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A systematic perturbation theory for high-density quark gas is developed. The ground-state thermodynamic
potential is evaluated up to the second order in the Gell-Mann-Low coupling a,(M). Phenomenological
analysis of the resulting equation of state suggests that the neutron-quark matter phase ‘transition occurs at
neutron matter densities np < 2 baryon/fm® provided 0.2 < a,(3 GeV) < 0.3. The result supports the
conjecture that superheavy stellar objects may exist in the quark rather than in the neutron phase. The
production of quark matter in heavy-ion collisions is also discussed briefly.

I. INTRODUCTION

This paper is a detailed and extensive account
of recently reported results on the quantum-
chromodynamic theory of highly condensed mat-
ter, i.e., quantum theory of colored quark gas.!

Quantum chromodynamics (QCD) is believed to
be the underlying theory of hadrons. Its funda-
mental entities are quarks (fermions) and gluons
(vector bosons) interlocked by the non-Abelian
local gauge symmetry. Owing to its remarkable
property of asymptotic freedom, QCD is believed
to provide a theoretical foundation for naive par-
ton models; the latter appear to be a lowest-
order approximation to perturbative aspects of
QCD. ]

It is frustrating that until now the experimental
successes of parton madels served as the only
raison d’etve for QCD. Quantitative tests of QCD
are still lacking both for experimental and theo-
retical reasons.

At present, perturbative methods are known to
be the only available tools for a theoretical analy-
sis. Unfortunately, physical quantities amenable
to such analysis are extremely limited. Well-
known examples of these quantities are the elec-
tron-positron annihilation cross section and mo-
ments of structure functions of deep-inelastic
leptoproduction.?®* Two more candidates which
have been recently proposed are the thermo-
dynamic quantities of the quark gas! and the jet
production characteristics in the electron-posit-
ron annihilation.* It is difficult to overestimate
the physical significance of these unique quantities
which may determine the predictive power and
limitations of perturbative aspects of QCD.

Applicability of perturbation theory is known to
be hampered by infrared divergences and mass
singularities. The former are generated by the
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masslessness of gluons, whereas the latter stem
from the small mass of some quarks. For very
different reasons the above-mentioned quantities
are devoid of infrared divergences and mass sin-
gularities. ’

In the case of the electron-positron cross sec-
tion this property is ensured by the Kinoshita
theorem.®?®* The moments of the deep-inelastic
structure functions are amenable to perturbative
treatment since they are given by the coefficient
functions in the Wilson operator-product expan-
sion of two currents. The Wilson expansion .
disentangles the finite short-distance effects in
the product of two currents absorbing them in the
coefficient functions.” Thermodynamic quantities
of the zero-temperature quark gas have well-
defined perturbative expansions due to Pauli’s ex-
clusion principle as first pointed out in Ref. 1.
The validity of the perturbative analysis of jets
has been conjectured and verified explicitly to the
lowest nontrivial order in the interaction coupling.*

It was pointed out many years ago that infrared
divergences and mass singularities are due to the
degeneracy of physical states with massless par-
ticles.® States differing by a number of soft par-
ticles are almost degenerate and in general make
nondegenerate perturbation theory inapplicable.
Obviously, the above‘argument does not hold when
transitions between these states are forbidden.
The ground state of the massless quark gas is
one of these remarkable exceptions. The Pauli
exclusion principle, activated by the existence
of the Fermi sea, prohibits quarks inside the
Fermi sea to absorb soft gluons and thereby pre-
vents infrared divergences. Quarks on the top of
the Fermi sea occupy a vénisﬁng phase-space
volume and, hence, do not contribute to thermo-
dynamic quantities. Furthermore, the addition
of soft quark-antiquark pairs to the Fermi sea is
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forbidden and, therefore, mass smgularmes are’
also prevented.
One suspects that thermodynamlc quantltles of

massless quark gas at nonzero temperatures are'.

also well defined in the perturbation theory. How -
ever, we are not aware of a simple argument
proving this conjecture.

Interest in the quark gas was originally moti-
vated by an interesting suggestion that in the
dense stellar objects, matter exists in the quark
rather than in the neutron phase.®** The sugges-
tion spurred a series of papers on the feasibility
of a neutron-quark-matter phase transition. The
studies have been carried out in the framework
of the MIT bag model!®~**2 and the Born approxima-
tion of QCD.13%-15 The former contains the bag
constant to account for c¢onfining forces and
assumes a constant strength of interactions,
whereas the latter uses a density-dependent
effective charge defined according to the Gell-
Mann-Low equation. Evidently, the ultimate
theory of phase transitions should incorporate the
complementary aspects of both approaches in a '
consistent fashion.

Calculations of the thermodynamic quantitie's
beyond the Born approximation have been carried
out by two different methods.*: *16 'The approach of
Ref. 1 will be presented in detail in the subsequent
sections. To facilitate the readers’ orientation
we comment on Refs. 16 in the conclusion of this
paper. '

This paper is organized as follows: In Sec. II
the formalism for the temperature Green’s func-
tions is reviewed with an emphasis on the regular-
ization and subtraction schemes. The nonzero-
temperature formalism is employed to regulate
singularities stemming from the discontinuous
character of the zero-temperature Fermi dis-
tribution. In Secs. II and III, the zero-temperature
thermodynamic potential of the quark gas is ex-
pressed in terms of bona fide Feynman diagrams.
This reduction is carried out to the fourth order
of the interaction coupling with a careful zero-
temperature limiting procedure. Infrared and
mass singularities arising at this stage are con-
trolled by the dimensional regularization. Sec-
tion IV contains explicit calculations of the fourth-
order thermodynamic potential; in Sec. V the
equation of state of the quark gas is analyzed and
neutron—-quark-matter phase transition is dis-
cussed; in Sec. VI the results are summarized,
and their implications for neutron stars and heavy-
ion collisions are briefly discussed. Finally, the
second-order expressions for unrenormalized
propagadtors and the quark-gluon vertex in the
general covariant gauge are supplied in the Ap-
pendix.

- ian Heff =f - EHAOA-
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_II. FORMALISM FOR THE TEMPERATURE
; GREEN’S FUNCTIONS
In this section the formal apparatus of the tem -
perature Green’s functions will be concisely re-
viewed, The derivation will be based on the function-
al integral representation of the thermo-dynamic
potential ©. Since the system under consideration

.. has a non-Abelian gauge symmetry, its quantiza-
tion requires special attention. This problem will
- be discussed first and the appropriate -Feynman

rules will be hence defined. Next, the renormaliz-
ation scheme and subtraction prescr1pt10n will be
described based on the Dyson-Schwmger equations.

A. Thermodynamic potential

Let H($,q) be the Hamiltonian of the system
with canonically conjugate variables },q and
conserved quantities 0,(p,q),A=1,...,K. The
thermodynamic potential of the system @ is de-
fined in terms of the partition function Z by

Z = Trexp[ <H—Z w40 )], (é.la),
Q=—%an, (2‘.1b') ‘

where 8 is the inverse temperature and'the u,’s
are chemical potentials appearing as Lagrange
multipliers, and being fixed by eigenvalues of

the 0,’s. The expression (2.1a) for Z represents
the trace of the Euclidean evolution operator ‘
exp(-— ltHcff )s- -; Of the system with the Hamilton-
More specifically it is a
direct sum of Euclidean transition amplitudes
between identical states.

Therefore, Eq. (2.1a) can be recast in the func-
tional form. Namely, by the standard method, it
can be reduced to a path integral along classical
trajectories. However, special care should be
exercised defining the phase space {p(), ¢(t)} of
classical trajectories since the classical system
of interest obeys first-class constraints. ‘An
elegant definition of this phase space is given by
Faddeev¥® in the quantum field theory of con-
strained classical systems (f=«). The method
directly applies to Eq. (2.1) provided that the class
of classical trajectories considered is restricted
to periodic (antiperiodic) paths ¢(0)={_y¢(~ip) in
the case of bosonic (fermionic) degrees since only
diagonal matrix elements (q| exp(—BHesr)|q) ap-
pear in Eq. (2.1). The distinct choice of periodi-
city conditions ensurés a correct spin-statistics
relation; namely it implies the Bose-Einstein and
Fermi-Dirac distributions for free Bose and
Fermi systems, respectively (see Sec. TII A).
Thus, one derives the functional representation
for the partition function of the Fermi system
with non-Abelian gauge interactions®:19:
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3]
Z{n,J}=N(B)]D¢.‘D$§DC:DC*fDAuexp{f dedsx[eﬁeff(x)’*‘Ju(x)Au (x)+$(x)n(x)+ﬁ(x)¢(x)]},

where the normalization constant N(8) is irrele-
vant for the subsequent discussion. In Eq. (2.2)
anticommuting fermionic [n(x)] and commuting
gluonic [J“ (x)] external sources are incorporated
for later purposes. The quark and gluon degrees
are represented by anticommuting fields ¥( x)
={y***(x)} and commuting fields A, (x)={A} (x)}
with superscripts (a, a,?) designating the Dirac

(a), flavor (a), and color (i) indices, respectively.

They will be suppressed whenever it does not
cause confusion. The anticommuting fields C(x)
={C*(x)} are the Faddeev-Popov'’’ ghosts which
are artifacts of previously mentioned first-class
constraints. The effective Lagrangian £esr is
given by?°

Lotr (%) = So(x) + Line (%), (2.3a)
£o(x) =(iF —mo)zl»+%A”[gw82 - (1 - a—lo>aﬂa”]ﬁ’
- Ccxo’C, (2.3b)

‘ (2.2)

f
Lint (¥) = —goPy 'uAfl Aiw + igo(AuTiAU)aflAlil
+ 5187 (A,TIA)(AFTIAY) +igy(s,,C*¥TC) A},
(2.3c)

with =7+ vy, u=pu, 04, where the diagonal
matrices 04 define conserved fermionic charges
0*(x)=T(x)iy,0%y(x), e.g., baryon number (A = B),
electric charge (A =Q), strangeness (A =8), etc.
In Eq. (2.3b) the a, is a gauge- fixing parameter.

From Egs. (2.2) and (2.3) one immediately in-
fers the Feynman rules. They are summarized
in Fig. 1. Observe that as a result of the (anti)
periodicity condition, the time components of the
momenta are discrete, namely, the gluon mo-
menta K = (K, K*=27mp), whereas the quark and
ghost momenta p=(p, p*=2n(m+ 3 )B) m being an
arbitrary integer. Therefore, each loop con-
tains an integration over spatial components as
well as a summation over the “time” components
of the internal momenta p, i.e.,

(a) a,i p b,j Sai,bj (P) =-(B-m)_'80b8n
R tamay ' Ku Ky
(b)  p,i k v,j i, vj (K) =—‘i—§[g#y—(1-a’)—;‘r]8ij
(¢) i T Gij (p)= ——p'—z Sij
(d) /)\# T - g\
k (a,i)

(o)
) ¢ M
FB. ) 2 5N a( D 2

=—lgClJ1{gar(r<q)B+g(TB(k_r)]'-'-gf’[))(q—k)cf]

4
() k,(d,1)><5(8’m) Ms* = =62 [Cimn Cnj(9ap 95y = 9ar, I5p)

q(B.j)rr Ny, )

+ Cijn Cnmf(gqg QBJ —g‘fB gSJ")

+ Cim Comi(9s 98 ~ 9y 958)

(g) iq(d,l)
r(j)/ﬂ/ \u\k (lp)

TO) = —igCijs ke

FIG. 1. Euclidean Feynman rules: (a) quark propagator with F=#+i Yk, () gluon propagator, (c) ghost propagator,
(d) quark-gluon vertex, (e) three-gluon vertex, (f) four-gluon vertex, (g) ghost-ghost vertex. The quark and ghost mo-
menta are p=( P, p"=@r/p) (m+%)) and the gluon momenta are q=(g, ¢" = (27/B)m), where m is an integer.
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Now the renormalization of the theory will be
explained heuristically. Observe that at zero
temperature (1/8=0) and at zero fermion density
(u4=0) Eq. (2.2) reduces to the Euclidean gen-
erating functional of QCD. Furthermore, the
temperature and density effects apparently do
not affect the ultraviolet behavior of QCD. In
other words, the renormalization scheme of
QCD should be adequate to render Eq. (2.2)
finite in all orders of perturbation theory. We
will proceed with this assumption in mind.

Ultraviolet divergences will be regulated via
analytical continuation of the space dimension
from 3 to n - 1.2! The dimensional regularization
exhibits ultraviolet as well as infrared diver-
gences in the form of poles at n=4. The important
virtue of the above approach is that it automatic-

J

ally regulates all infrared singularities which, as
explained in the Introduction, occur in all inter-
mediate steps of our calculations.

The renormalization procedure is known to be
a special rearrangement of the perturbation
series which allows the absorption of all ultra-
violet singularities (poles) into the renormalized
parameters of the theory. The renormalization
is formally achieved by rescaling of fields,
sources, and parameters gy, a,, M, and L, as
follows:

V=2, A, =Z AR C=Z,1Cq, (2.42)
(2.4b)
(2.4c)

77 =Zz-l/271R3 Ju =Z3 _l/zJﬁ 3
o=2,Zy"Z, -1/2gR s

m0'=ZmZ2_1m Ry Ha=Z,4 Zz—lﬂﬁ’ Qo =Z30 g,
(2.4d)

which leads to the renormalized partition function

Z{nR,JR}:N(ﬁ)f:D sz:D%R:DCR.‘DCﬁ:DAﬁ eXp{fd"x[.,GoR(x)JrSﬁt(x)+J;(xM§(x)+$R(x)nR(x)+ﬁR(x)z/)R(x)]},

where

fd"x(“*’)zf: d‘rfd""x(“"),

_ . 1
LB (x) = Vg (2,18 + 2, uFiv, 0% — Z mg)ib + %A;[Zg(gwaz = 9,:8,) g auav]A',; - Z,C30°Cy,

(2.5)

(2.6a)

(2.6b)

£{ent(x) = —Z_ngaRyuAﬁlk‘wn + iZlVgR(AﬁTiAf)a“A;i + éleng(A,’fT’Af)(A;T‘A;) +ingR(auC§T‘Cn)Ai‘u .

