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A systematic perturbation theory for high-density quark gas is developed. The ground-state thermodynamic

potential is evaluated up to the second order in the Gell-Mann —Low coupling a, (M). Phenomenological

analysis of the resulting equation of state suggests that the neutron-quark matter phase transition occurs at
neutron matter densities nI, & 2 baryon/fm' provided 0.2 & a, (3 GeV) &0.3. The result supports the

conjecture that superheavy stellar objects may exist in the quark rather than in the 'neutron phase. The
production of quark matter in heavy-ion collisions is also discussed briefly. .

I. INTRODUCTION

This paper is a detailed and extensive account
of recently reported results on the quantum-
chromodynamic theory of highly condensed mat-
ter, i.-e. , quantum theory of colored quark gas. ~

Quantum chromodynamics (QCD) is believed to
be the underlying theory of hadrons. Its funda-
mental entities are quarks (fermions) and gluons
(vector bosons) interlocked by the non-Abelian
local gauge symmetry. Owing to its remarkable
property of asymptotic freedom, QCD is believed
to provide a theoretical foundation for naive par-
ton models; the latter appear to be a lowest-
order approximation to perturbative aspects of
QCD.

It is frustrating that until now the experimental
successes of parton models served as the only
raison d' etre for QCD. Quantitative tests of QCD
are still lacking both for experimental and theo-
retical reasons.

At present, perturbative methods are known to
be the only available tools for a theoretical analy-
sis. Unfortunately, physical quantities amenable
to such analysis are extremely limited. Well-
known examples of these quantities are the elec-
tron-positron annihilation cross section and mo-
ments of structure functions of deep-inelastic
leptoproduction. ' ' Two more candidates which
have been recently proposed are the thermo-
dynamic quantities of the quark gas' and the jet
production characteristics in the electron-posit-
ron 3nnihilation. 4 It is difficult to overestimate
the physical significance of these unique quantities
which may determine the predictive power and
limitations of perturbative aspects of QCD

Applicability of perturbation theory is known to
be hampered by infrared divergences and mass
singularities. The former are generated by the

masslessness of gluons, whereas tQe latter stem
from the small mass of some quarks. For very
different reasons the above. -mentioned quantities
are devoid of infrared divergences and mass sin-
gularitie s.

In the case of the electron-positron „cross sec-
tion this property is ensured by the Kinoshita
theorem. "The moments of the deep-inelastic
structure functions are amenable to perturbative
treatment since they are given by the coefficient
functions in the Wilson operator-product expan-
sion of two currents. The Wilson expansion,
disentangles the finite short-distance effects in
the product of bvo currents absorbing them in the
coefficient functions. ' Thermodynamic quantities
of the zero-temperature quark gas have well-
defined perturbative expansions due to Pauli's ex-
clusion principle as first pointed out in Ref. 1.
The validity of the perturbative analysis of jets
has been conjectured and verified explicitly to the
lowest nontrivial order in the interaction coupling.

It was pointed out many years ago that infrared
divergences and mass singularities are due to the
degeneracy of physical states with massless par-
ticles. States differing by a number of soft par-
ticles are almost degenerate and in general make
nondegenerate perturbation theory inapplicable.
Obviously, the above argument does not hold when

transitions between these states are forbidden.
The'ground state of the massless quark gas is
one of these remarkable exceptions. The Pauli
exclusion principle, activated by the existence
of the Fermi sea, prohibits quarks inside the
Fermi sea to absorb soft gluons and thereby pre-
vents infrared divergences. Quarks on the top of
the Fermi sea occupy a vanishing phase-space
volume and, hence, Qo not contribute to thermo-
dynamic quantities. Furthermore, the addition
of sof t quark- antiquark pair s to the Fermi sea is
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forbidden and, therefore, mass singularities are '

also prevented.
One suspects that thermodynamic quantities of

massless quark gas at nonzero temperatures are'. .-.

also well defined. in the perturbation theory. - H*ow~

ever, we are not aware of a simple argument
proving this conjecture.

Interest in thp qua, rk gas was originally moti-
vated by an inte. resting suggestion that in the
dense stellar objects, matter' exists in the quark
rather than in the neutron phase. ' ' /he sugges-
tion spurred a se'ries of papers on the feasibility
of a neutron-quark-matter phase transition. The

'

studies have been carried out in the framework
of the MIT bag model' "' and the Born approxima-
tion of @CD.""" The former contains the bag
constant to account for cto'nfining forces and
assumes a constant 'strength of interactions,
whereas the latter uses a density-dependent
effective charge defined according to the Gbll-
Mann-Low equation. Evidently, the ultimate
theory of phase transitions should i.ncorporate the
complementary aspects of both approaches in a
consistent fa,sMon.

Calculations of the thermodynamic quantities
beyond the Born approximation have been carried
out by two different methods. ""The approach of
Ref. 1 will be presented in detail in the subsequent
sections. To facilitate the readers' orientation
we comment on Refs. 16 in the conclusion of this
paper.

This paper is organized as follows: In Sec. II
the formalism for the temperature Green's func-
tions is reviewed with an emphasis on the regular-
ization and subtrac'tion schemes. The nonzero-
temperature formalism is employed to regulate
singularities stemming from the discontinuous
character of the zero-temperature Fermi dis-
tribution. Iri Secs. II and III, the zero-temperature
thermodynamic potential of the quark gas is ex-
pressed in terms of bona fide Feynman diagrams
This reduction is carried out to the fourth order
of the interaction coupling with a careful -zero-
temperature limiting procedure. Infrared and
mass singularities ari. sing at this s'tage are con-
trolled by the dimensional regularization. Sec-
tion IV contains explicit calculations of the fourth-
order thermodynamic potential; in Sec. V.the
equation of state of the quark gas is analyzed and
neutron-quark-matter phase transition is dis-
cussed; in Sec. VI the results are summarized,
and their i.mplications for neutron stars and heavy-
ion collisions are briefly discussed. Finally, the
second-order expressions for unrenormalized
propagators and the quark-gluon vertex in the
general covariant gauge are supplied in the Ap-
pendix.

A. Thermodynamic potentia1

Let H(P, q) be the Hamiltonian of the system
with canonically conjugate variables p, q and
conserved quantities O„(P,q), A =1, . . . , K. The
thermodynamic potential of the system 0 is de-
fined in te'rms of the partition'function Z by

Z =. Trexp —P IJ- p. „O
A

10 = ——lnZ,

(2.1a)

(2.1b)

where P is the inverse temperature and'the p, „'s
are chemical potentials appearing as Lagrange
multipliers, and being fixed by eigenvalues of
the O„'s. The expression (2.1a) for Z represents
the trace of the Euclidean evolution operator
exp( itH, ff ), , 8-of the system with the Hamilton-
ian H„f =H -Q p, „O . More specifically it is a
direct sum of Euclidean transition amplitudes
between ideritical states.

Therefore, Eq. (2.1a) c'an be recast in the func-
tional form. Namely, by the standard method, it
can be reduced to a path integral along classical
trajectories. However, special care should be
exercised defining the phase space (P(t), q(t)) of
classical trajectories since the classical system
of interest obeys first-class constraints. An

elegant definition of this phase space is given by
Faddeev"' in the quantum field theory of con-
strained classical systems (t=~). The method
directly applies to Eq. (2.1) provided that the class
of classical trajectories considered is restricted
to periodic (antiperiodic) paths q(0) =

& &q(—iP) in
the case of bosonic (fermionic) degrees since only
diagona/ matrixelements (q~ exp( —PH, ff) (q) ap-
pear in Eq. (2.1). The distinct choice of periodi-
city conditions ensure's a correct spin-statis'tice
relation, ' namely it implies the Bose-Einstein and
Fermi-Dirac distri. butions for free Bose and'

Fermi systems, respectively (see Sec. IIIA).
Thus, one derives the functional representation
for the partition function of the Fermi system
with non-Abelian gauge interactionsis, xo.

If. FOR)4AI.ISM FOR THE.TEMPERATURE
GREEN'S FUNCTIONS

In this section the formal apparatus of the tem-
perature Green's functions will be concisely re-
viewed, The derivation will be based on the function-
al integral representation of the thermo-dynamic
potential Q. Since the system under consideration
has a non-Abelian gauge symmetry, its qu3ntiza-
:tion requires spe.cial attention. This problem will
be discussed. first and:the appropriate Feynman
rules will be hence defined. Next, the renormaliz-
ation scheme and subtraction prescription will be
described based on the Dyson-Schwinger equations.
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z(ex) , N(=()) ex(xe(x\cxc tAexe „pIf A f A'x xe(x)exx( x)Ax(x)+Ti(x) e(x)+ e(*) (( x) (2 2)

where the normalization constant Ã()3) is irrele-
vant for the subsequent discussion. In Eq. (2.2)
anticommuting fermionic [))(x)t and commuting
gluonic [J„(x)]external sources are incorporated
for later purposes. The quark and gluon degrees
are represented by anticommuting fields (j)(x)
=f(j)~' *(x)j and commuting fields A~(x) =(A„(x))
with superscripts (o. , a, i) designating the Dirac
(o), flavor (a), and color (i) indices, respectively.
They will be suppressed whenever it does not
cause confusion. The anticommuting fields C(x)
=(C'(x)j are the Faddeev-Popov" ~ ghosts which
are artifacts of previously mentioned first-class
constraints. The effective Lagrangian off is
given by'

g „,(x) = &,(x) + g, „,(x), (2.3a)

R,(x)=((i)) —I,)('e-,'Ax gx„e' (1 ——. e e,
0

(2.3b)

z., (x) = -g, (j ) 'A', ),'(j)+i g, (A„T*A,)s'A",

+ 4 gc (A„T'A„)(A"T'A') +igo(s„C*T'C)Ai)',

(2.3c)

with p = j(+ p, y„)(, = p, „o",where the diagonal
matrices 0" define conserved fermionic charges
0 (x) =)j)(x)iy, O "(j)(x), e.g. , baryon number (A =B),
electric charge (A = Q), strange ne s s (A = S), etc.
In Eq. (2.3b) the o. o is a gauge- fixing parameter.

From Eqs. (2.2) and (2.3) one immediately in-
fers the Feynman rules. They are summarized
in Fig. l. Observe that as a result of the (anti)
periodicity condition, the time components of the
momenta are discrete, namely, the gluon mo-
menta K = (K, K' = 2)TmP), whereas the quark and
ghost momenta p=(p, p =2m(m+ —,

'
)p) m being an

arbitrary intege r. The re fore, e ac h loop con-
tains an integration over spatial components as
well as a summation over the "time" components
of the internal momenta P, i.e. ,

a, i b. i S„h; (P) = -(P -m) B,b 8(;

(b) )t(. i j( v, j

(c)

(d)

kgb. kgP„;,„(j&) = ~, [g~, -(j-u)
k

—j 8;
(p) = ——'

p(o) yi p

(e)
i'(P, j)

k (g, i)
{o)

= -
i g C, f [ ga„( r - q )P + g,„~ ( j( - r )

&
+ g &~ ( q - k ) j

(f )
k, (a, (

q(Pjj
S(8,m) (o)

i ((),4)
g [Cirnn nj (Qap Qp p g(r& g gp )

(g) q
(~, i)

&(j) e' ' k(l)

C i jn Cnm(( Q(ra Qg j Q~g g p~ )

+ c;p„c„mi(gas Qpg Q~g Qpp) ~

FIG. l. Euclidean Feynman rules: (a) quark propagator with/=p'+iy„p, (b) gluon propagator, (c) ghost propagator
(d) quark-gluon vertex, (e) three-gluon vertex, (f) four-gluon vertex, (g) ghost-ghost vertex. The quark and ghost mo-
ments are p=( p, p" = (2x/p) (m+~a)) and the gluon moments are q=(Q, q" = (2))/p)m), where m is an integer.
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1 1

S~ (2)'
m

Now the renormalization of the theor'y will be
explained heuristically. Observe that at zero
temperature (1/P =0) and at zero fermion density
(p, „=0) Eq. (2.2) reduces to the Euclidean gen-
erating functional of QCD. Furthermore, the
temperature and density effects apparently do
not affect the ultraviolet behavior of QCD. ln
other words, the renormalization scheme of
QCD should be adequate to render Eq. (2.2)
finite in all orders of perturbation theory. %e
will proceed with this assumption in mind.

Ultraviolet divergences will be regulated via
analytical continuation of the space dimension
from 3 to n —1.'1 The dimensional regularization
exhibits ultraviolet as' well as infrared diver-
gences in the form of poles at n=4. The important
virtue of the above approach is that it automatic-

g =Z '~'P A =Z '~'A" C =Z '~'C

g=Z g J =Z J
-1 -1/2

g0 Z1Z2 Z3 RR y

(2.4a)

(2.4b)

(2.4c)

~0 Z Z2 m R PA ZA Z2 O'A
-1 R

0 =Z3™R

(2.4d)

which leads to the renormalized partition function

ally regulates all infrared singularities which, as
explained in the Introduction, occur in all inter-
mediate steps of our calculations.

