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Periodic Euclidean solutions and the finite-temperature Yang-Mills gas
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We present explicit, periodic solutions for SU(2) Euclidean gauge theory and briefly consider the
contribution of the corresponding finite-temperature configurations to the partition function of the Yang-Mills

gas.

I. INTRODUCTION II. PERIODIC EUCLIDEAN SOLUTIONS

In an earlier work' we showed that finite-action
classical solutions of non-Abelian Euclidean field
theory' are relevant in an apparently different
physical context, that of an equilibrium ensemble
of Yang-Mills fields at a finite temperature. In
both cases the continuation it- T is made. ' This
substitution converts the field-theoretic vacuum
generating functional into the functional integral
for the partition function, where 7 is confined to
the ra.nge 0 & i ~ P (P = I/kT),

Z= d exp dT d xg, B„. 1.1
0

It is reasonable to assume that the dominant con-
tributions to Z come from fields that are nezr
classical fields (f)(x, ~) which minimize the (Eucli-
dean) action and which obey an additional restric-
tion char aeter istic of finite- temper atur e field
theo~" y,

We consider pure SU(2) Yang-Mills theory in
Euclidean. space:

Z = (I/2g') Tr(F,„)',
F„„=B,A„—B„A„+[A,A„],
A =g(o'/2i)A' .

The equations of motion are

D, F,„=B„F„„+[A„F„J=0.

(2.1)

(2.2)

(t) = 0 (2;4)

or

(t) = c(f) (2.5)

Using the by-now familiar (I.orentz gauge) ansatz""
I

A, = i o ~ &„ In(t), (2.3)

one finds that the equations of motion, Eq. (2.2),
are satisfied provided that

4(x, T+ p) = 4 (x, ~) . (1.2)

We look only for solutions which obey the self-
dua, l (or anti-self-dual) condition

We prove'd in Ref. 1 that for the pure SU(2) Yang-
Mills theory the space of periodic Euclidean solu- .

tions A„(x, T) can be divided into an infinite set of
homotopy cia.sses, corresponding to the classes
of mappings S xS'-S'. Thus at finite tempera-
tures, topologically distinct field configurations
exist just as in the zero- temperature case. '

In this paper we present explicit periodic solu-
tions for the SU(2) case and begin our study of the
contribution such finite- temperature configura, —

tions (which will be referred to as "calorons")
make to the thermodynamics of the Yang-Mills
ga,s.

Periodic Euclidean solutions also arise in other
interesting physical situations, e.g. , the path-in-
tegral treatment of thermal (Hawking) radiation
in spacetimes with event horizons, ' and the study
of the large-order perturbation theory behavior of
the ground- state energy. '

1
2~ fjs ~8 ~8 (2.6)

The (Euclidean) action and Pontryagin index' are
defined by

2 = —(1/22') f d'x Tr(x „,)', . (2.7a)

q(d) = (1/12x') fd xq.'r("X,.X,.)'. . (2.7b)

2=-(1/2q') fd'x qqrxd.

The partition:function is simply

(2.8)

Z= dA exp -S, (2 9)

When Eq. (2.6) is satisfied, (2((A) =+(g'/8w')S. In
the finite-temperature case Jd x is always to be
understood to mean f8 d&fd3x. With A written
as in Eq. (2.3), S takes the very convenient form'"
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where S is given by Eq. (2.7a) or (2.8).
For the finite-temperature situation. '"we seek

solutions to Eqs. (2.4) or (2.5) which are periodic
in 7; i.e. , obey Eq. (1.2). In addition, there are
the conditions that P be real, finite, and strictly
positive in order that A'„given by (2.3), be pro-
perly beha. ved.

There are several mays to arrive at the solu-'
tions whj. ch me shall presen. t. One method is to
start from the zero- temperature multipseudo-
particle solutions of 't Hooft and Jackiw, Nohl,
and Hebbi. ' 't Hooft takes, for the solution of
(2.4),

(2.10)

F= 277NP '
I
x —x,I,

7= 277NP '(r r,)—,
(2. 16)

X = 277NP

we thus consider the following periodic solutions
to /=0:

More generally, if me put N poles in the "physi-
ca.l region". 0 & 7- T, & 13,

r~= r, +kP/N,

we simply replace P in Eqs. (2.14) ahd (2.15) by
P/N W.e can also change the sign in the denomi-
nator by the shift r, - r, - 13/2.