Henceforth, the index R designating the renor-
malized quantities ¥z, gz, etc. will be omitted.
All of the renormalization constants exhibited
above are not linearly independent because of the
Ward-Slavnov gauge identities. It will be con-
venient to choose {Zl'z, Z sy, ng} as a set of linearly
independent renormalization constants. It will not
be necessary to specify the relation of the re-
maining constants Z,,, Z,,, and Z,, to the above
set, since the corresponding vertices AAA,
AAAA, and CCA will not be encountered subse-
quently. The Z,’s can be chosen to be equal to
Z, due to the Abelian gauge identities (see below).

The renormalization constants {Z,} are given by
a double series in the renormalized coupling g and
inverse powers of (n —4) (Ref. 22)

Z,= A mp@) g™ —4Y*. 2.7)
my k=0

There exists an arbitrariness in the choice of
coefficients of regular terms {amk(i), E=0}. Their

(2.6c)

r

specification fixes the theory completely in terms
of the parameters g, L4, and m which is accom-
plished by various subtraction schemes discussed
in detail in the following subsections.

In conclusion, we define the renormalized fer-
mion and gluon propagators in terms of function-
al derivatives of the generating functional W{n,J}
=1nZ{n,J} [cf. Egs. (2.1) and (2.5)].

e oy OWAN, T}

S’ (x,y) =~ 5T(x)51(y) n=J=0 s (2.8a)
, ___owin,J}

Duu(xyy)* 5Au(x)5A,(y) n=1=o' (2'8b)

Observe that the normalization coefficient N(8)
of Eq. (2.5) cancels in the above definitions.

B. Renormalized fermion propagator

The propagator (2.8a) obeys the Dyson equation
implied by the invariance of the partition function
(2.5) under translations of fermion fields 7 and P:
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Ploe) =P’ (x) =Dlx) + @lx),
Plx) =P (x) =p(x) + alx),

where @ and o are anticommuting elements.” We
perform the transformation (2.9a) in Eq. (2.5).
Noting the invariance of the integration measure
DY and the requirement that the coefficient of
a(x) must vanish, one obtains

(Z 38, + Z 437,0% 1y — Z,,mXP(x))
(=2 NP )AL () +m(x X1y =0. (2.‘10)

Here the following notation has been used

(2.9a)
e (2.9p)

(=) =N(B) [ DDTDCDCDA,(++)

X eXp{ f d"™[£(x) +J, (x)A (x)
+T )+ ﬁ(x)w(x)]}.

(2.11)

Acting on Eq. (2.10) by 6/67(y) and recalling Eqgs.
(2.8), one immediately derives the Dyson equa-
tion for the fermion propagator

(Z i+ Z 457, 0%y — Z,,m)S' (x,9)
v [amen, 08 (5,y) =~ -y), (2.12)

where the unrenormalized fermion self-energy
operator ¥ has been introduced via the relation

A& (y)
1)

(=2, gr*2})

n=J =0
Efz(x,i)s’(g,y)d"g. (2.13)

Notice that T is diagonal in flavor and color in-
dices. It is easy to express Z in terms of the
DA proper vertex function I'. The latter is de-
fined by

WAL @)

1

- [ 876, 00y E ] 2)

N=J=0
X S8’ (n,v)Dii (€, z)d"Ed "d "¢
’ (2.14)

which, being compared with Eq. (2.13), leads to
the desired equation
20, 9)= (-Z,g 72 [ 87, OTL(E, y)
XD, (€, x)d"Ed"E .
(2.15)

Using translational invariance properties of the
above functions S’ (x,y)=S"(x —y) etc. and per-

forming-the Fourier transformation, Eq. (2.12)
may be.rewritten concisely as

[ZB+iZ v, 0410 - Zm+Z(p)lS'(p)=-1,

(2.16)

where
S'(p)éfd"xef""s'(x), (2.17a)
z(p):f de T (x). (2.17b)

Notice that the formal functional structure of the
above equations is analogous to those of ordinary
QCD except for the integration measure (2.6a)
and the presence of terms with u,# 0.

We turn to the subtraction scheme to fix the re-
normalization constants Z, ,, Z,, and {Z,}. Con-
sider the zero-temperature (1/8=0) and zero-
density limit (u, =0) of Eq. (2.16). Designating
quantities in this limit as S;(p), Z,(p), etc., one
obtains” R

[Zzﬁ -Z,m +EO(P)]Sé(ﬁ) =-1,

(2.18)

where the “time” component of the n-vector p,
is a continuous rather than a discrete variable.
Let us perform the standard decomposition

\ Eo-(p).:%z;l(pz)"’mzz(pz)'

Now we are in a position to carry out the sub-
tractions and to-define the renormalized self-ener-
gy operator as

(2.19)

ZOR(P):ﬁZlR(PZ)+W122R(P2) , (2.20)
with
(PP =2,(p%) - =, (-M?), (2.21a)

223(172) = Ez(pz) - Z2("’”2) - E1(7712) +El(‘_M2) )
(2.21b)

the p* = —M? being an arbitrary Euclidean point.,
Then Eq. (2.18) may be recast in the form

[# = m+Zor(p)IS5(p) =~1 (2.22)
provided that Z, and Z,, are chosen to be

Z,=1-3,(-M?), (2.232)

Z,=1=2 (=-M?)+Z,(m?) +Z,(m?). " (2.23Db)

It is important to emphasize that the subtraction
scheme (2.21) and (2.23) ensures that the zero in
S51(p) is at #=m and does not generate infrared
divergences due to the factthat in perturbation
theory Z, ,(p®) have only logarithmic ultraviolet
divergences. InpassingnotethatZ 1,2(172) are analytic
in the complex p* plane with a cut along the real
semiaxis (m?, ),
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Finally, let us prove that Z, =Z,. The relevant '
renormalized vertex I“: is defined by [cf. Eq.
(2.14)]

@) ()04, Y @YD /D) | 5 se0

=2, [ ameams! (e, LA, 1| DS TH, ). (2.24)

The I‘ﬁ obey the Abelian gauge identity. Indeed one
can derive the identity conjugate to Eg. (2.10):
@EWN~Z4i8, + Z 4iv,0* g - Z,,m)

+PEOAL N =Z,7*Ng) +(xX1)=0. (2.25)
Operating on Eqgs. (2.10) and (2.25) by

0] A 14) o)
<5n(x) 0 ) 1) 5n(y)

and

(OA 67?(:6)) 677822,) 6nfzy)
respectively, and subtracting the resulting expres-
sions, one obtains
84 (2)[PW)O4iy,w(x) b (v))
+8"(x =y X(2)P(x))0* - 5"(x - 2)04P(x)P(y)y = 0.
(2.26)

Combining Eqgs. (2.8a), (2.24), and (2.26) we ar-
rive at the identity -

(Z,/Z 4)8%Th(z,y|x) = =6"(z = x)O*S"" (x, y)
+8"(y = x)S""1(z, x)04.
(2.27)

In the limit 1/8=0 and u, =0 the Fourier trans-
form of Eq. (2.27) reduces to
(2,/Z )(=ig" )T 5, b, p +a|q)

=-04[St (p+q) - SgH(p)], (2.28)
where ’

F‘:“(pl, f)zlq)én(pl ‘pe _q)

:f d"zd"yd"xe! P1ePB T (2,5 | x).

Furthermore, by the use of Eqs. (2.19)-(2.22)
and the decomposition

I3u(p,0]0) =04 v, TE(p°) +p,BTE () + 0, T4 (p?)]
(2.29)
Eq. (2.28) leads. to the desired relation

Z,=2Z,, (2.30a)
A 2

provided the subtraction prescription for the pri-
mitively divergent term I'? is fixed by

r4(-mM?=1. (2.30b)

A similar subtraction_convention may be adopted
for the renormalized YA vertex

I“éu(p,p l 0)= -ghl[')’urm(i’z) +pu%r2R(p2)

2. Tar(p)], (2.31a)

T, p(-M?) = 1. | (2.31b)

Since I',z(p?) is related to its unrenormalized
counterpart I (p®) by ',z =Z,I",, Eq. (2.31b) im-

plies
Z =T, (-M?). (2.32)

Returning to Eq. (16) one may summarize the
preceding analysis in the form

[S7(p) - Zx(p)IS" (p)=1, (2.33)
with
Zr(p)=2(p) - (Z,- 1)§(p)-m(Z,-Z,), (2.34a)
. dn l
E(p):('—zlg‘yu Z (277)"- p q)
XxTi(p-q,p|q) D) ,
(2.34Db)

— n=g.7_rm’
a=49 3 s oo

Here Z,, Z,, and Z, are determined by Eqs.
(2.23a), (2.23b), and (2.32), respectively.
- It is important to indicate the M dependence
of the renormalized coupling g(M) and renor-
malized mass m (M) implied by Eqgs. (2.4). Also
notice from Eqs. (2.4d), (2.30a) that the renormal-
ized chemical potential coincides with its bare
counterpart and thereby is independent of M.
Obviously Z, , and Z, become diagonal matrices
different from the unit matrix when the flavor sym-
metry is broken by the mass term Jmgp. This
point will be implicit throughout the subsequent
discussion.

C. Renormalized gluon propagator

The gluon propagator (2.8b) obeys the Dyson
equation implied by the invariance of the partition
function (2.5) under translations of gluon fields
A,(x)~AL(x)=A,(x)+a,(x). .Owing to the invar- .
iance of the integration measure DA/, =DA , the
coefficient of the infinitesimal element a,(x) yields
[cf. Eq. (2.12)]

[Zs(gu-paz - aﬁap) - aauao]fbfw(x -9)
b [ arm, - D9, (E—y) = =8 =), (2.35)

Here color indices are suppressed and matrix
multiplication is assumed; the gluon polarization
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!

operator 1,,(x) is defined diagrammatically in ~ s 2& )
Fig. 2. In the momentum representation, Eq. Tz {0 Oz, {}‘°’ T@ . ‘r o
(2.35) becomes ’ g TSy

[ZS(gu.pqz"qLLCIp)"'aqu.Qp"nup(q)]ﬂ);lw(q):1' ‘ . , v

L
(2.36) t o Zlv@ 3 2w W
) - %
Proceeding to the subtraction scheme relevant FIG. 2. Gluon polarization operatorIl. Blobs designate

gauge identities will be obtained. Following the » full propagators S*, G’, D’ and full vertices T, T,
standard technique® we rewrite the unrenormalized M,,3. The Z’s stand for renormalization constants
partition function (2.2) in a factorized form (see text).

z{n,d}=0z{n,J}, . (2.37)

[
A———— DCDC* ex [ fd xd™C*(x)G~ <x, ‘-—)C(y)] R , (2.38)
N,(B) [ P e Y T et
. s ) -
where for later convenience the ghost propagator After differentiating once we arrive at the desired
G in the presence of the external field A' (x) has identity
been introduce - asa:ﬁ)ﬁv( )= —adx— y), (2.44)
-1 =9*D¥ "x—-v), 2.39 .
Gl x,y |A) LDz (A)6 (x‘ V) ( ) where the definition (2.39) has been used and re-
D,(A)=8, +g,TiAL . (2.40) normalized quantities according to (2.4) have been

restored. Equation (2.44)is a generalization of

f infinitesimal g trans-
Consider the result of infinitesimal gauge tran the well-known non-Abelian gauge identity to the

formations S
case of the nonzero temperature and nonvanishing
Ai(x)-Ai(x) +DE(A)e (x), (2.41a) Fermi densities. It suggests the followmg most
) 1d
)~ zl)(x)[l N igoxiei(x)] 7 (2.41b) general decomposition:
- - o 1
D) =D)L +igor'e ()], (2.41c) DLle) = (g = ut) i ) + 0 L

in the auxiliary functional Zo{n,J}. Obviously the
only gauge-noninvariant terms are sources and

+q.Q,+4,Q,)4,(@) + v d,(q), (2.45)
q
the gauge-fixing term —(1/2¢,)(8A)* [see Eqs.

where
(2.3)]. On the other hand, Egs. (2.41) represent s
infinitesimal shifts in fields. Therefore, by fami- Q. =(Q,=-(g'q;)""?,
liar arguments one easily derives q; 4y, .
~ i Q;Z(qiq»)lz y i=1, =1
Z Anx 3 XN .
[ 80 Tnx) 577( ) e - zgoﬂ( an(x) with properties Q%=¢%, @ *g=0. Observe that the
5 1 5 ’ presence of third and fourth terms in Eq. (2.45)
+D,’f<-—)(J"(X) + ———8"8“——-—)]20 =0. are due to temperature and density effects.
o a, 8, (x) . o .
. Now we can fix the renormalization constant Z,.
Upon action by AG(x,y [ 8/6J) it becomes At zero temperature and zero density Egs. (2.36)
and (2.45) imply that the polarization operator is
[_&_au 5J6( ) 5"(x — ) purely transverse |
0 w . ¥ (g) = (g""q” - 4" 4" ),(q%) (2.46)
+J“(x)D"< 5J>G<" v‘ GGJ >]Z =0. (2.42) which suggests the choice [cf. Eq. (2.23a)]
7=n=0 ’ :
Z,=1=Ty(=M?). (2.47)

A functional derivative with respect to Jv(z) gives
Evidently, the 1/8#0 or u,# 0 induced effects

[_]; ) J generate inIl,, structure functions similar to
a, &J,(x) 6J,,(y) E d,,, in Eq. (2.45) which are expected to be devoid
of primitive ultraviolet divergences.

-0. (2.43) Thus, the renormalized Dyson Eq. (2.36) may be
J=n=0 rewritten as
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[2,,7() - 15, (@]}, (@) =1, (2.48)
where v
y, (@) =1, (@) - (Z;- U(g,,0° —quq,).  (2.49)

Equation (2.46)—(2.49) will be used in Secs. III
and IV,

[I. PERTURBATIVE EXPANSION OF THE
THERMODYNAMIC POTENTIAL .