The renormalization procedure is known to be
a special rearrangement of the perturbation
series which allows the absorption of all ultra-
violet singularities (poles) into the renormalized
parameters of the theory. The renormalization
is formally achieved by rescaling of fields,
sources, and parameters g0 Q 0 ~ 0 and pA as
follows:

z(q„,z„)=N(P) jr tI~„ac ac„ux„expIf'„d x[2(x"l ~ 2, , (x) J„,(xM"„(x„",|~ g (x)q (x)„j(„x)g ~(x)jI, „
(2.5)

where

d"x('' )=— d~ d"-'x(" ) (2.6a)

Z,"(x)=g (Z,iff+Z„p,„iy„O"—Z m )g ,'+ „AZ( g&-' —8 S„)+ &,&„A"„—Z„C„*&'C (2.6b)

2"„,(x) = -Z,g„gsy'A", 'A'P„+ iZ, » g „(A. "„T'A,")&"A~, + ,'Z, » g„'(A~T'—A~)(As T'A„") +i Z „gs(&„C„*T'C„)As", .
(2.6c)

Z, = Q a„,(i)g (n —4) '.
tn~ 0&0

(2.7)

There exists an arbitrariness in the choice of
coefficients of regular terms {a„,(i), k=0}. Their

Henceforth, the index R designating the renor-
malized quantities gs, gz, etc. will be omitted.
All of the renormalization constants exhibited
above are not linearly independent because of the
Ward-Slavnov gauge identities. It will be con-
venient to choose {Z,„Z,», Z„].as a. set of linearly
independent renormalization constants. It will not
be necessary to specify the relation of the re-
maining constants Z, ~, Z, ~, and Z, to the above
set, since the corresponding vertices AAA,
AAAA. , and CCA will not be encountered subse-
quently. The Z„'s can be chosen to be equal to
Z, due to the Abelian gauge identities (see below).

The renormalization constants {Z,] are given by
a double series in the renormalized coupling g and
inverse powers of (n —4) (Ref. 22)

specification fixes the theory completely in terms
of the parameter s g, p,&, and m which is accom-
plished by various subtraction schemes discussed
in detail in the following subsections.

In conclusion, we define the renormalized fer-
mion and gluon propagators in terms of function-
al derivatives of the generating functional W{g,J].
= inZ{q, dj [cf. Eqs. (2.1) and (2.5)j.

(2.8a)

(2.8b)

Observe that the normalization coefficient N(P)
of Eq. (2.5) cancels in the above definitions.

B. Renormalized fermion propagator

The propagator (2.8a) obeys the Dyson equation
implied by the invariance of the partition function
(2.5) under translations of fermion fields g and g:
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4(x) -0'(x) = 4(x)+ ~(x),

4(x)- 0'(x) = ((x)+ ~(x),

(2.9a)

(2.9b.).

form'inxg the Fourier transformation, Eq. (2.12)
may be'. rewritten) concisely as)

where o and m are anticommuting elements. We
perform the transformation (2.9a) in Eq. (2, 5).
Noting the invariance of the integration measure

and the requirement that the coefficient of
a(x) must vanish, one obtains

(Z,i)f(„+Z„iy„O"p,„—Z„m)(g(x))

+ (-Z,y"X'g )(p(x)At (x)) + 7l(x)(l) = 0. ('2.10)

Here the following notation has been used

(. )iv())) f x,=)(x)T(acn(, ")xA.(",)
&& exp d "x x +J„xA~ x

x ( (x)X(x)x X(x)('(x)1I.

(2.11)

Acting on Eq. (2.10) by 6/67i(y) and recalling Eqs.
(2.8), one immediately derives the Dyson equa-
tion for the fermion propagator

(Z,i ff„+Z„iy„O"p,,„—Z„m)S' (x, y )

+ d" Z x, S', y =-5" x —y, 2.12

[Zp+iZ„y„O„p„—Z m+Z(p)]S'(p) = -1,
(2.16)

where

S) (P)
'

d nxe(&xS((x)
x

P

(2.1Va))

Z() ) fd=".xx"*X(x)'. '
(2.1vb)

(2.18)[Z,p'-Z m+z, (p)]S,'(p) =-1,
where the ' time" component of the n-vector p„
is a continuous rather than a discrete variable.
I et us perform the standard decomposition

Notice that the formal functional structure of the
above equations i.s anaalog)ous to those of ordi. nary
QCD except for the integration measure (2.6a)
and the presence of terms with p,„40.

We turn to the subtraction scheme to fix the re-
normalization constants Z, „Z„, and (Z„j. Con-
sider the zero-temperature (1/P = 0) and zero-
density limit (i),„=0) of Eq. (2.16). Designating
quantities in this limit as S,(p), Z, (p), etc. , one
obtai. ns

z, (p) =p'z, (p')+mz, (p'). (2.19)
where the unrenormalized fermion self-energy
operator 5 has been introduced via the relation

,„,, &y(x)A. (x)0(y)&
(1) ..~.o

Z(x, j)S'((, y)d "(. (2.13)

S x, r,",gg
q~ J'=0

x S'(q, y)$,"„'(&,z)d"$d "rid "f.

Notice that 5 i.s diagonal in flavor and color in-
dices. It is easy to express Z in terms of the
(t)7()A proper vertex fu'nction I'. The latter is de-
fined by

&4(x)A'. (z)(1 (y)
(1)

z„(p)=))I'z „(p') + mz, „(p'),

with

(2.20)

z,.(p') = z, (p') —z, (-M'), : (2.2la)

z„(p') = z, ( p') —z, (m') —z, (m') + z, (-M'),

(2.21b)

the p' = -M' being an arbitrary Euclidean point. .

Then Eq. (2.18) may be recast in the form.

[p — + z. ( p) jsl( p) = -1 (2.22)

Now we are in a position to carry out the sub-
tractions and to define the. renormalized sen-ener-
gy operator as

(2.14)

which, being compared with Eq. (2.13), leads to
the desired equation

provided that Z, and. Z are chosen to be

Z, = 1 —Z, (-M'), .

Z„=1-Z, (-M') + Z, (m') + Z, (m') .
(2.23a)

(2.23b)
(

Z(x, y) = (-Z, g y'X') S'(x, $)I"„'(f,y)

X Q~" .~(fx x)d "$d "g .
(2.15)

Using translational invariance properties of the
above functions S'(x, y) =—S'(x —y) etc. and per-

It is important to emphasize that the subtraction
scheme (2.21) and (2.23) ensures that the zero in
S,' '(p) is at p = m and does not generate infrared
divergences due to the'fact that in perturbation
theory Z, ,(P') have only logarithmic ultraviolet
dive'rgences. Inpassing note that Z, ,(p') are analytic
in the complex P' plane with a cut along the real
semiaxis (m', ~).
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Finally, let us prove that ZA = Z, . The relevant
renormalized vertex I'"„ is defined by [cf. Eq.
(2.14}]

&q(z)[y(x)O" fr „4(x)]4(y» /&1&
I ~-~-~

=ZA d" d "gS' g, I'„,g X S'r], y . 2.24

The I "„obey the Abelian gauge identity. Indeed one
can derive the identity conjugate to Eq. (2.10):

gr(x)) (-Z,i)f, +ZAir„o" pA —Z„,m)

+(g(x)A' (x))(—Z,r'X'g)+q(x)(1) =0. (2.25)

Operating on Eqs. (2.10) and (2.25) by

5 A 5 5

5n(x) 5n(z) 5n(y)

(
5

5n(x) 5n(z) 6n(y) '

respectively, and subtracting the resulting expres-
sions, one obtains

z,s„(y(.)[q(x)o";r„q(x)]q(,)&

+ 6"(x —y )(((z )g (x))0"—5"(x —z)o"g (x)q (y )) = 0.
(2.26)

Combining Eqs. (2.8a), (2.24), and (2.26) we ar-
rive at the identity

(z,/z„)s„r",(z, y Ix) =-5"(z -x)o"s' '(x, y)

+ 6"(y —x)S'-'(z, x)O".

(2.27)

In the limit I/P =0 and p, A =0 the Fourier trans-
form of Eq. (2.27) reduces to

(z./zA)( fa')ro. {p,p-+~ Iq)

='-0"[S,' '(p+q) —S," '(p)], (2.28)

where

r.".{P„p.Iv)6"(p -p. -e)

d nod nyd nxef(P&e-P2y+qx)rA (z y I
x)

Furthermore, by the use of Eqs. (2.19)—(2.22)
an/ the decomposition

r",„(p,P Io) = o"[r.r", (p') p.p'r", (p') p„r", {p')]

(2.29)

Eq. (2.28) leads, to the desired relation

I'", (-M') = 1. (2,30b)

A similar subtraction convention may be adopted
for the renormalized ggA vertex

rl.(P, P I0) = -a~'lr. r,.(P')+P.P'r. (P')

I',„(-M') = 1.
+p.r.s(p')j (2.31a)

(2.31b)

Since r»(P') is related to its unrenormalized
counterpart r, (p') by r» =Z,l"„Eq. (2.31b) im-
plies

Z, ' = I', (-M') . (2.32)

Returning to Eq. (16) one may summarize the
preceding analysis in the form

[s '(p) —r (p)]s'(p)=1,
with

(2.33)

&s(P) = &(P) —(Z, —1)S '(P) —m(z —Z, ), {2.34a)

1 d" 'q
~(P) =(-z,gr„~')—g 2„„,S'(p —q)

x r&(p - &,pI&) ~,',""(4,
(2.34b)

Here Z„Z, and Z, are determined by Eqs.
(2.23a), (2.23b), and (2.32), respectively.

It is important to indicate the M dependence
of the renormalized coupling g(M) and renor-
malized mass m(M) impli. ed by Eqs. (2.4). Also
notice from Eqs. (2.4d), (2.30a) that the renormal-
ized chemical potential coincides with its bare
counterpart and thereby is independent of M;

Obviously Z» and Z become diagonai. matrices
different from the unit matrix when the flavor sym-
metry is broken by the mass term Pm, P. This
point will be implicit throughout the subsequent
discussion.

C, Renormalized gluon propagator

The gluon propagator (2.8b) obeys the Dyson
equation implied by the invariance of the partition
function {2.5) under translations of gluon fields
A„(x) -A~(x) =A„(x)+a„(x). Owing to the invar-
iance of the integration measure QA' =SA the
coefficient of the infinitesimal element a„(x) yields
[cf. Eq. (2.12)]

[z,(&„s' s„e,) —o, s „s,]u',„(x—y)

ZA {2.30a)
+ d Ilvp x +pu g ~ x g 2 35

provided the subtraction prescription for the pri-
mitively divergent term 1", is fixed by

Here color indices are suppressed and matrix
multiplication is assumed; the gluon polarization
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operator TI„„(x)is defined diagrammatically in

Fig. 2. In the momentum representation, Eq.
(2.35) becomes

[Z,(g„,q' —q„q, ) + nq„q, —TI„(q)]&,'„(q) = 1.
(2.36)

S

I+
IV

Proceeding to the subtraction scheme relevant
gauge identities will be obtained. Following the
standard technique" eve rewrite the unrenormalized
partition function (2.2) in a factorized form

FIG. 2. Gluon polarization operator II. Boobs designate
full propagators S', O', S' and full vertices I', T

The Z's stand for renormalization constants
(see text).

2

'

Zfq, Jj= &Zj)I,J],
C+C* exp — d "xd~yC*(x)G ' x y

N,

(2.37)

(2, 38)

where for later convenience thy ghost propagator
G in the presence of the external field A' (x) has
been introduced,

G '(, y~A)= "„:(A) "( -v),
D„(A)= s, +g, T'A-', .

(2.39)

(2.40)

Consider the result of infinitesimal gauge trans-
formations

A,'(x) -A,'(x) + D,"(A)e'(x),

I()(x)- g(x)[l —ig, &'&'(x)],

7)) (x) - T() (x)[1 + ig, X'&' (x)],

(2.41a,)

(2.41b)

(2.41c)

+D„- rJ X +-— 8 8 Zo=o ~

Upon action by &G(x, y
~

5/6J) it becomes

( )
5"(x —y)

~ 2"(2)))*( )G(q, y
—

) q =0. (2.42)

in the auxiliary functional Z, [q, J). Obviously the
only gauge-noninvariant terms are sources and

the gauge-fixing term -(I/2o. ', )(SA)' [see Eqs.
(2.3)]. On the other hand, Eqs. (2.41) represent
infinitesimal shifts in fields. Therefore, by fami-
liar arguments one easily derives

After differentiating once we arrive at the desired
identity

s„'6„"&„'„(x—y) = -on" (x —y),, (2.44)

1n', „(q) = (g,„q' —q, q„) ., d„(q)+ o q", "

+ (q,Q„+q„Q,)d, (q)+ @) @~ d, (q), (2.45)

where

().=I@.= -(q'q;)"*,
&~ &n

&O';6' j

with properties Q' =q', Q 'q =0. Observe that the
presence of third and fourth terms in Eq. (2.45)
are due to temperature and density effects.

Now we can fix the renormalization constant Z3.
At zero temper'ature and zero density Eqs. (2.36)
and (2.45) imply that the polarization operator is
purely transverse

Tl,'"(q) = (g '"q' —q"q")TI,(q'),

which suggests the choice [ef. Eq. (2.23a)]

(2.46)

where the definition (2.39) has been used and re-
normalized quantities according to (2.4) have been
restored. Equation (2.44) is a generalization of
the well-known non-Abelian gauge identity to the
case of the nonzero temperature and nonvanishing
Fermi densities. It suggests the following most
general decomposition:

A functional derivative with respect to Z„(z) gives Z, —1=TI (—M ). (2.47)

6J„(x) ar„(y)

+ax '

Q @ y Z
Z=g=o

= 0. (2.43)

Evidently, the 1/)6W 0 or p,„4 0 induced effects
generate in H„„structure functi. ons similar to
d, , in Eq. (2.45) which are expected to be devoid
of primitive ultraviolet divergences.

Thus, the renormalized Dyson Eq. (2.36) may be
rewritten as
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[&„'(q)—ll'„, (q) l&,'„(q) = I,
where

rl",„(q) = rl„„(q)—(Z,
' —l)(g, „q' —q, q„) .

(2.48)

(2.49)

Equation (2.46)-(2.49) will be used in Secs. III
and IV.

III. PERTURBATIVE EXPANSION OF THE

THERMODYNAMIC POTENTIAL .

