (2.5b):

2 Jl

P * )(( g2. (( *P (* P g),

4 1 4
n+2, 2n'+10n +11
m+3 (n+3)(n+4)

(3 5)

m &"+ 1& nl,'6)} l4g '(I+~')(s+3)(s+5)(n+6)

—4m gsgr(n +4n+1)(n+6)+m4grs(ns+6pp+9n+6)],

si
2 + 2 (s +6 }i l 12gs (I + & )(n + 5)(n + 6) —4 ms gs gr(3n —1)(n+ 6) +m4g s(3)s '+ s + 6)] . (3.6)

The bounds for the energy ratio R after taking the extrema are collected in Table III. Only the most sim-
ple form factors have been considered for, in analogy to the spin--,' case, the essential features already
appear in this way.
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TABLE III. Bounds for dileptons from spin-0 particles.

Bounds for R = Remarks; definition of parameters

(P g'Pp)"
&—p (1+p«RM
++p u —p

o.'= [2(n+3) (n+4) (n+ 5)]

P = (n+6)«~

0.64 «R«1.58 Extremum in the case of a symmetric
form factor

(p, p )n/2 a(b —c}—d a(b+ c}—d

f (b —c)—g f (b+ c)—g
a=n3+ 6n~+ 9m+ 8

2n (n+2) (n+ 5)

[3(n+3)(n+5)(lln~+ 26n + 16)]

(n'+4n +1)k

3n'+n + 8

(3n —1)k

(n + 6)(Ss3+ 3n~ —9n —8)

1.66 «R «4.60 In asymmetric case, bounds increase
with n

IV. DILEPTONS FROM SPIN-1 PARTICLES

Finally, the decay of a neutral spin-1 particle, A'-b']L(, p. , where againA'„=L'„, b'cP, is investigated
with respect to consequences for the energy ratio of the two leptons. The calculation proceeds in analogy
to the spin-0 case. Again, one has to introduce a phenomenological derivative coupling in order to get a
nontrivial result for the bounds on R. A suitable choice for the invariant decay amplitude is given by

f =NFL„k, u(P))[g~g""(1- Ay, )+i gro"'] U(P, ) .

Keeping the polarization vector e„of the initial particle A. '„ fixed, the square of (4.1) is
I

p (f )'=N)F]'fg~'(1+A')(e ~ k)'p, ~ p, +2g~gre k(e ~ p, k p, —e p, k p, )

+gr [2e ~ k(e ~ p~ k p, + e ~ p, k p~) —(e k)~ p, p~ +2k p, k ~ p~] ).

(4.1)

(4.2)

Actually there is no need to keep the polarization vector e„since, after the first phase-space integration,
terms containing e„ in the momentum-distribution function p(x) are proportional to (e P, ) . The effect of
the integration over the solid angle of lepton 1 in the calculation of (E,) is then just the same as if one had
started with the corresponding distribution averaged over all polarizations of the initial particle, owing to
the assumption of vanishing lepton mass. Again the dependence on the Iorentz frame of 4'„drops out in
the calculation of (E) Denoting .by p(x) the averaged momentum-distribution function, the following results
are obtained for the symmetric and the asymmetric cases [(2.5a) and (2.5b), respectively]:

p, ,„(x,g~) =N „„2g; (1+X') 1 —2x —+x — —2gqgr 1 —2x+xn+2 ' n+ 3 n+4 ' ~ r - (n+3 (n+4

@+9 pg +9yg+16, n'+9n+22
( ( ()( ~ )) ( &)( ~ 4)- I' (4.3)

P.".!(x, g s) = r,",.'(x, gs)-
2(@+2)

(E,, &),, „=N 2, ( 6) ( [3gq'(1+ X')(n+ 1)(n+ 4) + 4gz g r(n+ 1)+gr'(5n'+ 4ln+ 76)], (4.4)
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TABLE IV. Bounds for dileptons from spin-1 particles.