Defining

which Jackim et al. have generalized to the con-
formally covariant form P = 1+ (7'/2F) sinhF(coshF - cosT) '. (2.17)

(2.11)

Both solutions give q=n and thus ea.ch. may be in-
terpreted as a. configuration of n pseudoparticles.

To form an expression periodic in ~, let

Since we have reduced the problem of solving
the original nonlinear equation for A„Eq. (2.2),
to that of solving the linear homogeneous equation

Q = 0, we can generate more general solutions by
superposing solutions of the form (2.17) with arbi-
trary scale size, pole location, and pole structure

X'[(x - x,)'+ (7 —7„)']'. (2.12) Q = 1+ g (7,.'/2F, ) sinhr, .(coshF, —cosT, ) '.
(2.18)

Comparing with (2.11), we see that the pseudo-
particle "sizes" X, and spatial "positions" y, have
a,ll been set equal, and the sum is now over a.n in-
finite number of poles.

If the poles a,re a,t

7q-—70+ kp, (2.13)

Q is clearly periodic. The sum can be performed,
and we find

The. solution in Eq. (2.17) can also be written

Q = 1+ (7'/4F) [coth(F/2+ i T/2)

+ coth(F/2 —iT/2)]. (2.19)

An approach mhich would have led us directly to
this form of,the -periodic solutions' comes from
seeking solutions to UP= 0 which are spherically
symmetric (around any chosen point):

(«'/13lx- x.l) sinh(»P 'lx —x. l)

x[cosh(277P 'Ix xol)

cos(277p—'(7.- T,))] '. (2.14)

Q(x, r) = Q(7" =
I
x I, 7.) .

Then,

29 8$r'+
9+ BJ

(2.20)

(2.21)

Note that Q satisfies Eq. (2.9), is real, positive,
a.d -IXI as fx

However, in the zero-temperature limit (P- ~),

where the dot signifies differentiation with re-.
spect to 7. Setting

Q- x'[IX —x, l'+ (r T,)'] ', - P = r 'f(7, 7.), (2.22)

which corresponds to a field which is gauge equiv-
alent to A. „=O and hence carries zero topological
charge. " The simplest finite-temperature con-
figuration with a nontrivial zero-temperature limit
comes from considering

we obtain

y =7' '(f'+f"), (2.23)

mhere the prime signifies differentiation with re-
spect to 7'. Hence, a general solution to /=0 is

y= 1+ (777t'/'pl x —xol) sinh(277p 'lx —xol)

x[cosh(2. 13 IX X, I)

- cos(277il '(7.—7.,) )J '. (2.15)

y= r '[f,(r+ir)+f, (r —ir}], (2.24)

where f„f, are arbitrary functions. Requiring Q

to be real implies f, and f, real or f,*( )=fr, (z*).
Combining this with the requirements that Q .be
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dlmensionless, per lodlc finite, and positive, we
are led to the coth term given in Eq. (2.19). Of
course any overall multiplica, tive factor is un-
specified by this approach.

In what follows we propose to use the name
"caloron" to refer to the finite-temperature con-
figurations corresponding to the periodic solutions
(2.17) or (2.18).

III. PROPERTIES OF THE CALORON SOLUTIONS

Given the solutions to Eq. (2.4) presented in the
last section, it is straightforward to calculate A,
from Eq, (2.3), F,„ from (2.1), and then the action
from (2.7a). Of primary interest to us is the con-
tribution of any solution to the partition function,
Eq. (2.9), since all thermodynamic quantities fol-
low from this.

It is simplest to calculate the contrjbution of
our classical periodic Euclidean fields to S by
using Eq. (2.8) which may in fact be further sim-
plified for our case." For the by, sic solution. , Eq.
(2.17), it is possible to exactly integrate' S over
a finite spatial volume, V= —'~R'. The resulting

' general expression is very involved and will not
(

be'given. For thermodynamic applications we are
interested in the large'-volume limit for which the
exact expression for the action becomes"

S ~ (1 —101T 'N'O'T'X'/R')BzK
1'&0, 8

where the validity of the expansion depends on the
assumptions that R» (1/kT) and the second term
in. the parentheses is small compared to 1."