In this section a perturbative expansion in n(M)
=g'(M)/4w will be developed by means of a special
reduction teehni'que. The expansion is carried out
for the fermion number N„(p)= —5,0/6p. „rather
than the thermodynamic potential 0 itself. At zero
temperature (1/P =0) the o, (M) expansion for 0
will be easily reconstructed by a, simple integra-
tion of the N„(p,)'s. In this a,pproach the entire
problem is reduced to the analysis of a single
fermion propagator S'(x, y) ~, .„. This is an im-
portant virtue of our method over that of direct
calculations of Q." The reduction technique allows
one to eliminate the chemical potential from the
quark propagators and provides a constructive,
way to normal order the charge O„(x).

First, fine points of the technique, such as
treatment of singularities arising from discon-
tinuous nature of the Fermi surface at I/P =. 0 and
the significance of the quark mass definition

I

A. Reduction of fermion densities in lower orders
I

The basis of our subsequent discussion is the ex-
pectation value of the fermion density 0„,

f d "x(g(x)iy„Z,O„((x))
w&»

f d "x(g (x)i y„Z,O„&(x))
W(1& ' PA=0

(3 1)

Henceforth, the volume t/' will be suppressed. In
Eg. (3.1) the second term on the right-hand side
ensures a-vanishing fermion density at zero-
chemical-potential limit. Alternatively, it ac-
counts for the normal ordering of the charge den-
sity O„(x). Since 0„'s are numerical matrices
Eg. (3.1) may be expressed in terms of fermion
propagator s

through Eels. (23), will be exposed in the lowest
and first nontrivial-order calculations.

Next the reduction technique will be applied to
four th- order terms in the per tug bative expansion
of NA.

Finally, the resulting expressions will be further
reduced to bona fide Feynman diagrams.

All 'analysis will be carried out in the 1/P =0
limit. Special care is required for the limiting
procedure. This important ingredient of the tech-
nique will be discussed in deta. il in Sec. III A.

] ' 'dtt 1p
n~( p) = ——Q:

(2 )„,Tr(Ogiy„Z2[s'(P) —So(P)l)p .2, (6& +~pa (3.2)

By means of a standard trick, the sum Q„can be reduced to the contour integral along the lower (C ) and
upper (C, ) lips of the .real axis in the complex p" plane (see Fig. 3)

n„(p, ) =— ypn

2m 2 )„,q(p")TriZ, O„iy. [S (p)-S,'(p)] j, (3.3)

where gf7l P"

n(P")-(1+c "') ' (3.4)

Recall that the fermion propagator S'(p) is
analytic in p" with a cut along the imaginary axis.
This is easy to verify in the perturbation theory. .

The general proof is straightforward and foBows
from the Lehmann spectral representation. ' The
contours C, may be deformed ab initio reducing
Eg. (3.3),to integrals along the imaginary axis
Imp" & —.p, and the line Imp"= —p, . Notice that the
contribution. from the infinite circle can be ig-
nored since S'(p) —S,'(p)- p/(p")' as ~p" ~-~.
However, a slightly different procedure will be

c.
Dp" ' Rep"

PIG. 3. Integration contours C~, C™~ in the complex
energy plane p" relevant for the evaluation of Eqs.
(3.5), (3.8') (see text). The points p" =(2vrlP)(m+21) are
indicated by dots on the real axis.
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adopted. Namely, the C, contours will be de-
. formed after the interchange of the order of in-
tegration of internal momenta and the external
momentum p". It is important to realize that con-
tours C, do not cross. the imaginary1 axis. This
is unlike the p, =1/P = 0 case when S,'(P) is analytic
in the left- and right-half p" planes connected
through the mass gap (- te~, + fe~) with c~' = p'+ m'.
The Zero-temperature propagator S,'»(p) is not
analytic at P" =O. This nonarialyticity is a poten-
tial source of singularities in n~(tu). For this
reason the p" variable has been "latticized" via
the nonzero-temperature formalism. The practi-
cal use of such a method will be more clear be-
low. Here we only indicate that it allows one to
smear out the Fermi surface smoothing the dis-
continuous character of the Fermi distribution at
1/P =0.

Being interested in the zero-temperature ther-
modynamic potential, we will examine Eq. (3.3)
in the 1/P =0 limit

„q(p")TrO„ty„Z,S (P)
dnp

C+

[t =0] . (3.5)
1/g cp

Here the shorthand notation [ (L( =0] has been in-.
troduced for the S,' term in Eq. (3.3). Now we will
proceed to the perturbative evaluation of Eq.
(3.5). In the lowest order S'(p) =S(p) etc , and.
the first integral in Eq. (3.5) can be performed

trivially by deforming the contour C, to C,
simultaneously encircling the simple poles of
S(p) on the imaginary axis at p&» =- t(t1 —&~) as
in Fig. 3. B,ecall th" t p, = p,"O„and ~w are diagonal
matrices and are, in general, different from the
unit matrix in the flavor subspace. The same
applies to the locations of the poles p&y)
= —i(t1 —g~). For clarity, matrix indices have
been consistently suppressed. The integral
along Impn=- p, exactly cancels the second term
in Eq. (5), and one is left with

w,"'=-., q. ..In(.u ):»(o',r &(()].

x(P"-P(, ))
p "-p n gl/8 ap

(3 6)

g =&+g & &+@ & &+, ~ e ~
2 2

$'=$+$Z"'$+ $z &"$Z"'$+$Z&"$+ ~ ~ ~ .R R R R

(3.Va)

(3.7b)

Subsituting Eqs. (3.7) in'to Eq. (3.5) one finds

After a simple integration one obtains

d tl 1p.n(0)= —2DF „,Tr((pe~, )—O(p, —cp)}
(3.6')

where p,, =— (O„p,")„and Dz is the dimension of the
quark representation of the color group.

i,et us turn to the next order of Eq. (3.5). One
should expand Z, and S'(P) via Eqs. (2.23) and
(2.33)

dn
n&"=Z &"~&„"— — p„g p" Tr O„iy„$ p Z"' p $ p — p. =o

C1 l. /a=o
(3.8)

with

—[p=0]
&/S=o

(3.8')

We make use of Eq. (2.34a) to reduce the above
expression to the form

n
n&'&=-, „q(p")»O„tr„s(O) '"'(u)S(P-.)

The first term on the right-hand side of Eq.
(3.8') is'represented in Fig. 4. Here the quark
self-energy insertion Z"' is determined by Eq.
(2.34a) in which Z„s', 1", and 5)' had been re-
placed by their. lowest-order approximations (see
Fig. 1),

dn-1
&")(u)=

p -(2,).-1 (-g~. ')

~(u) =~(p)-n(&. -&.) . (3 .9)

Observe that the zero-temperature and zero-
density counterpart Zp of the above quantity
vanishes on the mass shell [see Eqs. (2.19),
(2.23)

x s(p —q)(-rv„~')u", , (q),

(3.11)

~.(P)~g= =o

Equation (3.10) will be consistently exploited
throughout this section.

(3.10)
Substituting Eqs. (3.9) and (3.11) into Eq. (3.8')

and interchanging the order of integrations over
p" and q, one finds that the integrand has a double
pole at p&, &

= —i(l1 —e~) and a simple pole at p&»
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Tr ~ (-iOA) ~

plication of the identity. (3.13a) 'yields
1

n-1
—,„., (n'(P") T [ o„&"'(P)S(P)]

P&1&OP"=D": &/8=0(i) ' .
(3.14)

!
Flo. 4. Diagrammatic representation of the first

term on right-:hand side of Eq. {3'.8' ). 'The tilde in'the
self-enerjp insertion stands for the cou»&tei"te'rm '

m{Z~ -Z2): [see Eq. {3.9)]'.: The'vertex y„- is designated
by an. x.

I~(p) = S(P)y.S(P-)(P"-P"„,)', .

which has the, following simple properties:

I&'(P) ~, » j n = —S(P)(P"—P&, &) ~&,

(3.13)

dA(p)
dptl

&n &n
(1 )

=0

(3.13a)

(3.13b)

The identity (3.13a) ensures the equality il-
lustrated in Fi:g. 6. We apply this equality to Fig.
5(b) and make a subsequent change of the variable
p —q- j Then the result stated above follows.

Thus, we are left with Fig: 5(a). A further ap-,

=q" —I()& —t~,); e&,& )I. Similar to the treat- '

ment of Eq. (3.5) we deform the contour of inte-
gration C, to C, (see F'ig."3) picking up contribu-
tions from the poles P&, ». The integral along
Imp" =- )i cancels the [ )i =0] terni in Eq (3.8').
The residues of tht&' poles P&, ) aid P&",

&
are repre-

sented diagrammatically by Figs. '.5(a), 5(b), and
Fig. 5(c), respectively. Here the identity of (d/
dp")S(p) =S(p)y„S(p) has been employed i'n a
diagrammatic form; It is not difficult to convince-
oneself that the diagrams in Figs. 5(b) and 5(c) are
equal and:of opposite sign.

To see this last point easily, , we define the quan-
tity

Notice the. appearance of the factor

J, I

&)'(P&, I) =
dp. &)(P"),/, =, f5()&- e,),

P =-i(g- g~)

(3.15)

whiz/ has support at R single point p"=0. . It should-
be clear;, :.that a -careful zero- temperature limiting
procedure was essential for arriving at the cor-
rect. result (3.14) . .

Now the:equality (3.10)will be exploited. -To this end
fir st a relation between Zh&(P) and the Feynman self-
energy Z&c'&(p) will be established. For real p the latter
is given by a loop integral with an internal momentum
q" running along the real axis [cf. Eq. (3.11)). Its
integrand is analytic in q'" and has P"-dependent
poles at q", =p" +i&~ „Imp"=0, in upper- and.
lower-half planes, respectively. [see Fig. 7(a)] .
When p" acquires Imp" & 0, and p and q are fixed,
the pole q" moves closer to the integration con-
tour ImP" = 0. The q" reaches C( Imq" = 0) at
Imp" =e~, and drags C upwards (c~, &Imp") with-
out crossing it as it is shown in Fig. 7(a). The de-
formed contour C' (P, q) defines an analytic integral
representation for

I

~."&(P) ~, ,
The C'(P, q) may be further deformed to the con-
tour along the real axis C,' and a circle C,' around
the pole q", Imq")0 [see Fig. 7(b)] . The'integral
along C,' reproduces 2&2&(P) in Eq. (3.14), whereas
the C,' integral is equal to the residue of the pole
q" with the opposite sign. It remains to recall
Eq. (3.10) to arrive at the result exhibited in Fig.
8. Thus, Eq. (3.14) reduces to

n&2 &()&,) =g 'D C

P~~2 —$&j. 2,

dn-&p
Q 3 .. .' Tr( () -~,)o(~, -~.)~,„(p, P,)o„y~s,(p, )y"S,(p, )(p, fe, )(p, f~,))-,

&I')

(3.16)

n,"' = Tr (-O.) ~'(p, ", ', ) + +(pn ) + q(p, "„)

(~) (b) (c)
FIG. 5. Dia'grammatic evaluation of E&).:(8.8 ). Barre'd lines represent residues of the fermion propagators, +&

=9(p) (p" —.p&&&) ~&, „&,&~&&, p & &&
= f()& —e&, ). —Th. e integrations over the corresponding loop moments p are res'tricted to

the spatial phase space with volume element ff" ~p/{27'. )";'.
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~ t9 (E(-Ep)

(a) (b)

FIG. 6. Equation resulting from the application of
Eqs. (3.12), (3.13a) to the diagram in Fig. 5(b).

where D~ has already been dei'ined in Eq. (3.6'),
whe~eas C~ is the eigenvalue of the first Casimir
operator in the quark representation of the color
group

(&('X'),»
= C+5,„, Tr(X'X') = Cz Dz . (3.17)

Equation (3.16) can be easily integrated with re-
spect to p,„to find the second-order correction
to the thermodynamic potential

0 = g D~C~ Tr
~ ~

~

d n- lp,

(2„)n -1~ 6(i( —~ &)
f 2:1

x 1+ „.(3.18)
Pl P2

This is a well-known result which accounts for
one gluon exchange scattering of quarks (cf. Fig.
9).

B. Reduction of fermion densities in higher orders

It will be helpful to recapitulate two major ele-
ments of the reduction technique employed in a
restricted from in the previous subsection:

1. Rearrangement of the perturbative expansion
of Eq. (3.5) into terms with a different number of
free fermion propagators through a partial dis-
entanglement of renormalization constants Z, 2

present in Eqs. (2.33), (2.34) either in an explicit
or in an implicit form. It is important that in the
above rearrangement the mass tecum m(Z„—Z, )
in Eq. (2.34a) be left intact for the subsequent use
of the on-mass-shell condition (3.10). The ap-
plication of this step to Eq (3.5) yielded Eq. (3.8').

FIG. 8. The relation at 1/P =0 between the Feynman
self-energy Z((&&lp&)~ &f &, given by (a) and its counter-
part {c).

2. Interchange of the order of integration over
the external loop momentum P" and those of in-
ternal loops. This step reduces the P" integral
along C, to a sum of residues of first- and higher-
order poles and a residual integral along C, ,
which cancels the term [ p, =0]. Further simplifi-
cation of the resulting expression is achieved
through simple identities like Eq. (3.13) and the
on-mass-shell condition (3.10). The application
of this step to Eq. (3.8') yielded Eq. (3.16).

