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Several features of the static quark-antiquark potential in quantum chromodynamics are studied. It is
shown, first of all, that the potential between fixed color sources exists as the infinite-mass limit of the
interaction between a heavy quark and antiquark. The phenomenological consequences of this result are
summarized. The potential is then examined as, an expansion in the strong-coupling constant a, using the
Wilson loop integral, Infrared. properties are elucidated and the power-series expansion in a, is. shown to
break down. The quantum color correlations of the quark sources with the gluon field induce singularities

. which can only be removed by selective resummation. The resulting expression for the 'potential. is

nonanalytic in a, at a, = 0.

I. INTRODUCTION

The static potential between a heavy quark and
antiquark is an object of considerable theoretical
interest. In quantum chromodynamics (QCD), the
absence of quark motion means that attention may
be focused primarily on the gauge field sector,
While a static potential cannot describe the rela-
tivistic binding of the u, d, and s quarks, the ex-
perimental discovery of heavy quarks makes it
more than a theoretical laboratory. The potential
has been measured in the ce system where the
evidence suggests that it groms approximately
linearly with the separation A for I/M, «B.

In this paper we shall discuss several features
of the static potential in quantum chromodynamics.
The work reported here extends and amplifies an
earlier letter of ours, ' Rnd related work by Fein-
berg, Fischler, , and Poggj. o~ The analysis is
based in perturbation theory and we will not deal
directly with. any Of the deep questions associated
with confinement a,nd the Structure of hadrons.
The success of asymptotic freedom gives good
reason to believe in the usefulness of perturbation
theory at short distances (A & I GeV '). lf confining
forces set in at larger distances they will very
likely be due to coherent effects associated mith
vacuum structure' and they mill presumably not
be accessible through perturbation theory.

There are, how|:ver, . a number of important
aspects of the static potential which can be inves-
tigated with perturbation theory. The effect of
very-short-distance (&I/Mo) quantum fluctuations
on the potential Rnd the smoothness of the limit
M@- ~ are naturally studied this way. Another
interesting question is whether the potential exists
as a power-series expansion in the strong-coupling
constant m;: =g'/4v. It does not. The quantum col-

or correlations between the quark sources and the
gluon field induce certain "long-time" singularities
which can only be removed by selective resumma-
tion. The potential is therefore nonanalytic in +,
at o.', =0. Our analysis. of this feature of QCD may
also be relevant to statistical-mechanical systems
with analogous correlation effects.

The organization of the paper is as follows: In
Sec. II, we summarize some features of the Yang-
Mills theory in the Coulomb gauge, the. gauge
which seems most natural for the study of the
static limit of the theory.

In Sec. III, we establi. sh a framework for the
computation of the static potential. This frame-
work is developed in the infinite-mass limit, a
limit which is shown to be nonsingular in Sec. $V.
The Wilson loop integral' serves as our primary
tool for this analysis. The simplified case in
which the sources are classical, i.e., uncorrelated
with the quaritum fieMs arid carrying no quantum
labels is considered first. There it is shown that
the potential is given by the connected Feynman
diagrams. The source-field color correlations
in the non-Abelian case prevent the formulation of
such a simple final prescription.

In Sec. IV,
'

the limit M@-~ is analyzed and the
features of lorn-order perturbation theory are re-
viewed. A%ard identity is established for finite
Mo, which shows that the only ultraviolet-diver-
gent re'normalization of the Coulomb-field-quark
coupling comes from corrections to the Coulomb
propRgRtor. This same Ward ideotity is.used to
prove that the limit M@- ~ is nonsingular. This
result has an important phenomenological impli-
cation: the universality or flavor independence of
the static'potential.

From this point on, infinitely massive sources
are used and the remainder of Sec. IV reviews
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the one- and two-loop structure of the potential as
reported in Befs. 1-4. At one loop, the physical
origin of asymptotic freedom is recalled. At two
loops arid beyond, the potential becomes infrared
divergent if the QQ pair is not in a color-singlet
state. The two-loop infrared finiteness of the
color-singlet potential, first demonstrated by
Feinberg, ' is described and it is conjectured that
this feature should be true to all orders.