(Eg
Bounds for R= '

(E2)
Remarks; definition of parameters

u = [3(n + 4) (5n 2+ 41n + 76)]

P = 2(n+ 1)

(p,.u)"~'

0.88 «R«1.14

a +bz a +bz+
c+dz c +dz+

1
z~ = -(—g ~~)f

Extremum in the case of a symmetric
form factor

a = ns+ 8n2+ 15n + 4

b = 9n3+ 86n2+ 225n + 152

c=3n +9n —42

d = 27n2+ 169n + 152

f= 23n3+ 225n2+ 636n + 608

n(n + 3)(7n + 40)

(8{n + 3)(9{n + 3)~+ 16n4+ 109ns

+ 100n2 —189n + 248]) )

2.96 «R «3.34 Increase of bounds with n in asym-
metric case

2"" (n+ l)(n+ 2) [ n+ 3 (n+ 3)(n+4) (n+ 3)(n+ 4)

, 8 9 4
2n'+Sn+8 2, 2n +10n+11

(4.5)

m2&n+2)

m2 (n+2)

(E2), „=N

6 &

[g&'(1+&') (n+ 3)(n'+ 7n+ 8) + 2' g r(n'+ 8n'+ 15n+ 4) +g r'(Qn'+ 86n'+ 225n+ 152)],
n+6 !

(4.6).

6 ! [g~'(1+ X')(n+ 3)(Sn+ 8) + 2gqg r(Sn'+ 9n —4)+g '(27m'+ 169n+ 152)j.n+6 !
Taking the extrema in the usual manner gives the results collected in Table IV. Again only the most simple
cases have been taken into account.

V. CONCLUSION

The whole calculation shows that only in the case of an asymmetric overall form factor can appreciable
deviations from a value close to 1 for the ratio R be obtained. This means that, in order to obtain such a
deviation, one has to build the basic interactions in such a way that structure effects emerge in a different
way for the two leptons. In neutrino interactions this puts severe restrictions on models which try to ex-
plain the experimental value of R by a three-particle decay.
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APPENDIX

For completeness, the relevant phase-space integrals are given here. Owing to the approximation of
vanishing masses, there is no difficulty in calculating them, which would be rather tedious without this
approximation. The general phase-space integral which is needed to calculate all occurring ones is given
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by

dpdp2 '5(p p, -—p, )p»x . .xp2

=A H&X ' ' ' X P ff+g g g~j ~~2+ 4X ~ ~ ~ X g"@n
ft

Q

(P ) A" g g Ql Qnx '''xg2Q(n 2)2Q-n jf n

+ ~ ~ ~ +
P') " ' i'A " ' i' g"Q IQ2 X ~ ~ ~ X g~Q(n 2) Q-(n I) p2Qn jf n Oddn

Q

+4 'lj n

2 "(n+1) ~ ~ ~ (n —k+1) '

(Al)

where QI) means sum over all inequivalent permutations (2) and [n/2] means the largest integer contained
1«/2 Of course, Eq. (Al) is valid only for vanishing masses, that is, p, '=p'=0. From the general
fo™la(Al) it is easy to obtain the two phase-space integrals necessary for the spin-]. case, that is,

l d'}tl d'
5(p p, —k-)p,"k"k "(p, p, )"

A'

= r (P P2)" '
2 (n + 1)(n+ 2)(n+ 3)(n +4)

x {8(n I+)(p ~ p, )'P"P"P" +2(n+ 1)P'(p ~ p, )'[2(p g" + p'g" i) - (n+2)P" " ~]

+4nP'p ~ p, [(n 1+)(pi pp +p,"pnp }—3p,"p p~] +n(n+I)pnp ~ p (pi )I' p"g ~ pn n~)

+n(n —1)P [(n+1)P P P)I 3(PIIP P&+P p)I)IP )]+Gpvp)Ipx) (A2)

II —2
=

22 n+I n+2 n+3 n 4 14(n+ I)(n+2)(p ~ p, )'p "P"P —4(n+1)P"P'p ~ p, [g~p p, +n(p~p" +p', p~)]

(A3)

r 2
2, 5(P P k)k,P„(P P)„2 2, 5( P k)P„k.(P k)

P'
2 (n+2)(n+3) ' 2

+ ( + }(n+2)p'p p,[p p,(g"'p"+g"'p')+np", p'p']
—"(n+1}P'[P Pi(P,'g"'+ p', g" ~I+ png"")+(n-1)(p", p,"p" +p,"p,'p")

J

+3n(n —1)P'P"pip', +GIp,"p,"p,")I
In (A2} and (A3} the relation P=p-p, has been used. Terms proportional to p,"p",p~ are not needed, since
they do not contribute in the calculation owing to the approximation of vanishing masses.

The phase-space integrals for the spin--,' case are obtained from (A3) by contracting with p, and replac-
ing n by n —1. This gives

P2 p)I pII
1

2
p,'a~ +wp~p', (A4)

where again the term proportional to P", Py does not contribute in the calculation.
Finally the integrals for the spin-0 case are obtained from (A4) by multiplication with (2/P')g"', that is

(A5)
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