We proceed to the analysis of fourth-order cor-
rections to fermion densities (3.5). For clarity
the first step will be carried out in two stages.
To begin with the Z,S' in Eq. (3.5) will be expanded
according to Eqs. (3.7), and only the terms con-
taining Z» explicitly will be disentangled; the
renormalized propagator S' and the vertex function
I' in Z~( ' will be replaced by their lowest-order
approximations S' ' and I", respectively. The
same approximation is invalid for the gluon
propagator S since it gives rise to infrared di-
vergences. Therefore, the S' will be left intact,
and the analysis of the corresponding term will be
deferred to Sec. IV. After simple rearrangements
one arrives at

(z s')&4&= z&'&sz&2&s+sz&'&sr&2&s

+ S[F.&'& m(Z„- Z, )&'&] S,
g(4) Z(2)g(2)+ [I (o) Sr(2)r(o)@]

1

(3.19)

+ [r&'&sr &'»] + [r&'&sr&'» ]
&'& . (3.20)

The first step of the reduction will be completed by
a disentanglement of S'&" and I'&" in Eq. (3.20):

S""= —Z,"'S +SZS, (3.21a)

I"(2) g(2 ) P (0) + P (2)
B (3.21b)

n(

(b)
where I'B( ' is the unrenormalized counterpart of
the vertex I'&". Equation (3.19) becomes

C' ~t'i

1 ~ (

c
p)

(z,s')&'& =(z,s')&;&„.„... (3.22)

FIG. 7. (a) Points q+(P) =P"+i ~&, indicate the
location of p"-dependent poles in the integrand of
pp (p) [cf. Eq. (3.11)]. When p" acquires Imp" ) 0,
the lower pole q" approaches the q" integration contour
C and drives it upwards to the position C' (Imq" & 0j. (b}
Contour C'. in (a) is deformed to C'~UC'2.

g' '= —T( 8(p, -E, )&9(E~-Ez)
=—Tr 8 (p. -E))&5' (Ei-E2)

FIG. 9. Second-order correction to the thermodynamic
potential due to one-gluon exchange. Barred lines are
for residues of S()(p), i.e., +2 =S2{p)(p" fe&)~&"-
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with

(Z,S )& &= $[m(Z„-Z, )('&+Z(')&"'

+(z —2z )("z("]s,
(Z SP)(4) —$(Z(2)sg(2& )S

(Z $")&"=$(I'&"SZ1"")$)$

(Z si)(4) $(F(o&SZ (2)~)$

(z Sf)(4& —$(I (o)sz (0)~&)(&)$

(3.23a)

(3.23b)

(3.23c}

(3.23d)

(3.23e}

Owing to the decomposition (3.22) it is convenient
to represent the fourth-order correction n„"' to
fermion densities (3.5) as a sum of terms

n "'=n" + n'"'+ n"'+ n'"'+ n"'
A . A A A A A

with

(3.24)

A ,„&)(P")Tr O„iy„(Z,S'(P))(('J)
7()

—[ ))=0] ,~), 8=a, b, . . . .
1/g ~0

(3.25)

In curly brackets the [ )), =0] «& designates the
zero-fermion-density counterpat of the preceding
term.

The second step of reduction will be carried out
separately for each term of Eq. (3.24}. The re-
duced form of the first term nA~' immediately fol-
lows from the previous analysis. Indeed, it is
sufficient to repeat the steps leading from Eq.
(3.8') to Eq. (3.14) to arrive at the result in Fig.
10.

The analysis of the contribution nA
' is straight-

forward although slightly tedious. In the process
of deforming the contour C, to C„one encounters
two first-order poles at P"=q" —i()( —««, ), P"
= b" -i()), —e« „) and a third-order pole at P'"'

i(p—e«-}, w,here q and )), are momenta of in-
ternal loops of two self-energy insertions Z'. The
residues of the poles are evaluated diagrammati-
cally in Fig. 11 via the identity (d/dP")S(P)
= $(P)y„s(P). Those diagrams, which identically
vanish due to Eq. (3.13b), have been dropped.

The above result may be simplified as follows.
Firstly, the last two diagrams on the third line
cancel. Indeed, it is easy to verify that

d

d( „)«[S(P)(P"-P()&)]«. ««

d
=d(, )

[$(P)yg(P)(P —P&)))l« .p,„
P&, &= -i()e&«) ~

Secondly, we apply the identity (3.13a) (cf. Fig.
6) and notice that some diagrams become topolog-
ically identical, e.g. , the first two diagrams on
the second line etc. After these simplifications

one arrives at Fig. 12.
The reduced form of the term nA'" is exhibited

in Fig. 13. The contribution is due to two second-
order poles at P"= —i(p —e««) and P"=q"
—i()). —e«, ) and one first. -order pole at P"= q"+ b"
—.i(&u —««, «), where q and b are internal-loop
momenta.

The same reduction when applied to nA'"' and
n„'" leads to the results shown in Fig. 14. In the
derivation of nA" Furry's theorem has been em-
ployed, namely, fermion loops with three at-
tached gluon lines have been set to zero, in par-
ticular, [)&,=Q]&,&=0. The simplicity of the above
forms is due to the topological equivalence of the
resulting diagrams which leads to many cancel-
lations explicitly demonstrated in the case of
n(e)nA ~

Finally, we combine Figs. 10, 12-14. One dis-
covers the same type of cancellations, e.g. , the
third diagram on the first line in Fig. 12 cancels
the first diagram on the second line in Fig. 13.
The cancellation is easy to see by turning the
latter's upper "rainbow" upside dewn. 'The net
result is exhibited in Fig. 15. It determines a
full fourth-order correction n„'" to the fermion
densities n„,

Observe that terms proportional to ))(P") disap-
peared altogether and only those with derivatives
of ))(P"), namely ))'(P&») and ))"(P&») survived.
These are singular at I/P= 0. We reemphasize
that the presence of these singular factors proves
the necessity of very careful treatment of zero-
temperature limits.

C. Reduction of fermion densities to Feynman diagrams

In this subsection the final stage of the reduc-
tion will be completed. All diagrams in Fig. 15
will be expressed in terms of bona fide Euclidean
Feynman diagrams. In what follows we will set
I/i) = 0 wherever it does not give rise to any sing-
ularities. Furthermore, the Feynman gauge will
be adopted for convenience, i.e. , in the gluon
propagator the gauge parameter n will be set
equal to one [see Fig. 1(b)]. Observe that fer
fourth-order calculations the renormalization of
o'. by Eq. (2.4d) is unnecessary since the lower-
order result, Eq. (3.16) is gauge invariant.

The method employed below is a generalization

2 (Z2 Zi)

m [(Z~-Z,) +(Z~-Z2) (Z«2Z, ) ])
FIG. 10. Fourth-order correction n~A~~ to fermion

densities [see Eq. (3.25)].
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p„'" =-Trop g (p()))

—T D, rf(I,"„1(Q +

tlA = Tr O& q(P,"0)

—Tr0 q(p,"„) 2

+ q'(p, ", )

+ I

2 FIG. 13. Fourth-o'rder correction n& to fermion
densities [see Eq. {3.25)]. Rules are as in Fig. 11.

—Tro, q(P, ", )

I n—
2 Tr 0~ q (P()) )

(a)

d, Is (p) (p" - p(", ) ] p, pn

~ V I

i „, [S(p))(„s(p)(p"- p&", &) ]p.

FIG. 11. (a) Fourth-order correction n& to fermion
densities fsi„e Eq. (3.25)]. Rules are as in Figs. 4, 5
and further graphical notation is explairied in (b)-. (b)
Notations used in (a) with p{&~

= —i(p —p ).

n, =-Tr o„~ (t,"„)(b)

of the derivation of Eq. (3.16) from Eq. (3.14)
based on the relation between the Z'"(p) and the
Feynman self-energy Z,"'(p).

Let us begin with the diagram in Fig. 15(f). Its
Euclidean Feynman counterpart is usually defined
for real external momenta p (see Fig. 16). Apply-
ing the arguments exemplified in Fig. 7 to the in-
ternal momentum k", one derives the relation in
Fig. 16 where the momentum q" of the second in-
ternal loop is reg. l, whereas that of the external
one is complex, P"=iE, P'= m'. Notice that in
Fig. 15(a) the self-energy insertion with an in-
ternal-loop momentum k defines a bona fide Feyn-
man diagram Z,"'(p -q) whose external momen-
tum p" —q" is analytically. continued to complex
values. We will examine diagrams (a) and (b) in
Fig. 15 separately.

In the former case one could deform the q" in-
tegration contour from C to C' as in Fig. 7. How-

ever, special care has to be exercised since
Z, (p —q), p"=is~ has two cuts along the q" imagin-
ary axis with a gap fi(e~ —e~, ), i(e~+ e~, )] between
them. Therefore, the contour C' should pass
above the second-order pole at q"=q„"=i(e&-e&,)
and, furthermore, pass through the gap without
crossing the cuts as shown in Fig. 17. The re-
sult defines a bona fide Feynman dia. gram, exhibi-
ted in Fig. 18(a). It is now clear that by deforming
the contour C' to C, one picks up the residue of
the second-order pole [see Fig. 18(c)] as well as
a contribution from the discontinuity across the
cut (0, q") of the seIf-energy subdiagram Z',"
(p —q) [see Fig. 18(d)]. The former has been
evaluated using Eq. (3.10).

Returning to Fig. 16(b) one easily derives the
relation in Fig. 19. The integral representation
of the Feynman diagram in Fig. 19(a) is such that
the q" integration contour C' passes above the
simple pole at q"=q," with q"„=P",—p,"+ic~
and the double pole at q"=q, , q"„=p,"+if'
leaving the upper poles q,, and q„o'n the left as
in Fig. 7(a). Deforming C' to the real axis (C)
one immediately recovers the result in Fig. 19.
The equations in Figs. 16, 18, and 19 determine
the diagram in Fig. 15(f) which may be combined
with Figs. 15(c), 15(d) in a concise form. Indeed,
using Eq. (3.13b} and Fig. 8 one can reduce Fig.
15(c) as it is shown in Fig. 20. Observe that
Figs. 18(c), 19(d), 19(e), and 19(f), 19(g) are top-
ologically equiva, lent to Figs. 20(a.), 15(d), and
20(b), respectively. Furthermore, it is ea,sy to
see that the diagrams in Figs. 18(d) and 19(c},
arising from the two-particle unitarity discontin-
uities, cancel. Hence, the equation i.n Fig. 21 fol-
lows.

The reduction of Fig. 15(g) can be performed in
the same manner. The necessary steps are ex-
hibited diagrammatically in Fig. 22 and the net

+ —,Tr OA q "(p(",)~

(e) ~ ~ nn, =T&o, tq (p,"„) + (pn r)( pn )

FIG. 12. Simplified form of Fig. 11.
FIG. 14. Fourth-order corrections n@&'~ to fermion

densities [see Eq. (3.25)]. Rules are as in Fig. 11.
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(b)

rl~ =-Trop J7 (p())) rn [(Z~-Z2) +(Z~-Z2) (Zp-2Z, ) ] +(4) (2) 2(Zp-Z, )

(c)

+ Tr of;q'(p, ", )

FIG. 15. Full fourth-order corrections to fermion densities. Rules are as in Fig. 11.

Q(4) Q(4)+ Q(4)+ Q(4)
]. 2 3 (3.26)

and represented diagrammatically in Figs. 26-28.
Recall that they arose from topologically distirict
diagrams determined by Eqs. [(3.23b), (3.23d)],
(3.23c), (3.23e), respectively. Correspondingly

will be refe rred to as the quark self-eriergy,
quark-gluon vertex, and gluon self-energy cor-
rections.

It is interesting that all diagrams except those
in Figs. 26(a), 26(d), 26(e), are given by ordinary
Feynman scattering amplitudes of quarks. Since

result is.summarized in Fig. 23.
Finally, the reduced forms. of the remaining dia-

grams, Figs. 15(i) and 15(h), can be obtained in
a similar fashion. They are presented in Figs.
24, 25.

We substitute the results of our analysis of Figs.
21, 23-25 into the expression for the ferinion den-
sities, Fig. 15. It is easy to see that due to the
mass-shell condition Z,")(m) = m(Z —Z, )'" the
terms in Figs. 21(d), 23(a), 24(a), and 25(a) are
cancelled by fit(Z —Z, )(4) —m(Z —Z, )(')Z", ), where-
as the remaining renormalization constants ren-
der the Abelian vertex x in Fig. 21(c) and tlie
gluon-quark vertex in Figs. 23(c), 24(b), renorm-
alized. After a trivial integration with respect
to tu„, and using Eq. (2.15), we obtain a diagram-
matic expansion for the fourth-order correction
Q("of the zero-temperature thermodynamic po-
tential.

To facilitate the subsequent discussion Q' has
been broken up into three parts

the quarks form a Fermi sea, only exchange
(backward) scatterings are allowed. However,
in addition, there are residual diagrams [see
Figs. 26(a), 26(d), 26(e)] which will turn out to be
crucial to render Q~' regular at the zero-quark-
mass limit.

In conclusion, we must emphasize that in the
derivation of Eq. (3.26) the space-time dimen-
sion n has not been specified. Therefore, all in-
frared singularities in various terms of Eq. (3.26)
are automatically regulated. The resolution of
the problems encountered in taking the physical
limit n= 4 forms a part of the subject of the next
section.

IV. FOURTH-ORDER CORRECTIONS
TO THE THERMODYNAMIC. POTENTIAL

qD

D

C

Analytic expressions for the fourth-order cor-
rections to the thermodynamic potential will be
given. Further, they will be evaluated exactly
in the zero-quark-mass limit, m = 0.

All calculations will be carried out for an arbi-
trary space-time dimension n. Infrared arid mass
singularities of individual diagrams in Figs. 26-
28 will be exhibited in the form of first- and sec-
ond-order poles at n = 4. The cancellation of these
singularities at m = 0 for each subset of diagrams
Q,.', i=1,2, 3, as n-4 will be demonstrated in de-

((9 (Ei- Ep)

(b)

FIG. 16. Heduction of Fig. 15. The circle on the
fermion propagators in (a) indicates that the integration
in k" is along a contour going around the pole k" =p&
—q" -ie& ~ from above rather than from below, i.e. ,
just like C' in Fig. 7(a).