In Sec. V, we analyze another class of singular-
ities which had been noted in Befs. 1 and 2. These
singularities of the color theory- are shown to
come from large relative times but spatial sepa-
rations SR in the coordinate space integrals.
They are thus not ordinary infrared divergences
and they do not cancel among diagrams. They in
fact signal a breakdown of the perturbation expan-
sion. The necessary selective resummation is
apparent in the context of the Wilson loop i.ntegral,
and this is discussed in detail for a simple ex-
ample. The resummed expansion, necessarily
nonanalytic at a, =0, has a simple physical inter-
pretation. It appears that. this reorganization of
the computation of the static potential can be car-
ried out to any desired degree of accuracy. How-
ever, the formidable combinatoric problems which
arise in higher orders-make such a result difficult
to prove. Section VI contains a summary of our
main results and some unresolved questions.

II. THE COULOMB GAUGE
' '4 f

For simplicity, we shall consider only one quark
flavor with mass M@. The gluon field, is A„and
the Coulomb gauge condition is V'A'=0. In this
gauge, the canonical variables of the gluon field
are A' and the transverse electric fi.eld E,'. In
terms of these and the quark field t/r(x), the Hamil-
tonian takes the form'

+ p(ig+M)g —gg T o.~g

The matrices T are.normalized by, Tr&,T, ,= &~„.
For future reference we record the definition of
quadratic Casimir operators C~ and C„of the
fundamental and adjoint representations,

'

f.~A~ =C~~.~.
For a general SU(N), C~ = (N'-1)/2X and'C„=, Ã.
The longitudinal electric field V'g is a dependent
variable determined by the equation

(V' gA ~ X V')P = p,
where p is the color source

p gAf x E't ggtT$

The constraint, Eq. (3); can be inverted in per-
turbation theory and Feynman rules can be derived
by functional or ca,nonical methods. ' The gluon
propagator has an instantaneous part and a trans-
verse part:

1
Dab (gab~ ~ p 0

k '

k;k) 'I

2 . ~ V =i~ ~=2 ~

k2 ) 42+i& '

A Faddeev-Popov ghost must be included, but it
is an instantaneous potential, with propagator
1/k, not directly connected with unitarity. The
ghost couples only to the transverse component of
the gauge field. The usual set of vertices and the
quark propagator round out the Feynman rules.

It has been pointed out by Schwinger' that in
order to ensure operator I orentz covariance, an
additional term must be added to the Hamiltonian.
The effect of this. term i.n the canonical derivation
of perturbation theory has not been fully explored
to our knowledge, but by examination it can clear-
ly be seen to enter only at the two-loop level and
beyond. It will have no direct bearing on our work.
The ambiguities of tPe .Coulomb gauge for strong-
field strength, corresponding to the possibility of
solutions to 'the homogeneous version of Eq. (3),
have recently been emphasized by Mandelstam
and Gribov. ' For the part of- our work concerned
with short distances (8 & 5 fermi), asymptotic
freedom should make such effects negligible. For
larger distances, these problems underscore the
limitations of perturbation theory which we have
already emphasized.

III. COMPUTING THE STATIC POTENTIAL

In the next section it shall be demonstrated that
the limit M@- ~ is free of singularities. Antici-
pating thi:s result we first address the question of
how to compute the potential between:t%o fixed
color sources in a singlet State separated by a
distance R. The sources can be taken to be spin-
less, and they couple only to the Coulomb part of
the gauge field. The momentum space propagator
for the sources is 1/(ko+ie), which Fourier
transforms to 8(t) 5'(x). Throughout this section
and most of the rest of the paper, we shall:find
it convenient to work in coordinate-spa;ce. Since
the sources are fixed in coordinate space, '-'this
seems simpler arid more direct than th'e equivalent
momentum-space analysis.

I et us first consider a simpler' prob&em than
QCD in which the sources are classical, that is,
uncorrelated with the quantum fields. - The sim-
plest such example is electrodynamics where the
sources are static pointlike electric charges, but
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this model is trivial in this context since the only
interactions are between the sources and the field.
More generally, interactions among A„(x) and
other quantum fields can be introduced as a proto-
type for the Yang-Mills theory.