In this section a perturbative expansion in a(M)
=g?M)/4m will be developed by means of a special
reduction technique. The expansion is carried out
for the fermion number N,(u) =~ 6Q/6u , rather
than the thermodynamic potential § itself. At zero
temperature (1/8=0) the a(M) expansion for @
will be easily reconstructed by a simple integra-
tion of the N ,(u)’s. In this approach the entire
problem is reduced to the analysis of a single
fermion propagator S’(x,y) ly=x. This is an im-
portant virtue of our method over that of direct
calculations of Q.1 The reduction technique allows
one to eliminate the chemical potential from the
quark propagators and provides a constructive
way to normal order the charge 6A(x).

First, fine points of the technique, such as
treatment of singularities arising from discon-
tinuous nature of the Fermi surface at 1/8=0 and
the signiﬁcance of the quark mass definition

n,(p)=- IZf(zd;):l Tr{0,iv,

through Eqgs. (23), will be exposed in the lowest
and first nontrivial-order calculations.

Next the reduction technique will be applied to
fourth-order terms in the perturbative expansion
of N,.

Finally, the resulting expressions will be further
reduced to bona fide Feynman diagrams. )

All analysis will be carried out in the 1/8=0
limit. Special care is required for the limiting
procedure. This important ingredient of the tech-
nique will be discussed in detail in Sec. IITA.

A. Reduction of fermion densities in lower orders

The basis of our subsequent discussion is the ex-
pectation value of the fermion density O,,

_Jd(P(x)iy, Z,0 ,9(x))
na(h) = BV {1y 4

_ ax (P (x)iv,Z,0 ,9(x))
VD) namo

Henceforth, the volume V will be suppressed. In

(3.1)

Eq. (3.1) the second term on the right-hand side

ensures a vanishing fermion density at zero-
chemical-potential limit. Alternatively, it ac-
counts for the normal ordering of the charge den-
sity O,(x). Since O,’s are numerical matrices
Eq. (3.1) may be expressed in terms of fermion
propagators .

Zz[sl(p)‘S(;(p)]}p"=2n/8(m1/2) 3.2)

By Iheans of a standard trick, the sum Z}n can be reduced to the contour integral along the lower (C.) and
upper (C,) lips of the real axis in the complex p” plane (see Fig. 3) ‘

malk)= f (27T)n- G M Te {2,047, [S1(p) = SUP)} (3.3)
i
where Imp
" - ip"B -1 ' ///—_E—\\\
n(p")=(1+e >yt (3.4) // + N
Recall that the fermion propagator S’(p) is / \\
analytic in p" with a cut along the imaginary axis. / C. ) Ce \
This is easy to verify in the perturbation theory. t =) ! .
The general proof is straightforward and follows : c- Q) ; Rep
from the Lehmann spectral representation.?* The | o Py -
e .____,__é‘___,___J
contours'C, may be deformed ab initio reducing o C

Eq. (3.3) to integrals along the imaginary axis
Imp”"> — p and the line Imp" =~ . Notice that the
contribution from the infinite circle can be ig-
nored since S’(p) = SL(p)~ n/(p"? as [p"]- .
However, a slightly different procedure will be

FIG. 3. Integration contours C,, €, in the complex
energy plane p" relevant for the evaluation of Egs.
(3.5), (3.8") (see text). The points p" = (27/B)(m +1) are
indicated by dots on the real axis.
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adopted. Namely, the C, contours will be de-

. formed after the interchange of the order of in-
tegration of internal momenta and the external
momentum p”". It is important to realize that con-
tours C, do not cross. the imaginatry axis. This
is unlike the 1 =1/8=0 case when S/(p) is analytic
in the left- and right-half p” planes connected
through the mass gap (~i€,, +i€,) with €, =D* +m?
The zero-temperature propagator S’ 22 of p) is not
analytic at p"=0. This nonanalyt1c1ty is a poten-
tial source of singularities in #,(u). For this
reason the p" variable has-been “latticized” via
the nonzero-temperature formalism. The practi-
cal use of such a method will be more clear be-
low. Here we only indicate that it allows one to
smear out the Fermi surface smoothing the dis-
continuous character of the Fermi distribution at
1/8=0.

Being interested in the zero-temperature ther-
modynamic potential, we will examine Eq. (3.3)
in the 1/8=0 limit :

- [u:O]} . (3.5)

1/8=0

Here the shorthand notation [ 4 =0] has been in-,
troduced for the S term in Eq. (3.3). Now we will
proceed to the perturbative evaluation of Eq.
(3.5). In the lowest order S’(p)=S(p) etc., and

the first integral in Eq. (3.5) can be performed
- J

trivially by deforming the contour C, to 6*
simultaneously encircling the simple poles of
S(p) on the imaginary axis at Puy=-i(p-¢,) as
in Fig. 3. Recall that u=p40, and m are diagonal
matrices and are, in general, different from the
unit matrix in the flavor subspace. The same
applies to the locations of the poles pf,,
=—i(u—¢€,). For clarity, matrix indices have
been consistently suppressed. The integral
along Imp" =— u exactly cancels the second term
in Eq. (5), and one is left with

115;0)=" (;;)‘nlib{n(f’n)’rr[ 0,7,S()]

x(p"'—p?]_))} . (3‘6)
p"=bt’;).1/s=o :

After a simple integration one obtains

Q©®=_2p, f(‘;:)" ; Tr{(p—EP)O(# E,,)}(S o)

where p,= (0O,u%),, and D, is the dimension of the
quark representation of the color group.

Let us turn to the next order of Eq. (3.5). One
should expand Z, and §’(p) via Egs. (2.23) and
(2.33)

Z,=1+Z P+ 2P w00 e | (3.7a)
S'=S+SZE)S+SEY SEE S +STW S+ + -
(3.7b)

Subsituting Eqgs. (3.7) into Eq. (3.5) one finds

1/8=0

nff>=z;2>n<x>-{fc é—"%,,n(p")Tr[OAiY,,S(p)E,‘é‘”(p)S(f))]—[u=0]} . (3.9)

We make use of Eq. (2.34a) to reduce the above
expression to the form

nfﬁ’=—{[f0* (%"{5,;n(p">TroAms<p):5<2>(p>s<p>]

—[u=0]} , (3.8")
1/B=0 .
with

S(p)=2(p) = m(Z - Z,) . (3.9)

Observe that the zero-temperature and zero-
density counterpart =, of the above quantity
vanishes on the mass shell [ see Egs. (2.19),
(2.23)

Zo(D)| gom=0 . (3.10)

Equation (3.10) will be consistently exploited
throughout this section.

The first term on the right-hand side of Eq.
(3.8") is represented in Fig. 4. Here the quark
self-energy insertion £ is determined by Eq.
(2.34a) in which Z,, S’, T', and D’ had been re-
placed by their lowest-order approximations (see
Fig. 1),

2(2)(15)_—- (;i;)n (- 8Y, AE)
X S(p - q)-gv,\)DY(q),
q={q"=%—77mﬁ} . (3.11)

Substituting Eqs. (3.9) and (3.11) into Eq. (3.8)
and interchanging the order of integrations over
p" and ¢, one finds that the integrand has a double
pole at pf,,=—4(u - €,) and a simple pole at Plzy
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FIG. 4. Diagrammatic representation of the first
term on right-hand side of Eq. (3.8"). 'The tildé in"the
self-energy insertion stands for the countérterm -

M(Z oy —Z ) 2 [see Eq. (3.9)]. The vertex v,-is designated
by an Xx. - : odmps b . ;

=q"-i(n—¢€,_,), €,.,< u. Similar to the treat- *
ment of Eq. (3.5) we deform the contour of inte-
gration C, to Ct‘* (see Fig. 3) picking up contribu-
tions from the poles p{, ,,. The integral along
Imp"=— p cancels the [ p= 0] term in Eq (3. 8')
The re31dues of the' poles p 0 and D are repre- B
sented diagrammatically by Figs.5(a), 5(b), and
Fig. 5(c), respectively. Here the identity of (d/
dp™S(p) =S(ply,S(p) has been employed in a
diagrammatic form: It is not difficult to convince -
oneself that the diagrams in Figs. 5(b).and 5(c) are
equal and:of opposite sign.

To see th1s last - point easily, we define the quan-
tity :

R(D)=8(0)7,S(0) (0" = PV (3.12)
which has the following simple properties:
R(P) l,"”;’l):—S(P)(P"—P'('l))lp"=p’;l) ’

© (3.13a)

dr(p) 0.

apm n_pn
b =P(1)

(3.13b)

"The identity (3.13a) ensures the equality il-
lustrated in Fig. 6. We apply this equality to Fig.
5(b) and make a subsequent change of the variable -
P = q—D..- Then the result stated above follows.

Thus; ‘we are left with Fig. 5(a). A further ap-

2 dn=1ip. ;
"f’(li)=g2DFCFf ‘Il '(2—”)_"-311 Tr{é(p’_el)o(sl'—sZ)fDuu(pl

n _ - -
pl,z“zel,w €1,2"€p1 ’

32

plication of the identity (3.13a) yields

(‘ N o
n2= [ G 'O T 0,2 (D) (p)]

X,(pn_pr('}))}P”=P("1'),1/B=o . (3'14)
Notice the appealjance of the factor

(p(l )) [J" TI(P") ‘ 178 >0 0(u - Ep) s
Pamiqu- ep) »
(3. 15)

which has support at a single point p"-O It ‘should
be clear,that a careful zero-temperature limiting
procedure was essential for arr1v1ng at the cor-
rect:result (3.14).. :
Now-theiequality (3.10) will be exp101ted ‘Tothis end
firstarelation between 2(2)( ) and the Feynman self-
energy Z%(p) will be established. For realp the latter
is given by a loop integral with an internal momentum -
q" running along the real axis [cf. Eq. (3.11)].
integrand is analytic in ¢" and has p"-dependent
poles at g} =p"+i€,_ ., Imp"=0, in upper- and
lower-half planes, respectively. [see Fig. T(a)].
When p" acquires Imp"> 0, and p and § are fixed,
the pole ¢” moves closer to the integration con-
tour Imp"=0. The ¢" reaches C{Img"=0} at
Imp"=¢€,_, and drags C upwards (€,_, <Imp") with-
out crossing it as it is shown in Fig. 7(a) The de-
formed contour C’ (p, q) defines an analytic integral
representation for

Z-)éz)(p) l Imp? =0 *

The C’(p, q) may be further deformed to the con-

_ tour along the real axis C! and a circle C; around

the pole ¢, Img">0 [ see Fig. 7(b)]. The integral
along C/! reproduces @) p) in Eq. (3.14), whereas
the Cj integral is equal to the residue of the pole
q" with the opposite sign. It remains to recall
Eq. (3.10) to arrive at the result exhibited in Fig.
8. Thus, Eq. (3.14) reduces to

- isl)(pz - 7'.62)} ’
(3.16)

- Pz)OA'Y“So(Pl)Y"SO(Pg)(Pl

[2, =Tr(- o“ 77 (p( ‘ + 77( (n ‘ + "7‘%) 6
//3~o

. (b) (c)

FIG. 5. Diagrammatlc evaluation of ‘Eq.'(3.8”). Barred-lines represent residues of the fermion propagators, -+ »
=S() " -pliy )IM p(1), Pty =—4(l —€,). The integrations over the corresponding loop momenta p are restricted to -

the spatial phase space with volume element d"~ ' /@m)"" 1,
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\ Sy Ry
FIG. 6. Equation resulting from the application of
Egs. (3.12), (3.13a) to the diagram in Fig. 5(b).

)
o
o
I
|
[}

where D, has already been defined in Eq. (3.67),
whereas C; is the eigenvalue of the first Casimir
operator in the quark representation of the color
group

(AN ,=Cpdyy, Tr(A\A)=C.D, . (3.17)
Equation (3.168) can be easily integrated with re-

spect to p, to find the second-order correction
to the thermodynamic potential

dﬂlp
ﬂ)__ 2 i
Q gDCTerZTr)"l

i=1l

O(u—c¢;)

x{1+%§2~)§]. (3.18)

This is a well-known result which accounts for
one gluon exchange scattering of quarks (cf. Fig.
9). '

B. Reduction of fermion densities in higher orders

It will be helpful to recapitulate two major ele-
ments of the reduction technique employed in a
restricted from in the previous subsection:

1. Rearrangement of the perturbative expansion
of Eq. (3.5) into terms with a different number of
free fermion propagators through a partial dis-
entanglement of renormalization constants Z, ,
present in Eqgs. (2.33), (2.34) either in an explicit
or in an implicit form. It is important that in the
above rearrangement the mass term m(Z,, - Z,)
in Eq. (2.34a) be left intact for the subsequent use
of the on-mass-shell condition (3.10). The ap-

plication of this step to Eq (3.5) yielded Eq. (3.8").

(a) (b)
}q."(pJ )q*(DJ
LV N o Yo

FIG. 7. (a) Points q%(p) =p"+iec,_, indicate the
location of p"-dependent poles in the integrand of
52 (o) [ef. Eq. (3.11)]. When p" acquires Imp" >0,
the lower pole g approaches the ¢" integration contour
C and drives it upwards to the position C’ (Img™> 0). (b)
Contour C’ in (a) is deformed to C{UC’,.

‘ N\
P, = i@ (EI-Ep) ) + = 0

(a) (b) (c)

FIG. 8. The relation at 1/8 =0 between the Feynman
self-energy Z%Z)(pl)l p=icp given by (a) and its counter-
part (c).

2. Interchange of the order of integration over
the external loop momentum: p” and those of in-
ternal loops. This step reduces the p" integral
along C, to a sum of residues of first- and higher-
order poles-and a residual integral along C* y
which cancels the term [ u=0]. Further simplifi-
cation of the resulting expression is achieved
through simple identities like Eq. (3.13) and the
on-mass-shell condition (3.10). The application
of this step to Eq. (3.8”) yielded Eq. (3.16).

We proceed to the analysis of fourth-order cor-
rections to fermion densities (3.5). For clarity
the first step will be carried out in two stages.