FIG. 17. Cuts of the self-energy Zo (P —q)~&n=;~
ar'e shown by dashed strips along the imaginary axis
in the q" plane; The cuts end at q~ =z {e&+ ~&,),
~a ~~a-a
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tail. The result agrees with the general a,ssert-
ion made in the Introduction that the thermody-
namic potential of the ground state is devoid of
infrared and mass singularities.

In conclusion, various definitions of the renorm-
alized coupling and its gauge dependence will be
discussed. Furthermore, standard renormaliza-
tion-group arguments will be advanced to moti-
vate the optimal choice of the subtraction point

M. In this context the absence of mass singular-
ities is crucual for a valid perturbation expansion
even for m, 4 0, m, «M.

A. Quark self-energy correction Ht4i

Using the Feynman rules of Fig. 1 with n = 1,
one can easily write down analytic expressions
for the diagrams in Fig. 26:

&(4)

~~(4)
1b

d" 'P, 5(p, —e,) 8(p, —es)8(p, —es) y"it'(Pt+ m)y'x'(P', p rrt)y, X'(P,+ m)y, it'~(P +m)
~~(»)" '- (P, —P,)'(P, —P,)' 2ie, Hie, sic, . , 2ie,

(4.1a)

(4. 1b)

with [cf. Eqs. (2.13), (2.29)]

r! (&„s,lo)= „rF'(&,) r rr'-( M. )).-..,(~)

0'4' = ——,'g4Tr1c
P,8(it —&,)
(2~)"-'

(p, +m)yak' (p', —g+m)y'X~(p +m)yp'(p, —q+m)y„X'
2ic, [(p, —q)' —m'] (2s&,)q' [(p, —q)' —m'] (p, —p, —q)']

~ ~ (4.1c)

n&'& =ig 'Tr
1d

d" 'P, 8(p, —&.) (p, +m)y'X'(p, +)my, x'
(2v)"-'

0'.4' =ig4Trie

- (p+ m) ' y"x~(p', + m) y„V 1'
p,"+i~,„,. .. 2ie, (p, -p, )'(p, —p, )' '

d"-'P,8(ii, —e.) (p, + m) y"'X'(p, + m) y, it'

(27r)" - ' 2ic, 2ie,

(4.1d)

(p +m)y"Xr(P, +m)y„~r q

2s&1 . 226~
(P,

"
P,")-

(P, - p, )' (P, P,)' '- (4.1e)

Note that in the above equations the trace applies
to all indices, i.e., flavor (a), color (i), and Dirac
(rr). Also recall that p, =—p, "O„and m are diagonal
matrices with unetluaI elements (it „m,) in the
flavor subspace if the flavor symmetry is broken.
Clearly, the above expressions are reducible to a
direct sum of contributions due to different fla-
vors; quarks of a definite flavor propagate in a
given diagram. The trace over color indices may

+ i' (E(-E~j

(b) (c)

(g)

+ i(5' (E( -Ep)

(~) (~) .-(c)

FIG. 18. Relation between the Feynman diagram (a)
and its counterpart (b). (c) and (d) are contributions
arising from the residue of the second-order pole at
q" = q", and from the discontinuity across the cut
(0,q" ), respectively.

FIG. 19. Relation between the Feynman diagram (a)
and its counterpart in Fig. 16(b). Contributions due
to residues of (c) a simple pole of the gluon propagator

(pi P2 q) at q pi P2 ~ ~pi &2~ and (d)-(g)
double pole of fermion propagators S~(Pi -q) at q"
= pi —i c&i . Rules are as in Fig. 11 and in addition

====-r= =&„p(P)(P" —& IVI)p~=ttp, ~

=—= === = ——'9 (P)dpn ' PV

The Feynman gauge is assumed.
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= -I9(EI-E,) . —te (EI-E,) a) - I8 {E(-Ep) —i8 (E)-E~)

Ps

(o) (b)

FIG. 20. (a) Feyriman counterpart of the left-hand
side diagram. (b) Residue of the double pole at q"
=p& —,i e&, p&

= i e& due to the vertex x subdiagram.
c)

- ig ( E(-E2)

- i8 {E(-E~) ,-i8(E&-E )

yt yV +yVyp —2g fA V g+ V'g" ' '

QV (4.2a)

be easily taken by Eq. (3.17).
It is not difficult to convince oneself that from

' Eqs. (4.1) only Eq. (4.1b) is infrared singular due
to the presence of' the on-mass-shell vertex T',„.
This singularity is expected to cancel with the
infrared singularity of Fig. 27(a). However, in
the zero quark mass limit, m=0, the sum of Eqs.
(4.1) by themselves will be found to be regular.

Now we set m =0 in Eqs. (4.1) and proceed to
the analytic evaluation of the resulting expression.
For the reader's convenience we will write down
for n dimensions some well-knox' identities for
Dirac matrices and some integration formulas
which will be used throughout this section

cI) - i8( E(-E2) - i8 ( Es-E2)

FIG. 22. Reduction of Fig. 15(g) to Feynman diagrams.

-NE QQ' Q'„

(2)I')"(-q' - 2kq +M')

I' (n —n/2)
(47()""r(n) (M'+ k')'

x [k k„—g„,(k'+M )/(n —', n —1)].—(4.4b)

with the Minkowski metric being used in the last
-two equations.

Equation (4.1a) is finite as m-0 and n-4, and
one easily derives

Try~ y" = 4g "", (4.2b) (4.6)
~'P'r, = (n - 2)P-',

n-2
d" 'P=P" 'dP sin '0 do

m r

A d" 'PJ1(P-E.)
2J (2 )n - 12 ( .Pgp2)

(2rl (2

(ii2)m+ n- ~ 2n+2m- nP(~). + m 1)
(4v}" '

~v I'(n —1/2) I'(n+ m- 1)(n+ m- 2) '

(4.2c)

(4.3a)

FicI. I5 (c +d+ f) = —TrOA (g (p&", ))(9 (Ei —Ep) 8 {Ei-Eg) + (I 2) (I —5))

(p~ 'ps =EPEE(l —cosGn E}} I (4.3b)

E'd"q(l, q, ) I"(n —m2) (1, —k„)
(2v)"(- q'-2 kq+M') (4E}""I'(n) (M'+k')"

(4.4a}

where n, —=g'/4)T defines the fine-structure con-
stant.

For m =0, Eq. (4.1a) may also be evaluated
easily using Eqs. (4. lb) (A8} in the Appendix.
Notice that only the subtraction counterterm
Z,")(-M'} survives. Indeed, as p'-0 the self-
ene~gy &,"'(p) [=&,"'(p')p] and its derivative
vanishes as (-p'}"1' ' and (-p')"1' ', respectively,
provided Rex & 6.

This case is typical of dimensional regulariza-
tion of infrared singularities. Therefore, the em-
ployed method may be stated in general terms. All
calculations must be carried out in the region
Ren&v„with a sufficiently large n„where no

(b)

T 0 q'(p" ) = Tr OA g (P",
&

- l8 ( E(-Eg)

(a) (b) (c)

-iTr 0& q'(p" )8 ( E(-E2) +(I —2)

(c)

-I[7)'(p," )e(E(-Ep)e(E(-En)

+ Tr OA q'(p, ", ) — i(9 (F(-Ep)

(e) + (I —2) + (I 3)I

Ps

FIG. . 21. Reduced form of diagrams in Fig. 15(c),
15(d), 15(f); tP&;). = —i (p —&. ), j =1, 2, 3]. Circles on
propagators indicate that corresponding loops deter-
mine bona fide Feynman diagrams.

FIG. 23. Reduced form of Fig. 15(g). Circles on
propagators indicate that corresponding loops determine
Feynman diagrams [ pt'() = —i ip —E( }, i =1, 2, 3] as in
Fig. 21.
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(a) (b)
P(

= Tr Og l7 {p(,))Tr Oa q
'

( p,"„)

(e)(c)

-iTr 0 '(p, , ) |9 ( E -E ) +(t —2)
Pp Pi Pg

Pz
+ I

Pi

c)
Pp

Pg P.i

-i q'(p, "„)8(E~-Ea)8(E~-Es) FIG. 26. Quark self-energy corrections in terms of
Feynman diagrams. (a) Double scattering of a quark (1)
on the top of the Fermi sea (e& =p) from quarks (2, 3) in

the Fermi sea (e2 3 &p). (b) Exchange scattering of
quarks with a renormalized (R) self-energy correction.
(c) u -channel backward scattering.

'

(d), (e) Residual
diagrams: Indices of incoming and outgoing quarks
with identical momenta p, are assumed to be contracted
with the projection operator (p, + n2)/{p," + i 6, ) ~&6

In (b) the x stands for the y.„vertex insertion
in the Feynman self-energy and in (d), (e)

FIG. 24. Reduced form of Fig. 15(i). Circles on
propagators indicate that corresponding loops determine
bona fide Feynman diagrams. [pf';) = —i()2 —6;), i =1,
2 3]

infrared singularities are present. Then it will
be legitimate to perform an analytic continuation
of the resulting expressions from the region
Hen&n, to the physical point n =4 since the func-
tioris involved will be proven to be meromorphic
in n.

It is important to know a priori that the physical
quantity of interest is devoid of singularities, e.g. ,
it is regular as m -0. Otherwise, the interchange of
two limits m -0 and n - 4 may not be justified and lead
to an incorrect result even though possibly finite.

Returning to Eq. (4.1b) with the above remarks
taken into consideration and applying the identity
(3.13a), we find

d P+m ~ d 1
P dPn Pn+& . '

P dPn p2 Pv

All momenta 5, should be integrated over the phase
space td" 'Pa I'(2~) j~(~ ~a)

{,), , 2 (n —2)'I'(3 ——,'n)I" (-,'n —2)
F F 6 (4p)n/2-2r(n 2)

d" 'p,. 8(p, —&,.)
)
„/, ,

(27r)tt - 1 2,E 1 2

(, ) 2 2 r(-,' n - 1)I'(3 —222)
( )1b,F F 6 (n 4)2&- & (4.9)

where for later convenience the function E,tn, M)
has been introduced:

n —2

r2 (~l 1) M2 36/2- 6
= 2r(. I&2)r (. 2) 4-.—

(4.10)

where F,(n, M) is given in terms of the above
function (4.8),(4.8)

In Eti. (4.1c) we first evaluate the loop integral
using Feynman parameters. Performing the Wick
rotation from the Euclidean to Minkowski mo-
menta, q"- —iq", and using Eels. (4.4) one derives

I

(b)(a)
92,

Pi(4)
Q

i

qz
93

Pc

(0) lb) (e)
P

+ i6 (E -E,)e(E -E.,)Tr 0 q'(p, "„)Tt' 0& ~'(p,"„ +'i8 (E(-Ep)

Pi(c)

FIG. 27. Quark-gluon vertex corrections in terms of
Feynman diagrams: (a), (d) Exchange scattering of
quarks with a renormalized (R) vertex correction.
(b) s-channel backward scattering. (c), (e) Scattering
of three quarks. Rules are as in Fig. 26.

+Tr 0 q (p,", )

FIG. 25. Reduced form of Fig. 15(h). Undashed blobs
designate the zero-density gluon propagators X)0(q).

The final integration over two-particle phase space
is evaluated from Etl. (4.3b) with the result
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~ (q) A o(q)

FIG. 28. (a) Exchange scattering with a second-order
gluon self-energy correction 7('p . (b) Medium polari-
zation effects on the quark self-energy. The loop
moinentum q is Euclidean, whereas the external mo-
mentum P is Minkowski (P" =ir).

8(n —2) r'(n —2)I"(3 —-n)
(3n —8)'(n —3) r(~3n —4)

which like Eq. (4.10) contains a second-o'rder pole
at e =4.