A gauge-invariant starting point for the compu-
tation of the potential is the Vhlson loop integral

P exp ig dx, A"

+T/2
—ig A, (R, i)d&

-r/2 - 0

This then should give the exponential of the static
potential e'~'~' in the limit T-~. Thus

I
V(R) = lim —. lnf +co $T

P exp ig dx„A.~ (6)

The vanishing of the contributions from the ends
of the rectangle is expected since E,„-O in the
limit T- ~, and therefore the potential A,. becomes
gauge equivalent to A,.=0. This fact is easily seen
in the perturbation expansion of Eq. (6). Diagrams
with lines attaching to either end of the rectangle
variish as T- ~.

The expansion of Eq. (6) in perturbation theory
produces, after the usual cancelatiori of vacuum
disconnected graphs, two classes of diagrams
which attach to the sides of the rectangle (the
sources). One class is "connected" where con-
nectivity is defined without the inclusion of the
source lines, i.e., using only the quantum fields.
The other class is "disconnected" in the same
sense.

By iterating the connected diagrams in all ways
along the sides of the rectangle, all the discon-
nected graphs will-be generated. A given diagram
will correspond to a definite time ordering of the
various interactions with the source. These are
specified by the source propagators which are 0
functions in time. The effect of ordering one con-
nected diagram C, in all possible ways with re-
spect to another C, is to eliminate the 6 functions
involving the relative time intervals in C, with
respect to trope in C~. Thus the two sets of time
integrations range independently between —T/2

The integral is taken about the rectarigle of width
R and length T»R, and P is the path ordering
symbol. The expectation value is taken iri the
vacuum, which for a perturbation theory computa-
tiori is built up perturbatitely from the bare vac-
uum. As pointed out by Fischler, ' if the ends of
the rectangle can be shown not to contribute in the
limit T- ~, the loop integral becomes

+r/2
T exp ig Ao(0, t)dt

T/2

and +T/2. It is of course crucial here that the
sources be uncorrelated. In adding together all
time permutations, an overcountirig by a factor of
n'. will occur, where n is the number of identical
corinected diagrams involved. This must be com-
pensated for by multiplying by 1/n! ."

The upshot of this analysis, which we have only
sketched, is that the potential V(R) will be given
by the connected diagrams. The disconnected dia-
grams are iterations which build up the exponential
of Eq. (6). We note in passing that the class of
connected diagrams includes those which connect
only to one side of the rectangle (only one of the
sources). These are source self-mass contribu-
tions which, as we shall discuss furthe'r in the
next section, can be regarded as canceled by an
appropriate mass counterterm. They do not de-
pend upon quark separation and make no contribu-
tion to the potential.

If it can be shown that the large spatial integra-
tions and large relative-time integrations in each
connected diagram are convergent (infrared finite-
ness), then this procedure will give a finite result
for the potential. The overall time integration,
corresponding to sliding each connected structure
as a unit along the rectangle, wi. ll give one overall

.factor of T. It will then follow that the limit T- ~
in Eq. (6) exists, and the potential will be calcul-
able to any order in the coupling constant. The
infrared finiteness for connected diagrams can,
in fact, be proved for a wide variety of field the-
ories. In par. ticular, for renormalizable theories
even with all the fields massless, a simple power-
counting analysis can establish the result to all
01ders.

It is worth commenting that this type of connec-
tivity result is familiar in many-body theory. It
is very similar to the Brueckner-Goldstone linked
cluster expansion for the energy of a system of
particles at zere temperature. The literature on
this problem and the closely related finite-tem-
perature expansion is extensive. "

Turning now to the Yang-Mi1, 1s theory, we again
start with, the Wilson integral

where the contour is the same rectangle of width
A and length T»B. In perturbation theory, it ean
again- be .shown that diagrams with gluon lines at-
taching. to the ends of the recta'ngle vanish iri the
limit T- ~.' This makes it plausible that i:n this
limit the %ilson integral again takes the form
e'~'~'r, , where V(R) is the static potential energy
of a. ,color, -sinI, let pair of color sources separated
by. a distance A. Then, as before,
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1
V(R) =lim —. Ln TrP exp ig dx T A"

gw do gT

To actually demonstrate this and to give a direct .