To begin with the Z,S’ in Eq. (3.5) will be expanded
according to Egs. (3.7), and only the terms con-
taining Z, , explicitly will be disentangled; the
renormalized propagator S’ and the vertex function
T in 2§ will be replaced by their lowest-order
approximations §’¢? and I'®’, respectively. The
same approximation is invalid for the gluon
propagator D’ since it gives rise to infrared di-
vergences. Therefore, the ®’ will be left intact,
and the analysis of the corresponding term will be
deferred to Sec. IV. After simple rearrangements
one arrives at

(ZZS')“”:—ZZ(Z)S~E(2)5+SE‘2)SZ(2)S
+S[Z®—m(Z,-2,)*]s,  (3.19)
2(4)=Z1(2)2(2)+[F(O)S'(Z)F(O)ﬁ)]
+[TOSTEID] + [TOSTOD ] | (3.20)

The first step of the reduction will be completed by
a disentanglement of S’®*’ and I'®’ in Eq. (3.20):

S =_ ZzMg +S58 , (3.21a)
[ =z&TO,re | (3.21b)

where I'§ is the unrenormé.lized counterpart of
the vertex I'®?’, Equation (3.19) becomes

(Zzsl)(‘l):(zzs' (4) (322)

a+brcrdre

2N P2 p,
@t {ou-cpoees ()} = fow-sioc e 5K )

FIG. 9. Second-order correction to the thermodynamic
potential due to one-gluon exchange. Barred lines are
for residues of Sy(p), i.e., 4, =S,(2)(P" _i€p)lp”=i5p'
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with
(2,8 = —S[m(Z = Z,) P + 2T

. +(Z,-22)®z@]g | (3.232)
(2,8 =S(E@ST@)s | (3.23b)
(2,8 =8(I'@STT©D)S | (3.23¢)
(2,8 =S(TOSTE'D)S , (3.23d)
(2,8 =8(T ST @D (5 . (3.23e)

Owing to the decomposition (3.22) it is convenient
to represent the fourth-order correction n% to
fermion densities (3.5) as a sum of terms

(4) — () () () (@) (e)
Ny =00y tny A ny, ANy,

with
da X ),
nif) ‘_{ ['/;31 (—Zf';—)" 77(1)") TI‘OAZ’)/,,(Zzs (p))$4s))j|

_[“=0](S)} s

1/B8=0

(3.24)

S=a,b,.... (3.25)

In curly brackets the [ n=0] ¢, designates the
zero-fermion-density counterpat of the preceding
term. ’

The second step of reduction will be carried out
separately for each term of Eq. (3.24). The re-
duced form of the first term »{*’ immediately fol-
lows from the previous analysis. Indeed, it is
sufficient to repeat the steps leading from Eq.
(3.87) to Eq. (3.14) to arrive at the result in Fig.
10.

The analysis of the contribution n{?’ is straight-
forward although slightly tedious. In the process
of deforming the contour C, to C~t, one encounters
two first-order poles at p"=q" —i(u —¢€,_), p"
=k" —i(u - €,.,) and a third-order pole at p‘™
=—i(u - e,,), where ¢ and # are momenta of in-
ternal loops of two self-energy insertions %2, The
residues of the poles are evaluated diagrammati-
cally in Fig. 11 via the identity (d/dp")S(p)
=S(@)r,Sp). Those diagrams, which identically
vanish due to Eq. (3.13b), have been dropped.

The above result may be simplified as follows.
Firstly, the last two diagrams on the third line
. cancel. Indeed, it is easy to verify that

@
d—(}T)z[S(P)(P" —P?l))]phpg ,
n)z[s(p)yns(p)(pn p(l))]p"_p"

pln=—i(u-¢€,).

Secondly, we apply the identity (3.13a) (cf. Fig.
6) and notice that some diagrams become topolog-
ically identical, e.g., the first two diagrams on
the second line etc. After these simplifications

/

2103

one arrives at Fig. 12. .

The reduced form of the term n{ is exhibited
in Fig. 13. The contribution is due to two second-
order poles at p"=—i(u —¢,_,) and p"=g"

— (K - €,.,) and one first-order pole at p"=g"+ k"
- (1 - €,.,.), Where ¢ and k are internal-loop
momenta.

The same reduction when applied to #{’ and

n'? leads to the results shown in Fig. 14. In the
derlvatlon of n(e) Furry’s theorem has been em-
ployed, namely, fermion loops with three at-
tached gluon lines have been set to zero, in par-
ticular, [u=0],,=0. The simplicity of the above
forms is due to the topological equivalence of the
resulting diagrams which leads to many cancel-
lations exp11c1t1y demonstrated in the case of

(e)

F1na11y, we combine Figs. 10, 12—-14. One dis-
covers the same type of cancellations, e.g., the
third diagram on the first line in Fig. 12 cancels
the first diagram on the second line in Fig. 13.
The cancellation is easy to see by turning the
latter’s upper “rainbow” upside dewn. The net
result is exhibited in Fig. 15. It determines a
full fourth-order correctlon n“’) to the fermion
densities n,. .

Observe that terms proportional to n(p") disap-
peared altogether and only those with derivatives
of n(p"), namely n’(p7;,) and 1’(p(,,) survived.
These are singular at 1/8=0. We reemphasize
that the presence of these singular factors proves
the necessity of very careful treatment of zero-
temperature limits.

C. Reduction of fermion densities to Feynman diagrams

In this subsection the final stage of the reduc-
tion will be completed. All diagrams in Fig. 15
will be expressed in terms of bona fide Euclidean
Feynman diagrams. In what follows we will set
1/8=0 wherever it does not give rise to any sing-
ularities. Furthermore, the Feynman gauge will
be adopted for convenience, i.e., in the gluon
propagator the gauge parameter a will be set
equal to one [see Fig. 1(b)]. Observe that for
fourth-order calculations the renormalization of
@ by Eq. (2.4d) is unnecessary since the lower-
order result, Eq. (3.16) is gauge invariant.

The method employed below is a generalization

n{=-Tr 0, n’(p[},){@ 2(2,-2)%

" Q M2 20 ® + (20202, -22)7 ]}

FIG. 10. Fourth-order correction #'{’ to fermion
densities [see Eq. (3.25)].
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. 2 ( -
n(b) =—'TVOA’77(D(F,‘)) {@ + @ }
,TroAn(p(?)){@ + @ + @

Cff O £)
o () + O + @w
%@

228

' d
——t = Eﬁ[S(D)(p“-pa)]pn=p(n”
d2
Tt arR (S _p“’]P“P?.)
e = =9 [S(p)¥, S(p) (pn- 0]
N d(pm? L. " m Pn=p?l)

(b)

FIG. 11. b(a) Fourth-order correction n“’) to fermxon
densities [see Eq. (3.25)]. Rules are as in Figs. 4,
and further graphical notation is explained in (b). (b)
Notations used in (a) with py)y =—i(u —€p).

of the derivation of Eq. (3.16) from Eq. (3.14)
based on the relation between the () and the
Feynman self-energy Z¢2(p).

Let us begin with the diagram in Fig. 15(f) Its
Euclidean Feynman counterpart is usually defined
for real external momenta p (see Fig. 16). Apply-
ing the arguments exemplified in Fig. 7 to the in-
ternal momentum %", one derives the relation in
Fig. 16 where the momentum ¢”" of the second in-
ternal loop is real, whereas that of the external
one is complex, p"éieﬁ, p2=m?. Notice that in
Fig. 15(a) the self-energy insertion with an in- .
ternal-loop momentum % defines a bona fide Feyn-
man diagram Z{?(p ~ q) whose external momen-
tum p"—q" is analytically continued to complex
values. We will examine diagrams (a) and (b) in
Fig. 15 separately.

In the former case one could deform the ¢” in-
tegration contour from C to C’ as in Fig. 7. How-

n” =Tr0a7 (pf,) {@ @— @
p (P5e) PN
-O-0O -0
+ Troam’(p)) {2@+ } +‘—2Tro,.v7”(p{,‘))@>

FIG. 12. Simplified form of Fig. 11.

/:\
L Oa ﬂ(pm + n(pm 7 (p(;;) - 77’(’)<3)©}
3 /.8 ¢
.roa‘q(pm){Z + }

| FIG. 13. Fourth-order correction n(j{) to fermion
densities [see Eq. (3.25)]. Rules are as in Fig. 11.

ever, special care has to be exercised since

Zo(p —q), p"=ic, has two cuts along.the ¢" imagin-
ary axis with a gap [i(e, - €,.,), i(€,+ €,.,)] between
them. Therefore, the contour C’ should pass
above the second-order pole at ¢"=¢2=i(¢, - ¢,_,)
and, furthermore, pass through the gap without
crossing the cuts as shown in Fig. 17. The re-
sult defines a bona fide Feynman diagram, exhibi-
ted in Fig. 18(a). It is now clear that by deforming
the contour C’ to C, one picks up the residue of
the second-order pole [see Fig. 18(c)] as well as

a contribution from the discontinuity across the
cut (0, ¢Z) of the self-energy subdiagram ={?

(» - q) [see Fig. 18(d)]. The former has been
evaluated using Eq. (3.10).

Returning to Fig. 16(b) one easily derives the
relation in Fig. 19. The integral representation
of the Feynman diagram in Fig. 19(a) is such that
the ¢" integration contour C’ passes above the
simple pole at ¢"=q" witl/ ¢7, = p" —PoFi€y pomgq
and the double pole at ¢"=q,., q3, =py+ie, .,
leaving the upper poles ¢,, and g¢,, on the left as
in Fig. 7(a). Deforming C’ to the real axis (C)
one immediately recovers the result in Fig. 19.
The equations in Figs. 16, 18, and 19 determine
the diagram in Fig. 15(f) which may be combined
with Figs. 15(c), 15(d) in a concise form. Indeed,
using Eq. (3.13b) and Fig. 8 one can reduce Fig.
15(c) as it is shown in Fig. 20. Observe that
Figs. 18(c), 19(d), 19(e), and 19(f), 19(g) are top-
ologically equivalent to Figs. 20(a), 15(d), and
20(b), respectively. Furthermore, it is easy to
see that the diagrams in Figs. 18(d) and 19(c),
arising from the two-particle unitarity discontin-
uities, cancel. Hence, the equation in Fig. 21 fol-
lows.

The reduction of Fig. 15(g) can be performed in
the same manner. The necessary steps are ex-
hibited diagrammatically in Fig. 22 and the net

n'® - Tr 0a 7y'(pf]) { @ + @ }
/i e
=TrOa {77 (py) + el r](p(lf;) }

FIG. 14. Fourth-order corrections ng'e) to fermion
densities [see Eq. (3.25)]. Rules are as in Fig. 11.
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(a)

(b)

N -Tr0a 77'(0(7)){ @ M[(Zm-22) Y +(Zm-25) P (20-22 /2] + @2(2[2,)‘2’}

(d}

(c)
: ' P
”'CA{'”I"PF.)) @ +771(p(r;>>+iz77”(px?)) }
(f) (h)

(i)

(g)

fffff

(e)

o e
(Y {
+TrO/‘77’(p(T’) { d * @ * @ ’ @ }

FIG. 15. Full fourth-order corrections to fermion densities. Rules are as in Fig. 11.

result is.summarized in Fig. 23.

Finally, the reduced forms of the remaining dia-
grams, Figs. 15(i) and 15(h), can be obtained in
a similar fashion. They are presented in Figs.
24,25,

We substitute the results of our analysis of Figs.
21, 23-25 into the expression for the fermion den-
sities, Fig. 15. It is easy to see that due to the
mass-shell condition Z{*(m)=m(Z , - Z,)* the
terms in Figs. 21(d), 23(a), 24(a), and 25(a) are
cancelled by m(Z,, — Z,)® = m(Z,, - Z,)® 22 where-
as the remaining renormalization constants ren-
der the Abelian vertex x in Fig. 21(c¢) and the
gluon-quark vertex in Figs. 23(c), 24(b), renorm-
alized. After a trivial integration with respect
to u,, and using Eq. (2.15), we obtain a diagram-
matic expansion for the fourth-order correction
Q@of the zero-temperature thermodynamic po-
tential.

To facilitate the subsequent discussion 9@ has
been broken up into three parts

QW =M+ QY+ QY ‘ (3.26)

and represented diagrammatically in Figs. 26-28.
Recall that they arose from topologically distinct
diagrams determined by Egs. [(3.23b), (3.23d)],
(3.23c), (3.23e), respectively. Correspondingly
Q%) ; will be referred to as the quark self-energy,
quark-gluon vertex, and gluon self-energy cor-
rections.

It is interesting that all diagrams except those
in Figs. 26(a), 26(d), 26(e), are given by ordinary
Feynman scattering amplitudes of quarks. Since

FIG. 16. Reduction of Fig. 15. The circle on the
fermion propagators in (2) indicates that the integration
in 2" is along a contour going around the pole 2" =pT
—-q" —i€,_,., from above rather than from below, i.e.,
just like C’ in Fig. 7(a).

the quarks form a Fermi sea, only exchange
(backward) scatterings are allowed. However,
in addition, there are residual diagrams [see
Figs. 26(a), 26(d), 26(e)] which will turn out to be
crucial to render Q¥ regular at the zero-quark-
mass limit. )

In conclusion, we must emphasize that in the
derivation of Eq. (3.26) the space-time dimen-
sion » has not been specified. Therefore, all in-
frared singularities in various terms of Eq. (3.26)
are automatically regulated. The resolution of
the problems encountered in taking the physical
limit »=4 forms a part of the subject of the next
section.

IV. FOURTH-ORDER CORRECTIONS
TO THE THERMODYNAMIC POTENTIAL

Analytic expressions for the fourth-order cor-
rections to the thermodynamic potential will be
given. Further, they will be evaluated exactly
in the zero-quark-mass limit, m=0.