Now we combine Eqs. (4.7), (4.10), (4.13)and after
some algebra discover that the residue of the
second-ordeg pole as well as that of the first-
order one is identically zero. Although the algebra
is slightly involved, simplification occurs by
using logarithmic derivatives of relevant func-
tions such as P(z) = [ inr(z)] ' which satisfies the
recursion relation g(z+ 1) =)1)(z) + I/z. The final
result of these calculations is

::Z,(n, M} . (4.11)

The three-particle phase-space integral in Eq.
(4.1d).also can be done by means of Eg. (4.3b).
One finds that 0,„"vanishes identically

(4 ) 2 2
1((I+b+ ('+ 4+e) F F S

m~ 0

n(4) = 0 .1(f
m 0

Finally, 0,',"can be shown to be given by

n(4) = aC2& ~ -1
le E z s 4( 3)( 4)2

(4.12)

B. Quark-gluon vertex correction Q 2

(4.14)

(4.13)
Analytic expressions for the diagrams in Fig. 2V

are as follows:

(4) 21
02( ~)

— g Tr

g(4) 1
2b 2

g( )
2p

n(') =g'& Tr2e

d" 'PP(( -&.) I (P, +m)y'&'(p'. +m)r„""(p„p,)
(»)" ' (P, -P, )' 2ie, 2ie,

d" 'P,8(p.—e,) d" q 1
(2&)" ' (2)T)" q'(P, P, —q)'—
y y'( +)m(„ly"X'( ))4+m)w"&'()(, +~)y x'()(, +()+m)j

2i t, [ (p, —q) —m ]2ie [ (p2+ q)' —m2]

d" 'P.8(V -v.)
~A (2 )" ' (P, -P,)'(P, -P,)'

y„l'()(, +mb"X'()(, +n~ly"x'()(, +m)y, X'()(, —)(, +)(, +m)

j2ie, 2i~,2ie, [(p, —p, +p, )' —m']

d"p, ((p )-~,) .
& (p, +m)y ) '(p, +m)y'X'(p', +m)y()) ~

(»)" ' '" 2i~,2i~,2i~,

(4.15a)

(4.15b)

(4.15c)

The renormalized vertex I""' in Eq. (4.15a) is given by

(4.15d)

(2)i = ~(a» + ~(e)i

2r{..„= d "q y "&'(p', (f'+ m)y„)(.—'(p, —(I'+ m)y„) '
(2 )" q'[(P, -q)'- '1[(p, -q)'- ]

"" «&— (4.16a)

2r('„)
""q

( )
((~P -0'-q)se. .—(P. 0 —')e) r , (2P. P, —&.s)..g.+,]&)"(e)r i j'-'

(4.16b)
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(4.1Va)

with subtraction counterterms I',
&&&

and I', &G)) being defined in the Appendix by Eq. (Al). The trace over
color indices may be easily taken by the use of the following simple identities:

Tr(A. 'A. 'A. 'A') = (C~ —2C~—)C~D~,

jc&&,. Tr(X'X'A~) = 2C~-C~DJ; ) (4. IVb)

where C„ is the eigenvalue of the second Casimir operator in the regular (gluon) representation, i.e. ,

A 59k ( )i))) ( )jk &Jk'

In the zero quark mass limit the evaluation of the above equations simplifies enormously. Let us start
with Eq. (4.15a) for O&4l. First, we carry ou. the q integration in Eq. (4.16a) using the Feynman's paramet-
rization method and setting P,"=m'=0. Doing the integrations over the Feynman parameters and substitu-
ting the result into Eq. (4.15a), we obtain Ccf. Fq. (AB)]

)),'," = D c &0 —-',c„)a,8 &n —2))"&n, M)P 11 ', , ' '
2&@ —3)+,' —&n —2)I.

&I" 'P;fl(p. —e;) 8 2PJ.
m~0 a n —4

(4.18)

Here the second-order pole represents infrared and mass singularities. The last term in the curly brack-
ets determines the contribution of the subtraction counterterm 1',«'&. The integration over two-partj. cle
phase space yields

(
n&'& =- -D C (C --'C )n'~~ "-~ + 'ln '"-

E E E & A s ~ 2(m~O
(4.19)

with F., being given by Eqs. (4.8) and (4.11). The last two terms in square brackets have resulted from
the combination of the first and third terms in the integrand of Eq. (4.18) in the limit n-4. Obviously, the
result (4.19) depends on the subtraction procedure chosen in Eq. (2.32).

Applying above steps to Q',„" one can derive

m~0 a
(4.20)

where the second term in the curly brackets is due to the subtraction counterterm I',&~&. After doing the
final integration and some simple algebra. Eq. (4.20) becomes

(&) F,(n, u., ) 8 2q, ' 9
QM — Dzcz(ac~)n,

( 4)
ln ) q 18 (4.21)

We turn to the correction (4.15b) arising from s-channel backward scattering. Performing the neces-
sary trace algebra in the numerator of Eq. (4.15b), one may reduce 0&," to the form

(4.22)

n&;) = D C (C, —,'C„)o.,'18)&'(n —2)
m~0

(2)&)" '2e&

—(~ —4)r. (P Q)'(P2+ e)' —v'(—P ~ P. —0)'1 + 4P3 2(e'+ (P—, P. ~)']- —
(2w)" (P, e)'(P. + q)'(P -P. -e)'v'-

Now it is easy to carry our the q integration introducing no more than two independent Feynman param-
eters. Completing the remajning integrations one finds

m~O 4/ a
(4.23)

where terms which vanish as z-4 have been
dropped. The complex phase factor is a conse-
quence of the absorbtive part of the s-channel am-
plitude. However, by applying two-particle unitar-
ity to Eq. (4.15b) one can see without any difficulty
that contributions arising from absorptive parts
of two- and three-particle scattering amplitudes

exactly cancel:

lmn&, ~+ rmn,",& = O. (4.24)

Therefore, it is sufficient to evaluate only the
real part of 0,',". The reduced form of the numer-
ator of Eq. (4.15c) is obtained from that of Eq.
(4.22) by substituting &I =P, —P, . Thus, dropping
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terms which vanish as n -4 one gets

ReQ,', = DzCz(C~- —,'Cz)o. ,'16m'

x P (I,(n, p,) +I„(n, iU,,)) (4.2 5)

On the basis of remarks made at the end of the
previous sub-section we find a complete cancella-
tion of all poles at n =-4.

X Plp3 + P2P3 +Plp2

~1~3 ~2P3 ~1~2 P1P3

(4.26b)

The integral I„ is regular at n =4 since its inte-
grand is constructed to be antisymmetric with re-
spect to the interchange of the momenta P, and P,
as P3 p, .- Unf ortunatel y, we have not been abl e
to evaluate Eq. (4.26b) analytically. However, by
quite accurate estimates we found

1
I„(4, p.,)=, —' 5, 6 =0.69. (4.27)

The singular integral I, is evaluated from Eq.
(4.3b). Substituting I„,into Eq. (4,25) one arrives
at

Re 0,," = . D~C~(C~ ——,
'-C„)n, '

E,(n, ii.l
I(

y, )'

(4.28)

One is left with the contribution Q~', ~ given by Ecl.
(4.15e). lt can be easily evaluated via Egs. (4.3b),
(4.1Vb).

fl(g) D C g i C y 2 ~ Fl(ni pa)'
(4.29)

Finally, we combine Eqs. (4.19), (4.23), (4.25)
and Egs. (4.20), (4.23) into two groups

+2 (a+ 0+e) = D~ C~( C~ —~ Cg) &s
(c) 1 2

/

(4.30)

(a) 2 p, g
2(g+e) = 2' Cp-C~+s ~ 8 3 ln

(4.31)

with singular and regular parts being broken up

I, (n, g,) =-2(n —2) P(~(Pa —&i)

&= I 2n" '2e; PP, '

(4.26a)
3

dii —1 g
I„(n, p, ) =2(n-2)P

C. Gluon self-energy correction Q&

The problem of gluon self-energy corrections. is
virtually identical to that of finding the correlation
energy of the electron gas. The latter has a long
history which dates back to original works of Bohm
and Pines" and Gell-Mann and Brueckner. " In
particular, the last two authors investigated the
correlation energy of the nonrelativistie electron
gas in the framework of quantum field theory. Sub-
sequently, Fradkin" developed a general approach
applicable to relativistic systems, as well, and
Akhiezer and Peletminskii" carried out detailed
calculations of the thermodynamic potential of the
relativistic electron ga, s in minn appgoxirnation.
Unfortunately, these authors failed to define in
their theory a systematic renormalization proce-
dure.

Here we will reproduce the result of Akhiezer
and Peletminskii on the basis of. our general ap-
proach which incorporates renormalization effects
systematically (see Fig. 28).

A distinct feature of the problem is the existence
of the plasmon eigenmode in the electron or quark
systems which causes the breakdown of the ordin-
ary perturbation theory. The breakdown appears
in the form of "infrared" divergences (see below).
It should be emphasized that these infrared di-
vergences have qualitatively a different nature than
those encountered throughout the preceding discus-
sion. The former are induced by the medium and
require nonvanishing fermion densities, whereas
the latter are present ab initio due to the massless-
ness of the photon or gluon. The first type of di-
vergences can be regulated by summing up certain
class of diagrams which effectively makes the pho-
ton massive. Therefore, in general, the same
mechanism can be used to regulate the standard
infrared divergences as well. However, it is not
necessary to do so if the system is known to be
free of standard infrared divergences as a result
of intrinsic eancellations. This cancellation is
exactly what occurs in the case of the quark gas.
As has been shown explicitly in preceding sub-
sections, all infrared divergences of the standard
type have cancelled out among themselves in the
thermodynamic potential.

After these preliminary remarks we proceed to
the analysis of Q ', which is graphically repre-
sented in Fig. 28. It is given explicitly by
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(4.32a)

A

(2 )n
Tr d pO~.

d" 'p, .6, (&+m) „~; (8-0+m)r'&'
(2 )

— i6(P —&)
2

r &
(P )

1&I(' (q) —Q')) (q)) ~

(4.32b)

Equation (4.32a) can be evaluated dir ectly. By
definition the renormalized polarization operator
[cf. Eq. (2.49)]

(4.33)

with

Q(2) Iq 2) +(2)(q2) .+(2)( iaaf 2)

~,' (q') being given in the Appendix by Eq. (AV).
Hence, the correction Q„can be easily calculated
for n = 1 and m = 0 with the following result:

dition q k„,(q) =0. Hence, the decomposition sim-
ilar to Eq. (2.45') is suggested:

&„.(q) =(g„.q'- q, q. )«, (q) +Q„Q.&,(q).

(4.37)

Further, we express the structure functions of
the gluon propagator (2.45) in terms of ))~",

and 6,. By means of the Dyson equation (2.48) one
finds

K)„', (q) =(g„,q'- q„q, ) , d«(q) + o—
'D~C~( ,' C„-—,P~—D~C~/Dw) c(,'

(4.34)

+, " 'd, (q),
d«=(1- )),"—6«) ',
d(, +d, =(1 —z- ~« —a, ) '.

(4.38)

(4.38a)

(4.38b)
Equation (4.32b) requires careful treatment.

As was indicated earlier the gluon propagator
$«, (q) is not a.menable to a simple perturbative
expansion since higher-order terms of its pertur-
bation series give rise to singularities B.t q' =0.
For this reason we separate in the polarization op-
erator n„, the piece ~„, which is responsible for
the breakdown of the perturbation theory. Evident-
ly 4„, is completely determined by the contribution
of the matter field,

Returning to Eq. (4.32b) we may rewrite it in
the form [cf. Eq. (4.36)]

d "q

(2 )
nn~ g n„+(.('?)I

&& '»I'. (q) —&,"„.(q)], (4.39)

which upon substitution of Eqs. (4.37), (4.38) sim-
plifies to

Pl/ OP v pv (4.35a) &(4)
z/8 o

„ f 2[in(1 a„+a„)]
In the zero-temperature limit one has

. . &)i"(s) =(- r' Tr)(.'r„S(k) )(,"r,S(k —q)
d "p

(4.35b)

where the term (ji = 0) stan. ds for the quark con-
tribution to w, „', . Equation (4.35b) can be simpli-
fied by the reduction method of Sec. III. Repeating
the steps leading to Eq. (3.6) from Eq. (3.5) one
derives

+[in(1 —6« —6,) + a„+a, ])

(4.40)

accurate to order g'. Equation (4.40) has been
first derived by Akhiezer and Peletminskii" in

, @ED in slightly different notation. To exhibit
medium-induced infrared singularities referred to
above, we write down integral representattioiis of
the structure functions 4t, and 4, extracted from
Eqs. (4.36), (4.3V). Setting m =0 in Eo. (4.36) we
introduce spherical variables according to

q'=Qcosq), Iql =Qsin()),

(4.36)

ltil=e, =- I.mt,

&q = g, Qv t (icosq) +cos8sinq)),

u =—cos0.

(4.41)

which can be shown to obey the transversality con- Using the identity Tr()(.'V) =D+Cz jD~6" one finds .
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~
4' (

g„+b, , = (D-„C„/Dz) o. P—;::tdt
ftl ~(} a F 0

+ 4 1

3g„+a, = (DF CF./D~) &, —' ' tdt
Nt ~P )( ''

. 0

(1 —u2) du

4 p,':t sin'(0(u + i cot(0)' '

(u + i cot(0)'du sin'(0
g' —4 p, 'i ein2(0(u + i cot(())2

(4.42a)

(4.42b)

We see that as (I)'-0, b,„,- p'/Q' and the per-
turbative expansion of the integrand in Eq. (4.40)
gives rise to the medium-induced(p() = 0) infrared
dipvergences.

Akhiezer and Peletminskii22 evaluated Eq, (4.40)
given Eqs. (4.42) in the leading logarithm approxi-
mation a, inn, . Recently, Freedman and McI er-
ran"" '" have further calculated terms of order
n, '. The final result of these calculations is

':="-. ~+)'(-".)'
2 2

x ln —'P ' +(t) ' —093
c '&a

(4.43)

where c)(, = (D~C~/-D„)n, and the function (()(x) is
given by

1. 14
@(x)= —Wx — ln (

I- x
I6 vx

4 1 1, 1
+ —Wx+ (n((+Wx) — 1+—x) I((x.

(4.44)

D. Summary of results and discussion

Now we can combine the previous results to'

find the thermodyna(mic potential of the masslesS
quark. gas in the ground state

(4.45)n= n(0)+ n(2)+ a(4)-. O(n 'Inn )8 S.

where Q"" and 0'4' in the Feynman gauge are
inferrecl from Eqs. (3.6'), (3.18) and Eqs. (4.14),
(4.30), (4.31), (4.34), (4.43) respectively,

(4.46a)

nz' p,n") = D,C,()(,p (2m)y(x ) ', ', (4.46b)
i/Bp '

a . ~a'

Equations (4.34) and (4 43) taken together deter-
mine a fourth-order correction to the thermody-
namic potential gennerated by the vacuum and med-
ium polarization effects.

fl(4) D C p(2)(o( )Q ln
2p, , p.,

-p. i/8-p ~ ~ ', eM

5 1, 21 . . p,
D~C~n, 'g —C„+ C„C„)(2+———166 j

+(D *0 'In )n 2 1(n(Q *, -x) +24( ', )- (,86j( ', '-,-)
as'

(4.46c)

with

1+ 1 —x ')'2
(t)(0)(x) = (1 —x)'i'(I —2 x)+ —,'x'In,

/2

(4.47a)

I

the Gell-Mann-Low function in the lowest nontpivi-
al order. It is known to determine the rate of
change of the effective cliarge (2,(M) as a function
of the subtraction point M

41,)(x) = 3I(1--x) —x 1n
1+(1-x)'" =—P(n (M))

dM 2m
(4.49)

—2(1 —x),

p' '(c( ) = {- 2' C„+2 N J,D~C~/D„ fa, 2 .