prescription for computing V(R) analogous to the
"connectivity" prescription with uncorrelated
sources is now a rather more difficult problem.
All the complexities stem from the fact that the
sources are no longer classical. Color is a quan-
tum label, and the color state of the sources is
correlated to the gluonic sector. This leads to a
number of interesting consequences. V(R) is no

longer given only by diagrams which are connected
purely within the quantum field (gluonic) sector
and one result of thiq is that infrared divergences
appear which must be shown to ca,ncel. A more
important consequence is the appearance of a new
class of singularities coming from integrations
over large times. They lead to a breakdown of

the perturbation expansion and consequently non-
analyticity in n, (~g'/4m) at o.,=0. In the next two
sections we analyze these features and outline how
the potential could in principle be computed to
a.rbitrary order.

I

IV. THE INFINITE-MASS LIMIT AND SOME FEATURES .

OF THE POTENTIAL

%'e begin with a discussion of the infinite-quark-
mass limit and the question of mass dependence in
heavy-quark spectroscopy. The Coulomb gauge is.
particularly convenient for this purpose since the
coupling of transverse gluons to the heavy quarks
may be neglected when M~- ~. Thus attention
may -be focused on the fermion-Coulomb-gluon
vertex which satisfies a Ward identity simi, lar to
QED. This identity can be derived by functional
methods" and is most easily expressed in momen-
tum space. In a standard notation

- q' I( qP)[ I+B(q)]+ 'qI( q, P)][ I+&( )q]=[gT"-B'(,p)]S '(p) &'(f +-q)[g&' B'(q P-)] (8)

S(P) is the fermion propagator and the functions
A(q), B(q), B'(q, P), and B'(q, P) are two- and
three-point functions involvi. ng the ghost as shown
in Fig. 1. B(q)q ' is the ghost . self-energy while
&(q), B'(q, P), and B'(q, P) .are artificial constructs
in which an external ghost line terminates.

As the ghost couples only to .the transverse
gluon, it is possible to factorize the A and B' am-
plitudes as follows:

qco

q, a

q, o

Ghost propagator

Transverse gluon. propagator

Coulomb gluon propagator

B'(q, P) =q;B;(q, f ), .
(9)

&(q) =q '8(q, q, ) .
It then follows from simple power-counting con-
siderations that B;. and 6 a.re primitively conver-
gent. The function 6, in fact, vanishes to'three
loops and we conjectur e this to be true to al'l or-
ders. The primitive convergence of 8;. and 6 can
be used along with the Ward identity (8) tb s'how

that'the only ultraviolet-divergent renormalization
of the Coulomb-gluon-quark coupling, qoncstant
comes from corrections to the Coulomb gluon
propagator. This can be shown by.differentiation
of Eq. (8) with respect to q followed by q 0'or
by a decompositioh of Eq. (8) into O(3) fnvariants.

We now consider the infinite-mass liitift.
'

".'Bg
mass here, we mean the renormalized ma,"sa-". 'A'3:1

self-energy insertions are to, be expanded in'pcow=
ers. of (p-Mo) with the zeroth-order term' ab-"
sorbed. into mass renormalization. I ett'ing the
mass tend to infinity, the Ward identity'eiis6&es' '

that the combination of fermion vertex I"- anc'6 0'eH-

q, A(qj8' =

c q, a
~o~&0 0

C

&fbcd

o~

-ab q, a
q B(q)8 = —o ~o q, b

8' (q, p)=

~o
~o

Tc,
p+q

c l

'j,a,&" '

~l

c

B'(q, p) = T' x
c

FIG. 1. Definition of amplitudes appear tng in tlirt''
Ward identity tzq. (8)].
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C

T/2 {0) + T/2

FIG. 2. One-loop corrections to the Coulomb propa-
gator. The solid lines are the fixed sources, separated
by a distance R «T.

energy S(P) parts is finite in this limit. This re-
sult follows from the observation that in this limit
I",.(q, p) vanishes while A(q) and B'(q, p) remain
primitively convergent. We omit the details of
the power-counting analysis required to demon-
strate this. It is worth commenting that the finite-
ness of this limit is not at all apparent in a graph-
by-graph analysis of I', and S(p). The individual
graphs contain lnM@ terms which sum tg hiero in
ea, ch order as the Ward identity demands.