All calculations will be carried out for an arbi-
trary space-time dimension n. Infrared and mass
singularities of individual diagrams in Figs. 26—
28 will be exhibited in the form of first- and sec-
ond-order poles at n=4. The cancellation of these
singularities at m =0 for each subset of diagrams
QW i=1,2,3, as n—4 will be demonstrated in de-

N
§
@ S qf
_________ &9
§ , c
N

7,

FIG. 17. Cuts of the self-energy 5@ (p —@) | pn=ic
are shown by dashed strips along the imaginary axis
in the g" plane. The cuts end at g} =i (€, % ¢, —q)»

€p>€p-q'
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tail. The result agrees with the general assert- M. In this context the absence of mass singular-

ion made in the Introduction that the thermody- ities is crucual for a valid perturbation expansion
namic potential of the ground state is devoid of even for m,+ 0, m, <M.
infrared and mass singularities. .

In conclusion, various definitions of the renorm- A. Quark self-energy correction £
alized coupling and its gauge dependence will be
discussed. Furthermore, standard renormaliza- Using the Feynman rules of Fig. 1 with a=1,
tion-group arguments will be advanced to moti- one can easily write down analytic expressions
vate the optimal choice of the subtraction point for the diagrams in Fig. 26:

J
Q@)— 2g Tr f d"'lpi [ (u ‘il)e(“"'iz)@(.u“53)71)7\'.(%1.“‘ m)'}/u)\j(%:z.*' 7")7;L7\j(%1:*‘ nl)')’y”(ﬁsj"’”)} (4.1a)
zw)" (b, = DV, = D3 2e, 2e, 2e, . . 2e 17

W d™p, o [(ifﬁmw“h By + my N B+ m) (2 S v

Wp=—g'T f I—:[(271)"'1 ~ <) 2ie, 2e, 2ie, Toal1:Ps IOJm (4.1b)

with [ cf. Egs. (2.13), (2.29)]

&Py, £,10) (-d‘;,, Z&(py) - E&’“”(—Mz)>,,lzzmz’
1 A" 0(u - an
ap--tgore [ T] ThEEz<) [ O
% (ﬁl"'n’l)'yu)\i i (ﬂl “4+m)yu)\j(#z+ynh/u)\j(ﬁ1"'d""’”)’}’}; A (4 lc)
2i€, [(py = qF =m?]Qie,)g* [ (p, - qf = m*] (p, - arl( "’ ’
, Todrp bu-c) § (Brm)yeri(Bem)y N
Qf3):lg4TrfaIl PR e, i,
(15+m)] ' YN (B, +m)y, M 1 414
<D i, 20 Gy 0
_ dm-tp 6(pn—e,) [ (B +m)y* (B, +m)y 2}
ofp =iz Tr/H @nrT [ Sie, 37,
BoamyNBoemw T 1 (pl=ph)
T 2ie, J (b= 0,7 (By=Py)" (4.1e)

Note that in the above equations the trace applies
to all indices, i.e., flavor (a), color (i), and Dirac
{a). Also recall that u= 140, and m are diagonal
matrices with unequal elements (u ,,#,) in the
flavor subspace if the flavor symmetry is broken.

Clearly, the above expressions are reducible to a ‘.
direct sum of contributions due to different fla- . +i6 (E-E ,{ + (Ps pz ) }
vors; quarks of a definite flavor propagate in a < )

given diagram. The trace over color indices may (d) (e) (f) (g)

FIG. 19. Relation between the Feynman diagram (a)

(~ and its counterpart in Fig. 16(b). Contributions due
’ - + 16 (E,E2) + to residues of (c) a simple pole of the gluon propagator
= . .
Dyy(py—Py—q) atq™ =pf—ph— l€p ~pa and (d)— (g)
(a) (b) (c) () double pole of fermion propagators Sz(p1 —q) at q"
. =P{—i€y . Rulesare as in Fig. 11 and in addition
FIG. 18. Relation between the Feynman diagram (a) - n__;% -
“""“+"M D -1 =¢lpl>»
and its counterpart (b). (c) and (d) are contributions . “V(p)u’ !pl)pn i
arisi.ng from the residue of the second-order pole at Y = Dyy(P).

n
q" =¢" , and from the dlscontmmty across the cut dp

(0,g9m), respectively. The Feynman gauge is assumed.
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FIG. 20. (a) Feynman counterpart of the left-hand
side diagram. (b) Residue of the double pole at g_
=pl—i€, o, pP]=1¢ due to the vertex x subdiagram.

be easily taken by Eq. (3.17).
It is not difficult to convince oneself that from
"Eqgs. (4.1) only Eq. (4.1b) is infrared singular due
to the presence of the on-mass-shell vertex T"
This singularity is expected to cancel with the
infrared singularity of Fig. 27(a). However, in
the zero quark mass limit, m=0, the sum of Eqgs.
(4.1) by themselves will be found to be regular.
Now we set m =0 in Egs. (4.1) and proceed to
the analytic evaluation of the resulting expression.
For the reader’s convenience we will write down
for » dimensions some well-known identities for
Dirac matrices and some integration formulas
which will be used throughout this section

YhY Lyt =284, ghvg =0 =n (4.2a)
Try*yv=4g"v, ' (4.2b)
Yy, == (m=-2)f , (4.2¢)
dmn=tp=p"-2dp :Ii sin™6,d6,, , (4.3a)

f f—I d"=ip o(u—c,)

Foiey (2,,,)”--12€ (zplpg)m

(u'2)m+n-2 2n+2m-3r(%n+m_l)

= @m"-tym Th-1/2T(n+m—-1)n+m=-2)

(b, +py=€,6,(1 - cosen_z))‘, (4.3b)
-id"q(1,q,) Lo —3n)(1, - &)

f @0 (= ¢ = 2 kg + MP)® (41r)"’21‘(a)(M2+k2)" "

(4.4a)

=

’

Figi5 (c +d+)=-Tr0, (n'(p] )6 (E,-E2) 6 (B~ E3) + (1 —=2) +(I - 3))«

(c)
+ TrOAn/( pO) @ -6 (E-Ep) ‘
(d) (e)

FIG. 21. Reduced form of diagrams in Fig. 15(c),
15(d), 15(0); [p;) =—i(p—¢;), j =1, 2, 3]. Circles on
propagators indicate that corresponding 1oops deter-
mine bona fide Feynman diagrams.
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Q

SN G
3 B B

B e B 553
SR

FIG. 22. Reduction of Fig. 15(g) to Feynman diagrams.

o

a

o

: f —id"qq,q,
(27)"(~q* - 2kq + M?)*

_ I(a-n/2) 1
~(4m"Pr(a) (1\42+k2)““"’%

X [R,k, -2, (R +M) /(@ =3n=1)].

(4.4b)

with the Minkowski metric being used in the last
two equations.

Equation (4.1a) is finite as m—0Q and n -4, and -
one easily derives

; .

QY;) = DFCansz Z <_ 1) (&) 3 <46)
m—0 a 8 T

where a,=g?%/4m defines the fine-structure con-

stant.

For m =0, Eq. (4.1a) may also be evaluated
easily using Eqs.(4.1b) (A8) in the Appendix.
Notice that only the subtraction counterterm .
ZEN_M?) survives. Indeed, as p* -0 the self-
energy Z&(p) =2 (p*)#] and its derivative
vanishes as (—=p?)"/2-2 and (-p?)"/?-3, respectively,
provided Ren>6.

This case is typical of dimensional regulariza-
tion of infrared singularities. Therefore, the em-
ployed method may be stated in general terms. All
calculations must be carried out in the region
Ren>n,, with a sufficiently large n,, where no

(b)
Tr 04 (ol @ = Tr oAmpm{@ 16 (E- Ez) .}

(c)

(2
-iTr OA{[n’(p[".))e (Ei-E2) (I -2)] ~i[n'(p) )6 (EEG(E,-E3)

(d)

. e
C=2) + (3] }

FIG. 23. Reduced form of Fig. 15(g). Circles on
propagators indicate that corresponding loops determine
Feynman diagrams [ pfyy =—i (0 —€;), ¢ =1, 2, 3] as in
Fig. 21.
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q q (a) -

Tr Oa 7' (P7) = Tr0am'(py),)

-iTr OA{ [7'(p;)) € (E-Ep) +(1—2]] a
(c)

A
-in'(ph)O (E-E)0 (E[Eg) }

FIG. 24. Reduced form of Fig. 15(i). Circles on
propagators indicate that corresponding loops determine
bona fide Feynman diagrams. [pfy =—i(p —¢€;), i =1,

2, 3].

infrared singularities are present. Then it will
be legitimate to perform an analytic continuation
of the resulting expressions from the region
Ren>n, to the physical point n =4 since the func-
tions involved will be proven to be meromorphic
in n. )

It is important toknow a priori that the physical
quantity of interest is devoid of singularities, e.g.,
itis regular asm — 0. Otherwise, the interchange of
two limits m — 0 and » — 4 may not be justified and lead
toanincorrect result even though possibly finite.

Returning to Eq. (4.1b) with the above remarks
taken into consideration and applying the identity
" (3.13a), we find

’ TGn-1 -3
Qf mi o DpCpa? (3 (- )41-)‘;?1- 1571)

M ne-4 (u > 4
X — - (4.7
‘? <u> LAV :
where for later convenience the function F,m,M)
‘has been introduced:

\/—‘IT-FZ(é“VL—-l) <M2> 3n/2-6
2T (n - 1/2)T%n - 2) \4m®

F,(n,M)

F,(n,M)=
(4.8)

In Eq. (4.1c) we first evaluate the loop integral
using Feynman parameters. Performing the Wick
rotation from the Euclidean to Minkowski mo-
menta, ¢"— - ig", and using Eqs. (4.4) one derives

(a) {b)
. a9 &, (q)
Tr 0am’ (py), = Tr Onn'(pf;]){ Q +HiG(E-E)( )
(c) (d)

FIG. 25. Reduced form of Fig. 15(h). Undashed blobs
demg‘nate the zero-density gluon propagators Df(q).

+Tr OA”} (plr:) ){

LN o4 ( Bim
Tp o apr\pn+ic

BALUNI o
(a) (o)
P P2 p
P y
P; Py p
- ge(p-g )= - - o

Py P2 Py P,
-—
L P2 P P>
2 + 1 +
. q
P2 Py

P2 Pt

FIG. 26. Quark self-energy corrections in terms of
Feynman diagrams. (a) Double scattering of a quark (1)
on the top of the Fermi sea (¢; =u) from quarks (2, 3) in
the Fermi sea (€5 3<p). (b) Exchange scattering of
quarks with a renormalized (R) self-energy correction.
(c) u -channel backward scattering. (d), (e) Residual
diagrams: Indices of incoming and outgoing quarks
with identical momenta p, are assumed to be contracted
with the projection operator (#,+m)/(p} +i€ )Ip =icg

-,L,, . In (b) the x stands for the v, vertex insertion
in the Feynman self-energy and in (d), (e)

d [1
Pn=ie’ p dpn<P2> Env

All momenta p, should be integrated over the phase
space [@*"'P,/@m)" 110(u —¢€,).

2(n=2)°’T'(3 — zn)T*(3n - 2)
(4m)"/2"2T(n - 2)

a-p; 6
XZmefJWENMWN
(4.9)

@ _
Q=

The final integration over two-particle phase space
is evaluated from Eq. (4.3b) with the result

n-—2
QY = D.Cla?’ lg ) Z Fyn, 1 )< )

m—> 0
(4.10)

where F,(n, M) is given in terms of the above
function (4.8),

b P2

) | pz P,
Qp - '5 "é q ; +
- p; P2
Pz

2 Pz (e)

-LZM +i6 (E,"E2) 6 (E|-Ea)

FIG. 27. Quark-gluon vertex corrections in terms of’
Feynman diagrams: (a), (d) Exchange scattering of
quarks with a renormalized (R) vertex correction.

(b) s-channel backward scattering. (c), (e) Scattering
of three quarks. Rules are as in Fig. 26.
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» 192 >
@ X ‘_dATOS( -E){A’-*&‘
Q5 - 4 A f M5 TrOalBl=E) 779 p 6 pa b
2 h .