(4.4Vb)

(4.48)

Recalling that p.,=(j.„O )„one directly infers
from Eqs. (4.45)-(4.48) fermion densities, con-
jugate to ji„[cf.Eq. (2.1)].

In Eq. (4.46c) 6= 0.7 by Eq. (4.27) and Q(x) is given
by Eq. (4.44). Gne easily recognizes P(2)(n, ) as

(4.50)
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Now the effect of various definitions of the re-
normalized coupling n, (M) will be discussed.
Reca, ll that o.,(M) has been defined by Eqs. (2.4c),
(2.23a), (2.32), (2.47) a,nd by equations given in
the Appendix. The latter depend on the gauge
fixing parameter which determines a 'gauge de-
pendence of the' renorm)alized coup'ling. In par-
ticular, it is easy to find the relationship between
the nF(M) and o.z(M) couplings appropriate to
the Feynman (n = 1) and to the Landau (n =0)
gauges, respectively.

5n, ( M)= n, (M)+ C „~,'(M)+O(~, ').
i6~

(4.»)
Evidently, the thermodynamic potential is a gauge-
invariant quantity, which is apparent from Eq.
(3.1) since it is given in terms of bare densities.
However, the parametrization of 0 in terms of
the gauge-dependent coupling o.,(M, a) introduces,
through renormalization counterterms, an im
plicit n dependence in the analytic form of Eq. .

(4.46c). 1)i)'e would like to reiterate tha. t the ther-
modynamic potential is independent of the value
of n.

There exists an alternative subtraction proce-
dure which defines a, independent of n. Indeed
following 't Hooft" we require renormalization
constants Z,'.H", i=1, 2, 3,' to be given by pure pole
terms -1/(n —4) of Eqs. (Al)-(A3) obtained from
the Taylor-series expansion of Eqs. (A4)-(A7)
at ~ =4; In general, one would choose all co-
efficients {a,(i), k = Oj in Eq. (2.7) to be zero.
It is easy to verify explicitly. in second order
that the resulting couplirig n„(M) is independent
of n. In general, it is known that the above def-
inition of the renormalization constants leads to
the n-independent Gell-Mann-I. ow function
P(n„)." For later reference we give the rela-
tionship between the two couplings nz z(M) in-
troduced above

&.)nz = o.„- P")(n„)(2+ln4)) +C)L H:
4&

—a„' —C ——. N~@Cp/Di),
- (4. 52)
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where C =0.577 is Euler's number.
Evidently a perturbative expansion of physical

quantities a.s a. power series in o.s(M) would be
rather awkward due to the appearance of irrational
numbers ln4m and C.

Finally, we will discuss the optimal choice of
the subtraction point M. The truncated pertur-
bation series (4.45}for A(p, , m(M), o.,(M), M) is
independent of M within terms of higher order
than those present, which may be direclty checked

via the Gell-Mann-Low equation (4.49) In all
orders this independence is clearly seen from
Eq. (3.2) which is given by the bare Green's
function. One would naturally choose I such as
to minimize the relative contribution of higher-
order )terms or, more precisely, to suppress
potent'ially, large logarithmic factors [1n (p,,/M)]"
systematically appearing in higher orders. Thus,
one arrives at the optimal choice

(4.53)p,~

An important remaxk should be made. At high
fe rmion densities such that p,,» rn, for some
"a" the condition (4.53) assumes the absence of
terms ln(m, /M) in the perturbation series, This
requirement is met due to the absence of mass
singularities. Of course terms of the type
(m/M) ln(m/M) would not invalidate the pertur-
bation expansion.

V. THERMODYNAMICS OF THE QUARK GAS

The-equation of state for the quark gas will now
be analyzed. Tentative neutron-matter den-
sities, at which a transition to the quark phase
can occur, will be found. Equations of state of
various neutron-matter' models will be used in
this analysis. "
/

A. Neutron-quark transition densities

The case of physical interest has colored gauge
group SU(Ã) with N= 3 and flavor group SU(N~)
with N~ =2, 3. The Casimir eigenvalues appearing
in Eqs'. (4.46), (4.47) are

2NC =D„=N' —1. , C„=D (5.1}

where quarks a.re assumed to be in the fundamental

representation.
Now the conserved flavor charges OA and their

conjugate chemical potentials pA will be spec-
ified. Actually there is only one independent
chemical potential p~, which corresponds to
the baryon number 8 —3Ns conservation (the fac-
tor of & was introduced purely for convenience).
The remaining chemical potentials p,„» are fixed
by various conditions. Indeed, the chemical po-
tential p, & conjugate to the electric charge is de-
termined from the electric neutrality condition

q = 3No —— — = —0. (5.2)
3 Ops

Here again the factor of 3 is for convenience. The
chemical potential p,, conjugate to the strangeness
8 is fixed by the requirement that the energy E of
the system in thermodynamic equilibrium should
have a minimum. with respect to variations of the
strangeness S—=Nz,



NON-ABELIAN GAUGE THEORIES OF FERMI SYSTEMS:.. .

6E
5$

= .pg =. 0
~

)

E=A+ BWANA.

(5..3a)

— (5.3b)-

i)x = P) = its - I) g )

which may be easily inferred from the identity

"0, „=3(its8+ Po q) . (5.5)
In general,

'
a similar condition applies al'so'to

the charm C =—X~ thereby implying p, ~= 0. ' How-'

ever, the charm quirks mill not be entertained
here, :sine'e the chemical potentials) of interes)t. '

are p~ « I GeV which'exclude the existence of
heavy quarks, i.e., with mass m~ ~ 1.5 GeV.
Furthermore, the excitation of charmed degrees
has a:negligible- effect ih the gluon 'p)olarization)

operator.
The contribution of the charged leprton's) to the

thermodynamic po'tential can also be ignored since
the releva. nt chemical potential j),o is small (I)o'/
ps) «1 (see below). At'this point it is helpful
to notice that the (p, N, and X quark numbers are
coupled to the following combinatioris' of the chem-
ical potentials considered above:

)

'

(5.4a)
)

Obviously, the p,„a=1,. . . , N~ in Eqs, (4.56)
coincide with chemical potentials introduced. in
Eqs. (5.4), i.e, ,

Pl = PP) P2= PPP $3= P) o, (5.6)

%e proceed to the discussion of the equation of
state of the quark gas. To begin with, quark
masses will be completely ignored. The ~+0
effects will be discussed $ater.

The relation between the thermodynamic poten-
tial 0 and, .the pressure P is known to be

(5.V)O':=)-I V '.

I

Recall that in, the previous sectjons the volume
V has been suppressed. From Eqs. (4.45), (4.46)
and Eq. , (5.1) with N = 3 we immediately infer the
equation of state for two, P"' (Nz=2), and three,
P"'. {X~=3), flavor massless quark gas

(, ). , ( ) (. ) (.)
36 6+ a~(101na+1.1V)+2b (111nb+1,1V) ——ln . +0.92 (a +2b )

I

p
~ a +y.~ y -2 -=- a'y' ln —,---— + =— + ]. 36

+ a' —lna —inc + a-b —~ — ln —"-0.25 a'+b' '

a2 2 2
.P ' =, p,~ a +25 1-2 —— +2a'5' ln ab — —,. — —, +3.7:

(5.8a.)

(5.8b}

r

where the subtraction point M was chosen to be
[cf. Eqs. . (4.46c), (4.53)]

(5.9)

(,.) dI "'
cc JLLg

(5.»a)

(5 .1 lb)

~ t

with the electroneutralfty condition' (5'.2) bemg
imposed.

The function Q(x) was defined in Eq. (4.44) and
) .

~ =1+2'.,/p, b =1 —. i),/u„c =1+ u /))

(5.10)

Quark densities may be inferred from Eq. (5.8):

To analyze Eqs. (5.8), (5.11) one needs to know
the running charge nz = n~ ((2/e) p. ). The Gell-
Mann-Low equation (4.49) relates values of n~(M)
at various points. Notice that p(nz) in (4.49) has
been computed up to terms of order n~'

p(n ) p(2)n 2+ p{2)n 2 (5 ]2}

with P"' given by Eq. (5.'58) and P'2' by"

4)) P~2) =-+22 C„'+ (+22 C„+4C~)C~N~DP/8„.

(5.13)
„4

Thus, one can para. 'metrize nz(M) and via Eqs.
(4.51), (4.52) also n~ z(M) in terms of nz(M, )
or nz z(M, ), where M, is a conveniently chosen
point. The resulting curves for various values
of nz(M, ) with M, =. 3 GeV are shown in Fig. 29.
For the same initial value of nz(3 GeV) the ef-
fective charge of two-flavor gas turns out to be
slightly larger than that of three-flavor gas.
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FIG. 29, Behavior of the effective charge ns((2/e}p)
according to Eqs. {4.-42), {4.48), {~.l), {5.12), {5.13)-
with A =Nz = 3. Various preference values are considered
n& {3 GeV) =0.14, 0.17, 0.20. The curves nz (I}are. ,H(23"
obtained fro~ those of e~{tI/I) by Kq. {4.52): o'I {'3 GeV)
=0.20, 0.26, 0,:3$.

Notice that the values of n~. (M) are at least as
much as twice larger than those of ns, (M).
clearly, the distinction between two effective
charges ns(M) and nz(M) arises beyond the Born

approximation. However, the contributions of the
Born terms in 0 corresponding to various choices
of the expansion parameter n, (M), s=L, H, F may
differ significantly for a given value n, (M, ) = n„.
Our preferred choice is nz(M) for two reasons.

Firstly, '
in the Landau gauge unrenormalized

(n,} as well as renormalized (n) gauge param-
eters are identically zero; Therefore, an addi-
tional functional dependence on the chemical poten-
tial p through the running gauge pa, rameter n(p, )
does not arise in higher orders of perturbation
expansion.

Secondly, the ratios (As '/A„"'} and (A&i~ /A~ )
inferred from Eq. (5.8) relate as two to one for
the values of a~ ~ considered in Fig. 29. Thus, .

the n~ appears to be more suitable expansion
parameter for 0 than n~ or n~.

Unfortunately, at present there is no consensus
on the value of n, (3 GeV). The values used above
n~(3GeV) ~ 0.3 should be considered as a ten-
tative choice being suggested by the phenomenolo-
gical analyses of the existing experimental data
on the deep-inelastic structure functions and
electron-positron-annihilation cross section. "

The chemical potential p, @ has been numerically
determined from Eq. (11b) for the values of its
of interest. It should be noted that the desired
solution po = pz }(ps), i = 2, 3, should correspond
to the local minimum of the thermodynamic po-
tential, j.e.,

8 A/9 fto i!! p, (4) (!! )

By a direct numerical analysis it wa, s found that
p,@"= -0.03 p,~ and p, @"=0. Since effects due
to p. @' are neglible, one may set effectively
p, &"——0, simplifying Eqs. (5.8), (5.11) to

(5.14a)

(5.14b)

(5.15a)

(5.15b)

Here the coupling nr = n~((2/e) p, s). has been introduced
according to Eq. (4.51).

The functions (5.14a) and (5.15a) are plotted in
Fig. 30 for various interaction strengths n~(3 GeV)
=0.2(L,), 0.26(I.,), 0.32(L, ). They have to be com-
pared with the equations of state for different

neutron. -matter models presented in Fig. 30 by the
cuj. ves P-P, B-J, P-S, and 8'. These models are
due to Beide and Pandhari. pande, ' Bethe and
Johnson, ' Pandharipande and Smith-, "and
Walecka. '6 The cross point P- vs p. ~ curves cor-
responding to the neutron matter arid the quark



~Op ggEI„IPN GAU~EE THEORIKS OF, FERMI SYSTEMS:.. .

l000— looo—

E
/

~ too
Ql .

Q

E

~ loo

CL

' IO— IO—

I I ] I . . I

.4 '

.5 .6 . '.8
p:8' {GeV)

L L . are equations of state of the quark
gas for effective charges. aJ 2 I3 (see. j.g

8 the Ã =.2 countelpalt of I 2. , The dashe
-curve is obtained fxo/m 1.2 after. ignoring 0,1 no.l
terms. R-P, B—terms. , —J W P-S represent equations of

odels !see text).state in various neutr'on-matter mo e s,

as determines the parameters. of a phase transi- .

tion between these two states of ma er-. i
rule follows romf the condition of thermodynamic
equi 1 rlum between two different phases (see,
e.g. , Chap. 8 of Ref. 37).

Comparison of Figs. 30 and 31 shows that the
t -matter transition densities vary, I a

broad range below n~ =2 baryons~ fm, wi
' teraction-coupling 0.2 ~ n~(3 GeV) ~ 0.32.
U'nfortuna y,tel the lower bound of the transition
d t not be identified reliably as it is
sensitive to the detailed behavior of the equations
of state in the threshold-region p, 3~ 0.3 GeV. In
th' gion the equation of state of the quark gasxs regi
may be strongly affected by quark mass e ec
aswe as e nll th onperturbative effects discussed

er ldin the following subsection. However,er it shou
be noted that naive considerations do not rule out
transitiori densities which are of order of the

l - tter densities. (n =0.16 baryons fm' ..

For examp1e, Eq. (5..15a) with:c z (3 GeV) =
determines. an equation of stee - . ', . ~amos/t identical
with the curve 8 —J in.Fig. 30, and is also rep-
resen e xn -' .t d F-ig. 31 by the dashed curve L.