It is easy to see that the only possible sources
of divergence as M@- ~ are the vertex I 0 and the
propagator S(p). Apart from these, the computa-
tion of the potential involves diagrams which are
clearly finite as M@- ~. Diagrams with closed
loops of heavy qua, rks in fact vanish in this limit. '6

Having shown that the combined effect of I; and

S(p) is finite as M@- ~, it follows that the static
potential itself is finite. This result is perhaps
expected intuitively, especially in an asymptotical-
ly free theory. Our proof used only power count-
ing and did not explicitly involve asymptotic free-
dom. On the other hand, it is only in an asymptot-
ically free theory that one can be sure that anom
alous short-distance behavior does not develop
nonperturbatively and destroy the naive power-
counting arguments we have employed. A careful
treatment of asymptotic freedom and the M- ~
limit is being developed. '

The phenomenological implications of the exis-
tence of this limit have been pointed out in Ref. 1.
Because the limit is finite, the QQ potential at
separation 8 is insensitive to the quantum fluctua-
tions at distance scales 1/Mz «R. The same
phenomenological potential can be used to describe
charmonium and its heavier imitations. We em-
phasize that this result is quite general. Even
though the confining potential describing these
systems can almost surely not be derived from
perturbation theory, the M@- ~ limit is properly
studied this way, at least in an asymptotically
free theory.

We complet|: this section by summarizing the
structure of the. potential through two loops."'
The sources are now infinitely massive and the
procedure is to compute the Wilson integral and
to organize the result into the form e' '~' . The
zero-loop contribution to V(R) is

C
I

I

I

I'

C
I

FIG. 3. Two-loop contribution to the static potential
involving multiple exchange.

V (R) =-C„o!,/R, (1O)

—f/2 '

(a)
+T/2

(c)

FIG."4.' ITwo-loop graphs with infrared singularities.

coming from single Coulomb gluon exchange be-
tween color sources in the fundamental represen-
tation. Its iteration builds up the exponential
e'~o' ' . At one loop, 'the graphs of Fig. '2 give
the entire contribution to the potential, arid the
dominance of the Coulomb-field self-enei'gy [Fig.
2(a)] over the vacuum polarization [Fig. 2(b)]
gives the P function its famous negative sign. The
physical mechanism involved here has been de-
scribed in some detail'" elsewhere. Through one
loop

V(R) = —C ' 1+ ' C„ln(R p, )+
Q

' ]]Q
F g 24~2 A

where p, is the renormalization scale at which n,
is detined. This structure too can be iterated into
an exponentia, l.

At the two-loop level, two new features emerge.
First, contributions appear which are more com-
plex than the exchange, of a single dressed gluon.
To be specific, the contribution of Fig. 3 is pro-
portional to CzC„'n, '/R Seco.nd, infrared diver-
gences appear in the individual graphs shown in
Fig. 4. In the case of Fig. 4(a), there is a', leading
(potential iteration) piece proportional to T' and
residual pieces proportional to T lnT as well as T.
The other three diagrams all contain T lnT and T
pieces. The T lnT parts are the infrared diver-
gences, corning from integrations over large times
and large spatial distances. In an'Abelian model,
both the T lnT, and T pieces would completely can-
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cel pairwise, Fig. 4(a) with (c) and Fig. 4(b) with
(d), leaving only the potential iteration part of
Fig. 4(a). ln QCD, the TlnT pieces cancel for a
color si-nglet QQ pair. The cancelation is again
pairwise but now Fig. 4(a) with (b) and Fig. 4(c)
with (d). The remaining piece proportional to T
is a contribution to the potential which must be
added to other two-loop contributions. From the
full two-loop result, one can, for example, ex-
tract the two-loop g function. From the foregoing
discussion, it is clear that although the potential
is well defined through two loops (order o.','), it is
no longer given only by the connected diagrams.