FIG. 28. (a) Exchange scattering with a second-order
gluon self-energy correction Tr%”. (b) Medium polari-
zation effects on the quark self-energy. The loop -
momentum g is Euclidean, whereas the external mo-
mentum p is Minkowski (p" =i€). -

 8(n-2)  T*(n-2)T(3- )
(32— 8)%(n - 3) I'(Zn-4)

X Fy(n,M) . ) (4.11)

Fz(n,M)=

The three-particle phase-space integral in Eq.
(4.1d) also can be done by means of Eq. (4.3b).
One finds that {4’ vanishes identically

QU = 0. ' (4.12)

f m —> 0
Finally, Q% can be shown to be given by

-1

: 4) = 2 ———
‘Qle DFCF as 4(% 3)(1’[ 4)2

m-—> 0
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which like Eq. (4.10) contains a second-order pole
atn=4. _

Now we combine Eqs. (4.7), (4.10), (4.13) and after
some algebra discover that the residue of the
second-order pole as well as that of the first-
order one is identically zero. Although the algebra
is slightly involved, simplification occurs by

- using logarithmic derivatives of relevant func-

tions such as y(z) =[InI'(z)]’ which satisfies the
recursion relation ¥(z +1)=(z) +1/z. The final
result of these calculations is

(4) - 2.2
Q . D, C.%a
m

1(a+b+Ccrd+e)
X E <1 —a_ _ 8 ?a

(4.14)

B. Quark-gluon vertex correction Q)

w4 "Analytic expressions for the diagrams in Fig. 27
x Z Fy(n, “ﬂ)<_7?q> ’ (4.13) are as follows:
fr 47 fu-€) 1 (B, +m)y* N (B, +m)TB(p,, p )] ’
(4) a a 1 2 132
L@ = 2 £ Tr/ H (2m)"-1 (P, = D) 24€, 21€, “ ’ (%'153)
dr'p 6(u—e.) 1
(4) =0 — o4 a
2 2 58" T ./Hl @yt f (21r)" o aqF
' {v,,v"(ﬁlwn)v“h‘ $ - d+WL)Y“>\’(If +mly, h'(ﬁ2+¢i+m)} (4.15b)
2i€,[(p, - ]Zliz[ Py+q) ?] )
. e d™lp O(u—€) 1
QM) =_ g4 a a
-t f S Y L O N S 2
YoM (B +myy N (B, +mhy” N (s + mly NP, = B+ B, +m) (4.15¢)
21€, 24€,21€, [ (P, = Py +b,)° — mZ] ’ ’

QW —giTr fH drp,0(u~¢,) (—iCy,,) (iﬁ2+mw“k‘(ﬁ +m)y"™ N (B +m)yENS

@mr-t

a=1

24€,2i€ ,21€,

Xe(elv—€2)6(€1_€3)(2p3 pl pz) gﬂj+(2pl pz pS) ggﬂ+(2p2 pl p3)8g°‘7

The renormalized vertex I'{?! in Eq. (4.15a) is given by

1"(2)1 Tt

i .
(ayu r(d)u’

(D1 = 2 (bo = Po)* (D, - D5
(4.15d)

. d"q vV (B, =4+ my N (B, = d + m)y N
I"(a)u—{ gf(z.”) 2[ (b, - q)z_mz][(p1 9 —m

’

} N, (-M?), (4.16a)

2 1 2 ap ~ 2
F:a)“{ [(Zﬂq (iCyyy) @0, =y~ ahg (p

(2) 2
+Yu M TR (-M°)

~29),808 + 2Py — Py = 2q)6gus N VP (d +m)¥Y*A}!
-q(p, - qP(g* - m")

(4.16b)



2110 VAROUZHAN BALUNI 17

with subtraction counterterms r;w, and F”G, being defined in the Appendix by Eq. (Al). The trace over
color indices may be easily taken by the use of the following simple identities:

Tr(MNA) = (Cp — 3C,)CpD5, ‘ (4.17a)
iCyy; Tr(WIATN) = =3C,C Dy, (4.17b)
where C, is the eigenvalue of the second Casimir operator in the regular (gluon) representation, i.e.,
Cydy, = (THTY) 1y, (T);,= —iC e
In the zero quark mass limit the evaluation of the above equations simplifies enormously. Let us start
with Eq. (4.15a) for Q%. First, we carry out the ¢ integration in Eq. (4.16a) using the Feynman’s paramet-

rization method and setting p,>=m?*=0. Doing the integrations over the Feynman parameters and substitu-
ting the result into Eq. (4.15a), we obtain [cf. Eq. (A8)]

n-1 _ 1 n/2-2
Q) = DpCp(Cr=3C,)0870 - 2)F (n, M)Zf H d (gn"n(fféxﬁ <) {[2(n—3)+ nf4J<ifw—‘€—2-> —(n—Z)}.

(4.18)
Here the second-order pole represents infrared and mass singularities. The last term in the curly brack-
ets determines the contribution of the subtraction counterterm Fi?i,. The integration over two-particle
phase space yields . '
' F,tn, 1) o+, (21 B
B = =DaCelCr- 1A (Gt vim(Bha) 4 |(2e) (4.19)

with F, being given by Egs. (4.8) and (4.11). The last two terms in square brackets have resulted from
the combination of the first and third terms in the integrand of Eq. (4.18) in the limit n —4. Obviously, the
result (4.19) depends on the subtraction procedure chosen in Eq. (2.32).

Applying above steps to ng’ one can derive

n=1 _ n/2=2 b
QD = Cr(=3C4)a;167(n — 2)F (n, M) ZfH d 2;0; ,.ff;e <) {( Zﬁ?) +—;~(n—2)}, (4.20)

where the second term in the curly brackets is due to the subtraction counterterm Fif};) After doing the
final integration and some simple algebra Eq. (4.20) becomes

Fn,p,) 3 (zu 9 Ku >
(4) _ 1 2 2\F, _9 a 9 |(He
Q54 m_—>0 DFCF(ZCA)QS ; { 50— 4) A In ) + 16 . 4.21)

We turn to the correction (4.15b) arising from s-channel backward scattering. Performing the neces-
sary trace algebra in the numerator of Eq. (4.15b), one may reduce Qf;’ to the form

Ay = D,C (cF 1C,)a 2167 (n - 2)

m—0
dar lpie(ua —-€;)
X Z f 14 2‘”)"'126
d"q = =P~ aV(po+q =a*(p = o= a)’] +4p,pola® + (p, =y = q)’]
@m)" (b= @) (b2+ @) (P~ b2 - 0)°°
Now it is easy to carry our the ¢ integration introducing no more than two independent Feynman param-
eters. Completing the remaining integrations one finds

(4.22)

3 * ‘
B = DrCHCy - 100 5 g o™ B Pyl ) (B (4.23)
m-—>0 . .
—

where terms which vanish as n -4 have been exactly cancel:
dropped. The complex phase factor is a conse- @ G
quence of the absorbtive part of the s-channel am- Img2" + Im,;" = 0. (4.24)
plitude. However, by applying two-particle unitar- Therefore, it is sufficient to evaluate only the
ity to Eq. (4.15b) one can see without any difficulty real part of Q{)’. The reduced form of the numer-
that contributions arising from absorptive parts ator of Eq. (4.15¢) is obtained from that of Eq.

of two- and three-particle scattering amplitudes (4.22) by substituting g =p, —p,. Thus, dropping



terms which vanish as n —4 one gets

ReQY = DpCp(Cp—-3Cs)a 21672

m-—Q

x 3 AIn, 1) +1(n, 1)} (4.25)

with singular and regular parts being broken up

A" piO(pg—€) 1
(2ﬂ)"~12€i ppb:; ’

(4.26a)

In, w) ==2(n-2) [ T

Ir(n7 :ua)=2(l’l—2)pf I:-Id_n—(;pﬂt)f(—ﬁlf_zaelﬂ

D13 +PaDs + Pipe 1
p1p3 +1)2p3 - Plpz PLDS ’

(4.26Db)

The integral I, is regular at n=4 since its inte-
grand is constructed to be antisymmetric with re-
spect to the interchange of the momenta p, and p,
as p, = p,. Unfortunately, we have not been able
to evaluate Eq. (4.26b) analytically. However, by
quite accurate estimates we found

4
L(4, p) =~ (%) 5, 5~0.69.

E?T_Z_ (4.27)

The singular integral /; is evaluated from Eq.
(4.3b). Substituting 7, ; into Eq. (4.25) one arrives
at ) :

Reﬂéﬁ) = —DFCF(CF"'JECA)OISZ

Fl(n, “a) Ha 4
* ;{Z(n—B)(n—Q '6}(7> :
' ‘ (4.28)

One is left with the contribution Qé‘;’ given by Eq.
(4.15e). It can be easily evaluated via Egs. (4.3b),
(4.17p). N

(4) - _ 1 2 _ A\ Ma)
Qze DFCF(ZCA)as 22(72—3)(”—4) T

m—Q a
(4.29)

Finally, we combine Eqs. (4.19), (4.23), (4.25)
and Eqs. (4.20), (4.23) into two groups

Qg%c)n bre) = DFCF( CF - %CA) as2

ST e 1)
x;3<lnM+2+2—86 ,

m
(4.30)
24, 5
Slé‘%Le):—%DFchAasZZé(31n K __>
. M 2
ﬁ.)"
X( =) . (4.31)

Fy(n, po) ( Ve )“'
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On the basis of remarks made at the end of the
previous sub-section we find a complete cancella-
tion of all poles at n=4.

C. Gluon self-energy correction Qg'

The problem of gluon self-energy corrections is
virtually identical to that of finding the correlation
energy of the electron gas. The latter has a long
history which dates back to original works of Bohm
and Pines® and Gell-Mann and Brueckner.?® In
particular, the last two authors investigated the
correlation energy of the nonrelativistic electron
gas in the framework of quantum field theory. Sub-
sequently, Fradkin® developed a general approach
applicable to relativistic systems, as well, and
Akhiezer and Peletminskii®® carried out detailed
calculations of the thermodynamic potential of the
relativistic electron gas in alna approximation.
Unfortunately, these authors failed to define in
their theory a systematic renormalization proce-
dure.

Here we will reproduce the result of Akhiezer
and Peletminskii on the basis of our general ap-
proach which incorporates renormalization effects
systematically (see Fig. 28).

A distinct feature of the problem is-the existence
of the plasmon eigenmode in the electron or quark
systems which causes the breakdown of the ordin-
ary perturbation theory. The breakdown appears

" in the form of “infrared” divergences (see below).

It should be emphasized that these infrared di-
vergences have qualitatively a different nature than
those encountered throughout the preceding discus-
sion. The former are induced by the medium and
require nonvanishing fermion densities, whereas
the latter are present ad initio due to the massless-
ness of the photon or gluon. The first type of di-
vergences can be regulated by summing up certain
class of diagrams which effectively makes the pho-
ton massive. Therefore, in general, the same
mechanism can be used to regulate the standard
infrared divergences as well. However, it is not
necessary to do so if the system is known to be
free of standard infrared divergences as a result
of intrinsic cancellations. This cancellation is
exactly what occurs in the case of the quark gas.
As has been shown explicitly in preceding sub-
sections, all infrared divergences of the standard
type have cancelled out among themselves in the
thermodynamic potential.

After these preliminary remarks we proceed to
the analysis of Q% which is graphically repre-
sented in Fig. 28. It is given explicitly by



2112

o)=-1g° Trf H

Qg‘l*’) :ng

ar- 1pa9(u“ €a) {

2m"t 2i€,

dn
(2m”

7 mr f duo, f ——(‘;;:{’1

Equation (4.32a) can be evaluated directly. By
definition the renormalized polarization operator
[cf. Eq. (2.49)]

R(2) _
Topv

with :
T[R(:Z)‘(q 2.) - n(z)(q?) _

= (8,0 0% - 4,8,)12®(@?) (4.33)

.ﬂ(Z)(_M:Z) .

(2)(61 ) being given in the Appendlx by Eq. (AT).
Hence, the correction st can be easily calculated
for @ =1 and m =0 with the following result:

533(3) = "'éDFCF(_B CA—ﬁNFDFCF/DA)asz

o XZ { (2ua>_}_

Equation (4.32b) requires careful treatment.
As was indicated earlier the gluon propagator
5)uu(q) is not amenable to a simple perturbative
expansion since higher-order terms of its pertur-
bation series give rise to singularities at ¢* =0.
For this reason we separate in the polarization op-
erator m,, the piece A,, which is responsible for
the breakdown of the perturbation theory. Evident-
ly A,, is completely determined by the contribution
of the matter field,

(4.34)

R(2) _ ; R(2) + Ay

u OMV (4.35&)

In the zervo-temperature limit one has
ij - 2 d’k i AV b
sl@=(-2*f Gy TSNy, S - a)

-(U=O)’

where the term (u=0) stands for the quark con-
tribution to 7X2). Equation (4.35b) can be simpli-
fied by the reduction method of Sec. III. Repeating
the steps leadlng to Eq. (3.6) from Eq. (3.5) one’

derives-

(4.35Db)

A'ﬂy(Q)=—g22Re{Trf dn_:];grﬁfek) Ai_y# (kz‘;:”)
T : ‘ _ ; K=o +m )

1 h')’u (k q)z_m‘ k":’iek t

(4.36)

which can be shown to obey the transversality con-
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Borm N aED) (p, = pINY bo+m
~ (o - 5" %ic, | (4.32a)
L (Brm) L (B=d rm)y? >\ i
— )55 v (b=qy=m {2l (@) - 25, (@)}
(4.32b)

r

dition ¢* A, (9)=0. Hence, the decomposmon sim-

ilar to Eq. (2.45) is suggested: ‘
Ay (@) = (8 @ = 9,9,) Au(9) +Q, @ A,(9) .
( (4.37)

Further, we express the structure functions of
the gluon propagator (2.45).in terms of 7%, Aq,

and A,. By means of the Dyson equation (2.48) one
finds
7 e 2 1 ___Lqu
fDuu(q)_(guyq -qu%f) q dtr(q)+
), (4.38)
du=(1=75 = A7, (4.38a)
du+dy=(1=75=Ap=A,)7", (4.38b)

Returning to Eq. (4.32b) we may rewrite it in
the form [cf. Eq. (4.36)]
Alfu(q)}

@) _
s 1/6—»0/ (21r fd {
=95, ()},

x{D},(9)
which upon- substitution of Egs. (4.37),(4.38) sim-

plifies to
'p, f

(4.39)

d"q

(2 ﬂ,)n {z[ln(l - Atx‘+ Atr)]

1
U 5t

+[1n(1 - Ay = Az) + Ay +A2]}
(4.40)

accurate to order g*. Equation (4.40) has been
first derived by Akhiezer and Peletminskii®® in
. QED in slightly different notation. To exhibit
medium-induced infrared singularities referred to
above, we write down integral representations of
the structure functions A, and 4, extracted from
Eqgs. (4.36), (4.37). Setting m =0 in Eq. (4.36) we
introduce spherical variables according to
=Qcosyp, i‘ﬂ Qsmcp,
|EI=€ = pV It
A (4.41)
. kg =p,QV I (icosg +cosbsing),
u=cosé. ;

Using the identity Tr(X* %) =D, Cp/D46% one finds .
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3 4 pt (1= 4%)du
Burdy = ~(DpCe/Di)e, T f tdtf Q2—4ua Ten o ST ot (4.422)
2 .
38048, = (DCe/Dy)e, e o f wat f Qz (u+i cote) dusin’e (4.42b)
m—> a 0 -

We see that as @ =0, A, ~u’/@" and the per-
turbative expansion of the integrand in Eq. (4.40)
gives rise to the medium-induced(pug= 0)infrared
divergences.