The contribution of u~'(lncI~) terms is e x i e

i I I ! I I

t 2-
ri & {Baryon/ fm~ )

F:IG. 31. /The baryon number density n& vs the
pressure P in various nP ' us neutron-matter models and the

i '. :3'0, . Open circles indicate neutron-quark gas (see Fight.
: '

quar ma eatter transition densities corresponding o e,
30 The dashed curve representscurves I 2 in Fig.

the equation of state of the quark gas for 0.1 (3 GeV)
=0.24.

in Fig. y
' . 30 b the deviation of the dashed curve-

from the .curve L .Although. higher-order terms
turn out to be negligible at high transition den--
sity it is important to realize that they have an

l t effect on transition densities y
'QllnlQg e op lmth timal choice of the subtrachon poin
(5.9) and the coupling a~.

The dependence on the number of flavors may
be recognized by comparing, in Fig.i . 30 L' and

L, which respectively represent equatiotions of state
for two- and three-flavor quark gag with the same

= 0.26. Evidentlyinteraction strength n~(3 GeV = . . vi e
th tron matter prefers transition to a three-
rather than two-flavor quark phase since e
former has a larger. phase space.

One can see from Figs. .31 and 32 that after
passing to the quark phase, matter becomes
most twice as dense, with the per baryon energy,

rrespondipgl/y larger. . The increase in'E is
iven by 6e =PAL(1/ns) -2 GeV for n~(3 GeV) =
Igse preseri ted paly si s suggests that. the neutron--

s . transition may fake plack at ri eutron-.
matter densities ns&2 baryonffm', pro@i e
& c.~(3 GeV) &0.3; at tke higk end of the densi y
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d ~ 2' . (5.16)

The Debye radius, x~, is easily inferred from
Eqs. (4.42a)

'= Q'&, (Q)

approving ately.
At sufficiently high densities, the quark gas

develops the Debye screening of color which
seems to provide a suppression mechanism
for long-range confining forces. Indeed, if the
confining forces are assumed to be effective at
distances larger than d„ the above mechanism
becomes operative provided

FIG. 32. The $~0 ~~(x} are threshold factors of Eqs.
(4.46}.

«, ((2/e) u, )-- p. ~
Q~/Q O, Q~O 1T

(5.17)

range transition is a A;igMy endoenexgetic process.
The conclusion essentially remains unaffected

if one uses the simple parametrization n~(p, ) =2»/
(91np/&) with 0.2«~(3 GeV) &0.3 or 100 MeV&&
&300 MeV. This expression for the effective
coupling o.~(p) is the solution of the Gell-Mann-
Low equation (4.49) with P(oz) =P "&(4&.~) =-94&.~'
[see Eq. (4.48)]. Obviously, the larger the inter-
action strength n~(3 GeV), the higher transition
densities are. Note that for sufficiently small
n~(3 GeV) the transition may be entirely impos-
sible.

It is important to emphasize that n~(3 GeV) may
be directly inferred from the phenomenology of

QCD.

9. Discussion

The above conclusions should be considered
in the light of the following remarks:

1. Tests for neutron-matter models are lacking.
In particular, their reliability, at densities much

higher than nuclear-matter densities -0.16 baryon j
fm', .has been often questioned. " Notice, how-

ever, that three of the four models considered in

Figs. 30, 31 predict rather close transition den-

sities &2 baryon/fm', supporting the model in-

dependence of our conclusions.
The model I' —8 is distinct from the remaining

ones in that it assumes a solid phase of neutron

matter for ns &0.35 baryon/fm'. Therefore, it
is not surprising that it predicts much lower
neutron-quark transition densities (see Fig. 31).

2. Perturbation theory is expected to break dowp

in the transition region where conf ining forces be-
come important. These forces are known to be re-
sponsible for the formation of neutrons from quarks
and have been ignored in our.analysis altogether.
Therefore, the positions of transition points in Figs.
30 and 31 should not be taken too literally. However,
they are' expected to determine transition densities

Turning to Fig. 30, one finds that the condition
(5.16) is met for the transition points indicated (p»

& 0.4 GeV) if dc-1 fm, given by the size of the
neutron.

3. Quark mass effects remain to be discussed.
The quark masses [m,] are known to be a, mea-
sure of the chiral-symmetry breaking. In gen-
eral, they consist of two components m = mD+ mg.
The first component mD is generated dynamically
and arises from the nonvanishing vacuum expec-
tation of the mass operator Pg. The second com-
ponent, m~, is due to the baze mass present in
the fundamental Lagrangian (2.3).

We will adopt the point of view that the spontan-
eously broken nature of the chiral symmetry is
responsible to confining forces, which in the quark
phases was suggested to be set off by the color
screening. Correspondingly, in accord with pure
perturbative approach of preceding sections, we
will assume that mD=0 and m=m

I,et us return to the thermodynamic potential
(4.45) and set p, = &4~, a=1, . . . , Nz ignoring the
neutrality condition (5.2) [cf. Eqs. (5.4) and (5.6)]:

4~
4' ZI4tm( ) 4t i( ')( )

where |&.'~ = 4&. ~((2/e) p. ~) and p&„,&
(x) are given by Eqs.

(4.47a), (4.47b), whereas Q«&(x) is known in the
limit m, =0,

Q«&(x = 0)=N„0.92+ ln —n~ + 0.71. (5.19)
2m

Recall that effective masses &n, =m, (M) depend on
the subtraction point M= (2/e)&t4» [see Eq. (5.9].
The definition of the renormalized charge n~ will
be assumed to be intact, since the choice of z~
appropriate to the massless case is possible in
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Eq. (5.18) even though m, c 0.
The threshold functions &t «»(x) are normalized

as Q&, »(0) = 1. They are. determined by the phase
space rn'+p & p,

' rather than p& p, and appear as
suppresion factors. Indeed, one sees from Fig.
32 that

~ Q&, »(x)
~

& 1, for x& 1, i.e. , m, ( ps . .

Notice that Q&»(x) decreases much faster that

Q&, &(x) as it is given by two- rather than one-par-
ticle phase space.

In Eq. (5.18) the function &t«&(x) is expected to
be suppre'ssed by two- and three-particle phase
spaces. Furthermore, at high densities the
o.~'(Inn~) terms were found to be negligible for
the massless quark gas (see Fig. 30). Therefore,
being interested in a rough estimate of mass ef-
fects, we restrict ourselves to-the Born approxi-
mation of Eq. (5.18) and ignore p~ dependence of
quark masses. However, we allow them to vary
in a wide range.

m - ~ 100 MeV, m~s 400 MeV. (5.20)

The upper limits are suggested by the MIT bag
model" and nonrelativistic quark models. "

Considering the equation of state with the above
input, one finds only 10/0 variation in the pressure
for p~ & 0.5 GeV. 'The weak dependence on the
quark masses is due to the fact that as quarks be-
come heavier the interaction becomes effectively
attractive &f&&»(x) & 0, x & 0.1.

'Thus, quark mass effects do not seem to be
significant at relatively high transition densities
&1 baryon/fm'.

VI. SUMMARY AND CONCLUSIONS

We have presented the detailed account of re-
sults reported in Ref. 1. We have developed sys-
tematic perturbation theory for a relativistic
fermi gas with non-Abelian gauge interactions.
The regularization and subtraction scheme has
been formulated in detail at nonzero temperatures.
By means of a special reduction technique, the
zero-temperature thermodynamic potential of the
quark gas has been evaluated up to the second
order of the effective fine-structure constant
c&,(M) (see Sec. IVD). A tentative phenomenolog-
ical analysis of the resulting equation of state has
been carried out. It has been argued that the neu-
tron —quark-matter phase transition may take
place at neutron-matter densities ns 6 2 baryon/
fm' for o&,(3 GeV) ~ 0.3(see Figs. 30, 31).

An alternative approach for perturbative calcu-
lations of the thermodynamic potential 0 has been
developed by Freedman and McI,erran. " They
derive an infinite-series expansion for 0 in terms
of the various Green's functions'"; the former
was subsequently used as a starting point for per-

turbative calculations. ' "' ' For comparison,
note that our entire discussion was based on the
well-known representation for fermion charges
given by a single fermion propagator [see Eqs.
(2.1), (2.2)]. The final equation of state of a mass-
less quark gas given in Ref. 16c agrees with our
results, Eqs. (4.46). However, we have several
disagreements with Refs. 16:

(a) A general integral representation of the
thermodynamic potential for the massive quark
gas [cf Eqs. (4.1)] has not been derived in Refs.
16. However, the quark mass is maintained
in some expressions. Unfortunately, these re-
sults suffer from a lack of definition of the re-
normalized quark mass m as well as Z, (m 0 0)
[cf., Eqs. (2.4d), (2.23)]. In particular, these
omissions can be consequential in Ref. 16d,
where nz is considered to be a constant, i.e. , in-
dependent of the chemical potential p,~.

(b) In Ref. 16b the regularization of the Fermi
surface singularities seem to be ad hoc. Calcu-
lations are carried out at 1/P= 0, however, sing-
ulatities arising from 8 functions have been side-
stepped by replacing 8(E) with the analytic func-
tion q(E) from Eq. (3.4). Recall that the regular-
ization of these singularities is an essential in-
gredient of the reduction technique developed in
Secs . .III, IV.

(c) The appearance of diagrams with two-par-
ticle discontinuities such as those in Figs. 18(d),
19(f), 22b, 22c, 22d, etc. has been entirely over-
looked. Qf course self-energy insertions in Figs.
18(d), 19(f) do vanish in the generalized Landau
gauge c& = 1- (n —2)'n, n-4 which was used in
Refs. 16b, 16c [see Eq. (A6)]. However, this is
not true for discontinuities of vertices in the last
diagrams of Figs. 22(b), 22(c), 22(d). Further-
more, it might be very harmful to let n- 4 at
that stage of calculations. The above omission
does not affect the final result since the associated
diagrams can be shown to cancel between them-
selves at the zero-temperature limit (cf., Sec.
IV).

(d) Equations. (5.12), (5.13) have been employed
in Refs. 16c, 16d without making a distinction be-
tween two different charges n~ 8 which are rela-
ted by Eq. (4.52) (see Fig. 29).

(e) Phenomenological models of Ref. 16d assume
that the per baryon energy changes continuously
through the phase-transition point in contradis-
tinction to our general conclusion drawn in Sec. .
VB.

In conclusion, we will briefly discuss possible
implications of our results. At present, the ul-
tradense stellar objects and heavy-ion collisions'
appear to be the only candidates to which the ideas
of a quark gas may be applicable.
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The first candidate has been extensively studied
in the framework of various neutron-matter mo-
dels. In particular, equations of state plotted in
Fig. 30 predict for the maximum mass neutron
stars the following central densities: n, (baryon/
fm')=0. 5(P —S)"; 0.9(g),4 1 4(B.—g)"
1.7(R-P)." These densities have to be com-
pared with corresponding neutron-quark matter
transition densities indicated in Figs. 31,32.
Observe that the former are comparable to the
latter. The comparison suggests that the rnatter
in the central core of superheavy stars exists in
the quark rather' than in neuA'on phase provided
the color interaction st ength o.,(3 GeV) ~ 0.3.

The remarkable aspect of the above conclusion
is that the value of o.,(3 GeV) ~ 0.3 appears to be
consistent with the phenomenology of QCD."

Turning to heavy-ion collisions we note that rele-
vant densities n, are those given in the center of
mass of two ions

n, =n, [2(1+Ez,/M)]' '

where n, —0.16 baryon/fm' is a typical nuclear-
matter density; M is the mass of colliding nuclei
and E~ is the laboratory energy of the incident
nucleus. The present operating range of the Beve-
lac energies E~ & 3M ensures the neutron-matter
densities to be n, & 3n, = 0.5 baryon/fm'. Hence,
the. exciting possibility of quark matter production
is suggested for relatively weak-interaction
strengths o.',(3 GeV) = 0.2.

Clearly, the feasibility of quark matter produc-
tion requires sufficiently accurate knowledge of
o.,(3 GeV). There are other uncerta. inties such as
those due to the nuclei's finite size effects and
the nonstationary character of collisions, which
may affect our naive estimates. These questions
require a further- investigation.
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APPENDIX.

Here we will give general expressions of the
renormalization constants Z. ..(M) (see Sec. II)
in the lowest nontrivial or'der in the covariant
gauge, i.e. , for an arbitrary gauge parameter n.
Relevant diagrams are given by the quark arid
gluon self-energies [see Eq. (2.23a), (2.47)] and
the quark-gluon vertex [see Eq. (2.32)]. They
have been evaluated using Feynman rules of Fig.
1 with m= », = I/P = 0. Calculations are straight-
forward, however lengthy. They give

g(2& I (2& ( M2) I (2& ( M2) (Al)

g(2& y(2&( M2)

Z& &=~/&(-M'),

with

I I2&,»(-wf') = o.(n —2)(C ——.'C„)P(~,M),

(A2)

(A3)

(A4)

(A5)I'I(a» (—M') = p(1+ o. )(n —2)-,'C„E(n, M),
ZI2&(-M') = o.(n —2)CFE(n, M), (A6)

where

-4 N D C /D„)E(n, M),
n-2

(A7)

(M2)~~2-2 r2(„/2 1) r(3 &/2)
(4&T )"i ' I'( 2') 4

(A8)

In Eq. (Al) contributions from the quark gluon
vertex I""and triple gluon vertex AI2" have been
shown explicitly. Quantities Nr, Dr&„&, and C~&„&
determine the number of flavors, dimension of
the quark (gluon) representation, and eigenvalue
of the second Casimir operator in the same rep-
resentation, respectively.
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