V. THE BREAKDOWN OF PERTURBATION THEORY

In higher orders, the disconnected diagrams in-
troduce an interesting new feature. Before de-
scribing it, we remark that infrared divergences
of the type already encountered will continue to
exist. We conjecture that they will cancel to all
orders for a color-singlet QQ and it is important
to prove this. Only then can one be sure, for ex-
ample, that the short-distance potential (R 6 l
GeV ') is independent of the confinement mecha-
nism and truly described by asymptotic freedom.

The new feature is a divergence coming from
large-time (-T) but finite-distance (~R) integra-
tions. It does not ca,ncel and in fact causes a
breakdomn of si'mple perturbation theory. We will
illustrate the general problem by examining the
simplest (lowest order) situation where it occurs.
There the problem can be ovprcorrie by a selective
resummation. We conjecture that this technique
can be systematically applied to a,riy order, but
the combinatoric problems become formidable in
higher orders.

Consider the disconnected diagram shown in
Fig. 5. Without the middle rung, the remaining
connected piece is easily evaluated. 'After per-
forming the x, and x, spatial integrations, it is
proportional to

Xi

I
I

I

Xp

-T/2 +T/2

FIG. 5. A contribution to the Wilson loop integral be-
having like T 1nT.

+r/2
n =TC C nQ dt~dt2 2 ( )2 p g g

T dt
t2 0

(12)
The upper limit on the relative-time integration
ca,n be taken to infinity a,nd the result is propor-
tional to T&.,'/R For .simplicity, we have made
a Wick rotation to Euclidean space-time in writing
this expression. The presence of the additiorial
rung leads to an extra numerator factor of n,t/R
in the relative-time integration in Eq. (12). The
result is proportional to T 1nTn, ~/R and it arises
from the integration region t- T but x„x,~ R.

In an Abelian model, this would of course be
canceled by contributions from graphs with the
extra rung placed outside the connected piece. In
the Yang-Mills theory, however, there is a left-
over piece. If the extra rung is outside the con-
nected piece, then the group theory factor result-
ing from the trace is Cz &&C~C„. If it is inside
as in Fig; 5, the result is proportional to
(C~ —C„/2) && CzC„', and therefore a piece of the
form (-C„/2) && C„C„'&& T lnT remains uncanceled.
According to Eg. (7), it would give an infinite con-
tribution to the potential.

This divergence is a signal that the perturbation
expansion for the potential has broken down, The
breakdown is associated with the presence of in-
finite-range fields and can be dealt with by selec-
tive resummation. Suppose we sum over any num-
ber of single Coulomb rungs both inside and out-
side the connected structure in Fig. 5. The result
will be proportional to

n, n, ' n, C~C„o.',2 .3

dt,dt2exp Cz '(T/2 —t, ) exp (Cz —C„/2) —'(t2 —t~) exp Cz '(t, +T/2)—
= exp C~ ~ T x C~C~2n '3Z" dt - C~

t+R 2 'RJ '

The multiplicative exponential factor is simply the
iteration of the zeroth-order potential. The re-
summation has also produced an exponential factor
in the relative-time integration which has already
been extended to infinity. The result is propor-
tional to T and is therefore a finite contribution. . .:;

to the potential. Note, however, that the exponen-
tial exp[-(CJ ) 2ot/ ]Rcannot be re-expanded be-
fore doing the t integration. That mould lead back
to the T lnT divergences of perturbation theory.

A contribution to the potential has been identi-
fied which is proportional to
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Q dx
CzC„' ', exp[-(C„/2)n, x] .E A

The exponential integral is nonanalytic in n, at
n, =Q. It contains a logarithmic discontinuity and
ca,n be written in the form

dx , e '"=lna sina+g(a),1+x2 (14)

where g(a) is analytic at a =0. To leading order in

n„ this contribution to the potential conta. ins the
o.,' term mentioned in Sec. IV (Fig. 3). In. the next
order there is a term proportional to CzC„'(n, '/
R) InC„o.,pius a term of order o.,4. While there are
many other contributions of order o,4; we believe
this is the only &,41nn, term.