Akhiezer and Peletminskii®® evaluated Eq. (4. 40)
given Eqs. (4.42) in the leading logarithm approxi-
mation a lno,. Recently, Freedman and McLer-
ran'®™16 haye further calculated terms of order
asz. The final result of these calculatmns is

woosTi(efE
[ %Z“vzm( )ogs}

(4.43)

where a = (D C./D,)a, and the function ¢(x) is
given by

¢(V)-—< fx~> In|1- x| |
+§-<G +%>1n(1+\/—x—)_ <1+%x>lnx.
(4.44)
. u,
o s T 5
' 5
_DFCFaszz{ §CA+
2
+(DF2CF2/DA)QSZZ {21n< .Es.z__’ﬁ_cf_
ay b c a La
with
—y)/2
Pior®) = (1= 2" /21 = 32) + %len[li%'zﬂ—],
(4.47a)
/2 )
Bz)(x) =3{(1 —x)/2 xln[l_"'%_i/_f)___.:} }
-2(1-%7%, (4.47b)
pPay)= {-]é_ch-‘;%'NFDFcF/DA}asz (4.48)

InEq. (4.46¢) 6= 0.7 by Eq. (4.27) and ¢(x) is given
by Eq. (4.44). One easily recognizes % (a,) as

(cr-Led) (re2 -t} (L)

41,2t sin®p(u +icotp)® °

Equations (4.34) and (4.43) taken together deter-
mine a fourth-order correction tothe thermaody=
namic potential génerated by the vacuum and med-
ium polarization effects.

D. Summary of results and discussion

Now we can combine the previous results to
find the thermodynamic potential of the massless
quark gas in the ground state

Q= 9(0) 9(2) 9(4)_'_ O(Ol 31na )’ (4 45)

where Q©2) and Q% in the Feynman gauge are
inferred from Eqgs. (3.6’),(3.18) and Eqs. (4.14),
(4.30), (4.31), (4.34), (4.43) respectively,

Qo - DFZ (-&7? )¢(o)< ><;7:> ’ (4'46:3')

1/ B0
Q@ = )(%) , (4.46p)

1/B8-0

DCra; Z (2”)¢<z)<

%ﬁ) + 2¢(ﬂ:-> = 1.86} <—‘%‘§L—>2 , (4.46c)

My m

the Gell- Mann—Low function in the lowest nontrivi-
al order. It is known to determine the rate of
change of the effective chiarge o (M) as a function
of the subtraction point M

: dOls(M) _ 1 4 49)
M2 = Bla (). (

Recalling that u,=(i,0%),, one directly infers
from Eqs. (4.45)—-(4.48) fermion densities, con-
jugate to u, [cf. Eq. (2.1)].

193

Na=—gp -

(4.50)
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' Now the effect of various definitions of the re-
normalized coupling a (M) will be discussed.
Recall that ag(M) has been defined by Egs. (2.4c),
(2.23a), (2.32), (2.47) and by equations given in

" the Appendix. The latter depend on the gauge
fixing parameter which determines a gauge de-
pendence of the renormalized coupling. In par-
ticular, it is easy to find the relationship between
the a,(M) and a, (M) couplings appropriate to

the Feynman (a=1) and to the Landau (a=0)
gauges, respectively.

ap(M)=ay,(M)+ < 1_2}‘ CA> @ (M) +Q(‘¥LB)'
(4.51)

Evidently, the thermodynamic potential is a gauge-
invariant quantity, which is apparent from Eq.
(3.1) since it is given in terms of bare densities.
However, the parametrization of Q in terms of
the gauge-dependent coupling @ (M, o) introduces,
through renormalization counterterms, an im-
plicit @ dependence in the analytic form of Eq. .
(4.46c). We would like to reiterate that the ther-
modynamic potential is 1ndependent of the value
of a.

There exists an alternative subtraction proce-
dure which defines a; independent of @. Indeed
following ’t Hooft** we require renormalization
constants Z{2’, i=1,2, 3, to be given by pure pole
terms ~1/(n - 4) of Egs. (A1)-(A3) obtained from
the Taylor-series expansion of Eqs. (A4)-(A7)
at n=4;  In general, one would choose all co-
efficients {a,,(i), #=0} in Eq. (2.7) to be zero.

It is easy to verify explicitly in second order
that the resulting coupling a,(M) is independent
of a. In general, it is known that the above def-
inition of the renormalization constants leads to
the a-independent Gell-Mann-Low function
B(ay).?® For later reference we give the rela-
tionship between the two couplings ar #(M) in-
troduced above .

ap=ay, - ZITT— B®(a,)(2 +1ndr +C)

1 113
_4—ﬂ-a,,< Ca- 4NF1}CF/D> (4.52)

where C =0.577 is Euler’s number.

Evidently a perturbative expansion of physical
quantities as a power series in a, () would be
rather-awkward due to the appearance of 1rrat10nal
numbers In4r and C.

Finally, we will discuss the optimal choice of
the subtraction point M. The truncated pertur-
bation series (4.45) for Q(u, m (M), a (M), M) is
independent of M within terms of higher order
than those present, which may be direclty checked

via the Gell-Mann-Low equation (4.49) In all
orders this independence is clearly seen from
Eq. (3.2) which is given by the bare Green’s
function. One would naturally choose M such as
to minimize the relative contribution of higher-
order terms or, more precisely, to suppress
potentially large logarithmic factors [In (y,/M)]"
systematically appearing in higher orders. Thus,
one arrives at the optimal choice

M~ p,. (4.53)

An 1mportant remark should be made. At high
fermion densities such that Wy >>m, for some
“a” the condition (4.53) assumes the absence of -
terms ln(ma/M) in the perturbation series. This
requirement is met due to the absence of mass
singularities. Of course terms of the type
(m/M) In(m /M) would not invalidate the pertur-
bation expansion.

V. THERMODYNAMICS OF THE QUARK GAS

The equation of state for the quark gas will now
be analyzed. Tentative neutron-matter den-
sities, at which a transition to the quark phase
can occur, will be found. Equations of state of
various neutron-matter models will be used in
this analysis.*

A. Neutron-quark transition densities

The case of physical interest has colored gauge
group SUW) with N =3 and flavor group SUN,)
with Np=2,3. The Casimir eigenvalues appearmg

“'in Eqs. (4.46), (4.47) are

2NCp=D,=N*-1, C,=D =N (5.1)

where quarks are assumed to be in the fundamental
representation,

‘Now the conserved flavor charges O and their
conjugate chemical potentials p# will be spec-
ified. Actually there is only one independent
chemical potential p,, which corresponds to
the baryon number B=5N, conservation (the fac-
tor of + was introduced purely for convenience).
The remaining chemical potentials p,,; are fixed
by various conditions. Indeed, the chemical po-
tential u, conjugate to the electric charge is de-
termined from the electric neutrality condition

~Q=3NQ=__—-—-=0. ‘ (5.2)

Here again the factor of % is for convenience. The
chemical potential ug conjugate to the strangeness
S is fixed by the requirement that the energy E of
the system in thermodynamic equilibrium should
have a minimum with respect to variations of the
strangeness S=Ng;,
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OE
F’S‘=;“s=q’ (5'33')
E=Q+ uN, . (5.3b)

In general,” a similar condition applies also to
the charm C =N thereby implying u,=0. How-
ever, the charm quarks will not be entertained
here, ‘since the chemical potentials of interest-
are Uy =1 GeV which exclude the existence of
heavy quarks, i.e., with mass m = 1.5 GeV.
Furthermore, the excitation of charmed 'degrees
has a negligible effect in the gluon polarxzatlon
operator.

The contribution of the charge‘d‘leptons to the
thermodynamic potential can also be-ignored since
the relevant chemical potential jigy is small (uQ7
up)<< 1 (see below). At'this point it is helpful
to notice that the ®, 9, and A quark numbers are
coupled to the following combinations of the chem-
ical potentials considered above:

Ho=ls+2 g, ' o (5.4a)

J

I;m; = ,J;{(aub}*)[l -2 ( %ﬁ)J i [1n< zw) ¢ Gﬁ?‘)

Mo = pm F’-B Ko, c ~ (5.4b)

which may be eas1ly mferred from the identity
w\o —3(uBB+/.LQQ) ' (5.5)

Obv10usly, the u,, a=1,..., N, in Eqs. (4.56)
coincide with chemical potentials introduced in
Egs. (5.4), i.e., .

Bi= Mo, Ho=Hgy Ma=Hye (5.6)

We proceed to the discussion of the equation of
state of the quark gas. To begin with, quark
masses will be completely ignored. The m 0.
effects will be discussed later.

The relation between the thermodynamic poten-
tial £ and the pressure P is:known to be

Q=-PV. 3 ‘ (B.7)

Recall that in. the previous sections the volume

14 has been suppressed. From Egs. (4.45), (4.46)
and Eq. (5.1) with N =3 we immediately infer the
equation of state for two, P® (N,.=2), and three,
P® (N,.=3), flavor massless quark gas

» + [a“_»(é—zlna " lpc> + {(a - b)} <%“>2 - [ln <%’> -0.25 (d2+l;2)2 <£l1r—>2} , | : (5.‘8a)
e el s (22) o) ()] ()

[ a*(101na -+ 1.17)+ 2b*(11 Inb + 1. 17)] (-1-75

where the subtraction point A/ was:chosen to be
[cf. Egs. (4.46c), (4.53)] :

M= — l“LB % 3 : : (5.9)
e )
The function ¢ (x) was defined in Eq. (4.’44) and:

a=1+2ﬂo/“~5, b=1—l-iQ/uB" C=1+“Q/U‘B}
; (5.10)
Quark densities may be inferred from Eq. (5.8):

. api) .
n§ = T i=2,3, (5.11a)
. dP(i) o : .
(i) P :
n§ e i _2,3‘, (5.11b)

with the electroneutrality: condltlon (5.2) being
imposed.

301,,.

\_/
|
.._‘
N

+0. 92}(a2+2b2) < >2}, | (5.8b)

’

To analyze Eqgs. (5.8), (5.11) one needs to know
the running charge a,=a, ((2/e)n). The Gell-
Mann-Low equation (4.49) relates values of a (M)
at various points. Notice that f{a,) in (4.49) has
been computed up to terms of order 'a,,S

ﬁ(ag) =B(2)aH2 +B(§)QH3
with 82’ given by Eq. (5.58) and g by
4= -3 CA2+/(2_30' Ca+ 4CF)CFNFDF/DA .
(5.13)

Thus one can parametrlze a,(M) and via Eqgs.
(4.51), (4.52) also o, 1 (M) in terms of ay(M,)
or ay ,(M,), where M, is a conveniently chosen
point. The resulting curves for various values
of a,(M,) with M,=3 GeV are shown in Fig. 29.
For the same initial value of a (3 GeV) the ef-
fective charge of two-flavor gas turns out to be
slightly larger than that of three-flavor gas.

(5.12)
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FIG. 29. Behavior of the effective charge oy ( (2/e)u)
according to Eqgs. (4:42), (4.48), (5.1), (5.12), (5.13)
withN=Np=3. Various reference values are considered
oy, 3(3 GeV)=0.14, 0.17, 0.20. The curves o (M) are
obtained from those of ay(M) by Eq. 4.52): o, , (3 GeV)
=0.20, 0.26, 0.32. ‘

Notice that the values of a (M) are at least as
much as twice larger than those of ay,-(M)-
Clearly, the distinction between two eifective
charges a, (M) and a, (M) arises beyond the Born

approximation. However, the contributions of the
Born terms in corresponding to various choices
of the expansion parameter o, (M), s=L,H,F may
differ significantly for a given value a,(M,)= a,.
Our preferred choice is a, (M) for two reasons.

Firstly, in the Landau gauge unrenormalized
(a,) as well as renormalized (a) gauge param-
eters are identically zero, Therefore, an addi-
tional functional dependence on the chemical poten-
tial u through the running gauge parameter a(u)
does not arise in higher orders of perturbation
expansion.

Secondly, the ratios (25"/Q§’) and (@%/ Q)
inferred from Eq. (5.8) relate as two to one for
the values of @, , considered in Fig. 29. Thus, .
the o, appears to be more suitable expansion
parameter for € than a, or a,.

Unformnafely, at present there is no consensus
on the value of a (3 GeV). The values used above
a;(3GeV) <0.3 should be considered as a ten-
tative choice being suggested by the phenomenolo-
gical analyses of the existing experimental data
on the deep-inelastic structure functions and
electron-positron-annihilation cross section.??

The chemical potential n, has been numerically
determined from Eq. (11b) for the values of p,
of interest. It should be noted that the desired
solution ug=p§’(pg), i=2,3, should correspond
to the local minimum of the thérmodynamic po-
tential, i.e., '

BZQ/BuQZIquS)(ua)>O .

By a direct numerical analysis it was found that
p$? ~-0.03 gy and p§’=0. Since effects due

to u% are neglible, one may set effectively
ps? =0, simplifying Egs. (5.8), (5.11) to

](—‘%)} (5.14a)
";—LY} (5.14b)
2%) 2}, | ‘ (5.152)

%)2} (5.15b)

Here the coupling a; = a;((2/€)up) has been introduced neutron-matter models presented in Fig. 30 by the

according to Eq. (4.51).

The functions (5.14a) and (5.15a) are plotted in
Fig. 30 for various interaction strengths «,(3 GeV)
=0.2(L,),0.26(L,),0.32(L,). They have to be com-
pared with the equations of state for different

curves R-P, B-J, P-S, and W. These models are
due to Reide and Pandharipande,®® Bethe and
Johnson,* Pandharipande and Smith,*® and
Walecka.®® The cross point P vs i, curves cor-
responding to the neutron matter and the quark
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FIG. 30. Ly, L, are equations of state of the quark
gas for effective charges Qa3 (see Fig. 29). The
curve L% is the Nz =2 counterpart of L,. The dashed
curve is obtained from L, after ignoring ozLZ(InaL) !
terms. R-P, B-J, W, P-S represent equations of
state in various neutron-matter models (see text).

gas determines the parameters of a phase transi-

tion between these two states of matter. This
rule follows from the condition of thermodynamic
‘equilibrium between two different phases (see,
e.g., Chap. 8 of Ref. 37).