From Eqs. ($.1) and (2.7) and following, we see
that when V- ~ (R —~), q(A) =+N, i.e. , the calo-
ron (anticaloron) carries an integer winding num-
ber.

IV. AN INTRODUCTION TO THE THERMODYNAMICS

OF THE YANG-MILLS GAS

approximation. " The only quantum corrections
which will be (approximately) included are those
arising from zero modes. Without further inves-
tigation of other modes contributing to the parti-
tion function and a study of thermal fluctuations
for a,rbitrary tempera, ture, it seems prema. ture to
calculate thermodynamic quantities or correlation
functions.

The state of the finite-temperature SU(2) Yang-
Mills gas will b'e specified by giving the occupa-
tion numbers n, (q, ), n (q, ) of the caloron, anti-
caloron modes carrying winding number +q, , -q, ,
respectively. '" In the partitjon function we must
sum (integrate) over all physically distinct con-
figurations. Then. , assuming the system is in con-
tact with a constant temperature reservoir with
which it can exchange (quasi-) particles, one
would use the grand potential to calculate thermo-
dynamic functions. "

Wha, t we would like to calcula. te is the contribu-
tion to the partition function from a, distinguishable
physical configuration consisting of n, (q, ) calorons
with winding'number q, and n (q;) anticalorons with
winding number -q, , where all "positjons" and
scale sizes are arbitrary. Since we have not found
perjodic solutions corresponding to multi-caloron-
anticaloron states, this cannot be done exactly.
What is typically done at zero temperature is to
make a "dit.ute- gas" approxjmation" —a,ssuming
all calorons (i.e. , instantons at zero temperature)
and a.nticalorons are far apart and hence approxi-
mately noninteracting. Then one simply super-
poses assumed nonoverlapping eplorons and anti-
calorons. In addition we only include configura-
tions cai rying topological charge +1.""The
validity of'the dilute-ga, s approximation is a mat-
ter of conjecture until a more exact treatment is
possible. Nevertheless, if we apply this same set
of approximations in our case, it leads to an. ex-
pression of the form

In this section we do not attempt a complete
treatment of the finite-temperature Yang-Mills
gas. Such a, treatment requires an. investigation
of other modes, especially those consisting of
both calorons a,nd anticalorons. In addition we
have not calculated the quantum corrections to the
caloron contribution. Neglecting such corrections
may grossly underestimate the true caloron con-
tributions, Polyakov" has shown in some simple
pseudoparticle examples that the exponentially
small effects characteristic of the semiclassical
approximation are greatly enhanced when quantum
corrections are included.

What we shall do in this section is to use the
basic caloron contribution to construct, at least
formally, the partition function in. the "dilute-gas"

2'aii t = g [V& D exp(-S, q)]"''"-

exp[i(n, —n )e]
n, fn f

= exp[2 cos& Vg D exp( —S„)]. (4 1)

The combinator ia, l fa,cto rs n, f and n ~ ar ise be-
cause we only wish to count ea,ch topologically
distinguishable configuration once, and these are
labeled by the net topological charge n, —n (re-
call that we a,re only including calorons a.nd anti-
calorons carrying +1 unit of charge). The angle 8
parametrizes the mixing of states due to thermal
and quantum fluctuations (the latter alone produces
this phase freedom at zero temperature).
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S
&

is the classical part of the one- caloron con-
tribution, i.e. , Eq. (3.1) with N= 1. The full one-
caloron contribution including quantum corrections
is represented by the factor VPD exp(-S„). In-

eluding only the zero-mode part of the quantum
corrections and assuming the usual renormaliza-
tion-group transformation to the running coupling
constant g'(I/x p), we have

dy 8m'
y@)exp( S,) = d'x dv —,(8w'/g')' exp (1 10m'O'T'X'/R')

0

At, finite tern/&eratures the dominant scale size is determined by the temperature 1 & p.
r
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