Compariscn of Figs. 30 and 31 shows that the
neutron-matter transition densities vary, in a
broad range below ny=2 baryons/fm®, with the
interaction-coupling 0.2 < a (3 GeV) <0.32.
Unfortunately, the lower bound of the transition
densities cannot be identified reliably as it is
sensitive to the detailed behavior of the equations:
of state in the threshold region ;> 0.3 GeV. In
this region the equation of state of the quark gas
may be strongly affected by quark mass effects
as well as the nonperturbative effects discussed
in the following subsection. However, it should
be noted that naive considerations do not rule out
transition densities which are of order of the
nuclear-matter densities (z,%0.16 baryons/fm®).
For example, Eq. (5.152) with o, (3 GeV)=0.24
determines an equation of state almost identical
with the curve B - J in Fig. 30, and is also rep-
resented in Fig. 31 by the dashed curve L.

The contribution of @ *(Ina;) terms is exhibited
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FIG. 31. The baryon number density n, vs the
pressure P in various neutron-matter models and the
quark gas (see Fig.:30). Open circles indicate neutron-
quark matter transition densities corresponding to the
curves L, in Fig. 30. The dashed curve represents -
the equation of state of the quark gas for @ (3 GeV)
=0.24.

in Fig. 30 by the deviation of the dashed curve
from the curve L,. Although higher-order terms
turn out to be negligible at high transition den-
sity, it is important to realize that they have an
implicit effect on transition densities by deter-
mining the optimal choice of the subtraction point
(5.9) and the coupling o, .

The dependence on the number of flavors may
be recognized by comparing, in Fig. 30, L} and
L, which respectively represent equations of state
for two- and three-flavor quark gas with the same
interaction strength a;(3 GeV)=0.26. Evidently
the neutron matter prefers transition to a three-
rather than two-flavor quark phase since the
former has a larger phase space.

One can see from Figs. 31 and 32 that after
passing to the quark phase, matter becomes al-
most twice as dense, with the per baryon energy,
€, correspondingly larger. The increase in€ is
given by Ae=PA(1/nz)~2 GeV for a,(3 GeV)=0.26.

Thepresented analysis suggests that the neutvon -
quavk phase trvansition may take place at neutvon--
matler densities ny<2 bawon/fm?, provided 0.2
<a,(3 GeV)<0.3; -at the high end of the density
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FIG. 32. The ¢, 5 (%) are threshold factors of Egs.
(4.46).

vange tvansition is a highly endoenevgetic process.

The conclusion essentially remains unaffected
if one uses the simple parametrization a,(u) =21/
(91npu/A) with 0.2 <a (3 GeV)<0.3 or 100 MeV <A
<300 MeV. This expression for the effective
coupling a;(u) is the solution of the Gell-Mann—
Low equation (4.49) with B(a,)=B8®(a )= ~9a 2
[see Eq. (4.48)]. Obviously, the larger the inter-
action strength @;(3 GeV), the higher transition
densities are. Note that for sufficiently small
a (3 GeV) the transition may be entirely impos-
sible.

It is important to emphasize that o, (3 GeV) may
be directly inferred from the phenomenology of
QCD.

B. Discussion

The above conclusions should be considered
in the light of the following remarks:

1. Tests for neutron-matter models are lackmg
In particular, their reliability, at densities much
higher than nuclear-matter densities ~0.16 baryon/
fm®, has been often questioned.®® Notice, how-
evef, that three of the four models considered in
Figs. 30, 31 predict rather close transition den-
sities <2 baryon/fm?, supporting the model in-
dependence of our conclusions.

The model P - S is distinct from the remaining
ones in that it assumes a solid phase of neutron
matter for #,>0.35 baryon/fm®. Therefore, it
is not surprising that it predicts much lower
neutron-quark transition densities (see Fig. 31).

2. Perturbation theory is expected to break down
in the transition region where confining forces be-
come important. These forces areknown tobe re-
sponsible for the formation of neutrons from quarks
and have been ignored in our analysis altogether.
Therefore, the positions of transition points in Figs.
30 and 31 should not be taken too literally. However,
they are expected to determine transition densities

approximately.

At sufficiently high densities, the quark gas
develops the Debye screening of color which
seems to provide a suppression mechanism
for long-range confining forces. Indeed, if the
confining forces are assumed to be effective at
distances larger than d,, the above mechanism
becomes operative provided

d,= 2, . (5.16)

The Debye radius, 7, is easily inferred from
Egs. (4.42a)

TP=@%0,@Q)

GaL(('z/e)UB) “BZ

= 1
Q4/@—0,Q-0 ™ (5.17)

Turning to Fig. 30, one finds that the condition
(5.16) is met for the transition points indicated (i 5
>0.4 GeV) ifd,~1 fm, given by the size of the
neutron.

3. Quark mass effects remain to be discussed.
The quark masses {m,} are known to be a mea-
sure of the chiral-symmetry breaking. In gen-
eral, they consist of two components m=mp+my.
The first component m, is generated dynamically
and arises from the nonvanishing vacuum expec-
tation of the mass operator i;b. The second com-
ponent, my, is due to the bare mass present in
the fundamental Lagrangian (2.3).

" We will adopt the point of view that the spontan-
eously broken nature of the chiral symmetry is
responsible to confining forces, which in the quark
phases was suggested to be set off by the color
screening. Correspondingly, in accord with pure
perturbative approach of preceding sections, we
will assume that m,=0 and m=mj.

Let us return to the thermodynamic potential
(4.45) and set u,= g, a=1,...,N, ignoring the
neutrality condition (5.2) [ef. Egs. (5.4) and (5.6)]:

P(up)= 42MB Z{‘b(o)( ) 4)(2)( 2><2‘;L>
_%)( 2)(":) } (5.18)

where a; = a;((2/e)u ) and ¢, , (x) are givenby Egs.
(4.47a), (4.47b) , whereas ¢, (x) is known in the
limit m, =0,

O yx=0)= NF[O 92+ In —aIJ+O.71. (5.19)

2
Recall that effective masses m,=m (M) depend on
the subtraction point M=(2/e)u, [see Eq. (5.9].
The definition of the renormalized charge a, will
be assumed to be intact, since the choice of o,
appropriate to the massless case is possible in
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Eq. (5.18) even though m,# 0.

The threshold functions ¢, ,,(¥) are normalized
as @, (0)=1. They are determined by the phase
space m?+ p2< u? rather than p< pu and appear as
suppresion factors. Indeed, one sees from Fig.
32 that | ¢, ()| <1, forx<1, i.e., my< pp.
Notice that ¢,,(x) decreases much faster that
(%) as it is given by two- rather than one-par-
ticle phase space.

In Eq. (5.18) the function ¢,,(x) is expected to
be suppressed by two- and three-particle phase
spaces. Furthermore, at high densities the
a;?*1na;) terms were found to be negligible for
the massless quark gas (see Fig. 30). Therefore,
being interested in a rough estimate of mass ef-
fects, we restrict ourselves to-the Born approxi-
mation of Eq. (5.18) and ignore p, dependence of
quark masses. However, we allow them to vary
in a wide range.

Mg, s 100 MeV, m, =400 MeV . (5.20)

The upper limits are suggested by the MIT bag
model®*® and nonrelativistic quark models.*®

Considering the equation of state with the above
input, one finds only 10% variation in the pressure
for ug>0.5 GeV. The weak dependence on the
quark masses is due to the fact that as quarks be-
come heavier the interaction becomes effectively
attractive ¢,,(¥)<0, x>0.1.

Thus, quark mass effects do not seem to be
significant at relatively high transition densities
>1 baryon/fm®.

VI. SUMMARY AND CONCLUSIONS

We have presented the detailed account of re-
sults reported in Ref. 1. We have developed sys-
tematic perturbation theory for a relativistic
fermi gas with non-Abelian gauge interactions.
The regularization and subtraction scheme has

been formulated in detail at nonzero temperatures.

By means of a special reduction technique, the
zero-temperature thermodynamic potential of the
quark gas has been evaluated up to the second
order of the effective fine-structure constant

a (M) (see Sec. IVD). A tentative phenomenolog-
ical analysis of the resulting equation of state has
been carried out. It has been argued that the neu-
tron—quark-matter phase transition may take
place at neutron-matter densities ngz < 2 baryon/
fm® for a (3 GeV)<0.3(see Figs. 30,31).

An alternative approach for perturbative calcu-
lations of the thermodynamic potential & has been
developed by Freedman and McLerran.'®* They
- derive an infinite-series expansion for © in terms
of the various Green’s functions!®; the former
was subsequently used as a starting point for per-

turbative calculations.**™'% For comparison,
note that our entire discussion was based on the
well-known representation for fermion charges
given by a single fermion propagator [see Egs.
(2.1),(2.2)]. The final equation of state of a mass-
less quark gas given in Ref. 16c agrees with our
results, Egs. (4.46). However, we have several
disagreements with Refs. 16:

(a) A general integral representation of the
thermodynamic potential for the massive quark
gas [cf Egs. (4.1)] has not been derived in Refs.
16. However, the quark mass is maintained
in some expressions. Unfortunately, these re-
sults suffer from a lack of definition of the re-
normalized quark mass m as well as Z, (m #0)
[ef., Egs. (2.4d),(2.23)]. In particular, these
omissions can be consequential in Ref. 16d,
where m is considered to be a constant, i.e., in-
dependent of the chemical potential ug.

(b) In Ref. 16b the regularization of the Fermi
surface singularities seem to be ad hoc. Calcu-
lations are carried out at 1/8=0, however, sing-
ulatities arising from 6 functions have been side-
stepped by replacing 6(E) with the analytic func-
tion n(E) from Eq. (3.4). Recall that the regular-
ization of these singularities is an essential in-
gredient of the reduction technique developed in
Secs. III,IV. ’

(c) The appearance of diagrams with two-par-
ticle discontinuities such as those in Figs. 18(d),
19(f), 22b, 22¢, 22d, etc. has been entirely over-
looked. Of course self-energy insertions in Figs.
18(d), 19(f) do vanish in the generalized Landau
gauge a=1-(n - 2)%, n—4 which was used in
Refs. 16b, 16¢c [see Eq. (A6)]. However, this is
not true for discontinuities of vertices in the last
diagrams of Figs. 22(b), 22(c), 22(d). Further-
more, it might be very harmful to let n -4 at

- that stage of calculations. The above omission

does not affect the final result since the associated
diagrams can be shown to cancel between them-
selves at the zero-temperature limit (cf., Sec.
v).

(d) Equations. (5.12),(5.13) have been employed
in Refs. 16¢, 16d without making a distinction be-
tween two different charges a, , which are rela-
ted by Eq. (4.52) (see Fig. 29).

(e) Phenomenological models of Ref. 16d assume
that the per baryon energy changes continuously
through the phase-transition point in contradis-
tinction to our general conclusion drawn in Sec. -
V B.

In conclusion, we will briefly discuss possible
implications of our results. At present, the ul-
tradense stellar objects® and heavy-ion collisions!?
appear to be the only candidates to which the ideas
of a quark gas may be applicable.
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The first candidate has been extensively studied
in the framework of various neutron-matter mo-
dels. In particular, equations of state plotted in
Fig. 30 predict for the maximum mass neutron
stars the following central densities: #,(baryon/
fm*)=0.5(P - S)**; 0.9(W),* 1.4(B -J),*

1.7(R - P).® These densities have to be com-
pared with corresponding neutron-quark matter
transition densities indicated in Figs. 31, 32.
Observe that the former are comparable to the
latter. The comparison suggests that the matter
in the ceniral cove of superheavy stars exists in
the quark vather than in neutvon phase provided
the colov interaction stvength o (3 GeV)=< 0.3.

The remarkable aspect of the above conclusion
is that the value of a (3 GeV)= 0.3 appears to be
consistent with the phenomenology of QCD.3%?

Turning to heavy-ion collisions we note that rele-
vant densities n, are those given in the center of
mass of two ions

ny=ny[2(1+ E, /M) 2,

where n,~0.16 baryon/fm? is a typical nuclear-
matter density; M is the mass of colliding nuclei
and E; is the laboratory energy of the incident
nucleus. The present operating range of the Beve-
lac energies E; < 3M ensures the neutron-matter
densities to be n,< 3n,~ 0.5 baryon/fm®. Hence,
the -exciting possibility of quark matter production
is suggested for relatively weak-interaction
strengths a (3 GeV)=0.2.

Clearly, the feasibility of quark matter produc-
tion requires sufficiently accurate knowledge of
a (3 GeV). There are other uncertainties such as
those due to the nuclei’s finite size effects and
the nonstationary character of collisions, which
may affect our naive estimates. These questions
require a further.investigation.
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APPENDIX

Here we will give general expressions of the
renormalization constants Z, , .(M) (see Sec. II)
in the lowest nontrivial order in the covariant
gauge, i.e., for an arbitrary gauge parameter a.
Relevant diagrams are given by the quark and
gluon self-energies [see Eq. (2.23a), (2.47)] and
the quark-gluon vertex [see Eq. (2.32)]. They
have been evaluated using Feynman rules of Fig.
1 with m=u=1/8=0. Calculations are straight-
forward, however lengthy. They give

Z{® = -T2 (-M?) ~ T2, (~-M?) , (A1)
Z{®P= 5@ (M2, ) (A2)
22 =72 () (A3)
with - |
T (-M*)=a(n-2)(Cp-5C)Fn, M),  (Ad)
T2 (-M?)=5(1+ @)(n - 205C,F(n,M),  (A5)
EiZ)(—M2)= a(n—Z)CFF(n,M),‘ (A6)
nf’={[—3§:"%+<zn - -2 - wre,
where
_(MA 2Ty /9 1) T(3 -1 /2)
F(n,M)—— (47T)"/2 I“(n_z) n-4 4‘[1(13.
(A8)

In Eq. (Al) contributions from the quark gluon
vertex T'? and triple gluon vertex M{”’ have been
shown explicitly. Quantities N, Dy 4y, and Cp(y,
determine the number of flavors, dimension of
the quark (gluon) representation, and eigenvalue
of the second Casimir operator in the same rep-
resentation, respectively.
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