The existence of ln q, terms is familiar in quan-
tum electrodynamics where they enter at the level
of relativistic corrections in bound-state prob-
lems. " The physical processes involved are
somewhat similar in the two cases. In either case,
if the singularities are only logarithmic, it seems
likely that perturbation theory can still be used.
While there is no experimentally important reason
for computing such terms in QCD, it is still inte-
resting to know whether or not the computation
could in principle be done to arbitrary accuracy
for small &,." We conjecture that this is the case,
that is, that the computation- can be orga, nized into
a double expansion in o'. ,"(Ino.,) with m &n.

The proof of this conjecture appears to be quite
difficult. The Ino, , terms are associated with dis-
connected diagrams and it must be shown how to
deal with them in general. The selective summa-
tion of diagrams must be systematized, perhaps
leading to some simple prescription for the com-
putation of V(R). Such a prescription will certain-
ly be more complicated than the connected-dia-
gram prescription for the case of uncorrelated
sources. '9

The physical content of the resummation is
clear. In the simple example we considered, it
corresponds to reorganizing the expansion about
a Coulomb state rather than a state with noninter-
acting sources. In the ground state, the sources
are in a color-singlet state. The intermediate
state shown in Fig. 5 consists of one gluon and the
sources in an octet state. Since the Coulomb force
is attractive in the singlet channel and repulsive
in the octet channel, there is a.n energy gap of or-
der C„n,/R between the ground state and the inter-
mediate state. By the uncertainty principle then,
the intermediate state can exist for at most a
time of order R/C„n, That is, the o.rigin of the
decreasing exponential on th'e right-hand side of
Eq. (13) and, in fact, the o.',41na, term comes from
f =R/C„n, . It is worth pointing out, that in a

bound state this will be a time on the order of the
period. of the motion, and it is perhaps misleading
at this level to say that one is still computing a.n

instantaneous potential.

VI. SUMMARY

Our most important results are the following:
(1) The static potential V(R) between two fixed

color sources exists as the infinite-mass limit of
the interaction between a heavy quark and anti-
quark. Once the usual infinities with finite-mass
quarks are dealt with, the renormalized qua, rk
mass ean. be taken to infinity. This demonstrates
the quark mass independence of the potential in
heavy QQ bound states.

(2) The potential between two sources'in a color-'
singlet state is gauge invariant and free of infrared
singularities through two loops. The infrared fi-
niteness is conjectured to be true to all orders.

(3) In low-order perturbation theory, the poten-
tial is made up of gluonic processes taking place
over time intervals of order B. In a bound state
(finite mass, moving quarks), this will be a short
time interval compared to the period of the
motion.

(4) The quantum color correlations of the
sources with the gluons gives the potential a much
more complicated graphical structure than with
uncorrelated sources. In the later ca,se the per-
turbation theory is' given by the connected Feyn-
man graphs (eonnectivity is defined without the
source lines). This'is no longer true in the color
theory, a consequence of the fact that the sources
are not completely classical.

(5) The potential does not exist as a simple
power-series expansion in Q, The expansion
must be selectively resummed to avoid long-time
singularities in some disconnected graphs. These
are not the ordinary infrared singularities already
mentioned, which are expected to cancel in each
order. The resulting expression contains terms
o.'," (Inc.,), where m &n. We conjecture that the
selective resummation can be carried out system-
atica1ly to any order.

In addition to studying the potential in more de-
tail and verifying conjectures, some other ex-
tensions of the present work come to mind:

(1) We have only examined the leading (non-
vanishing) term in the limit M@- ~. The nonlead-
ing terms are important phenomenologically and
should be studied. For. example, the spin-spin
interaction between two heavy quarks in an s state
can be written in the form V„(R)a', ~ o, /3f +PI@,. Is
V„(R) finite in the infinite-mass limit. If so, it is
universal for different flavors, a statement that
can be made with confidence even if V(R) is deter-
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mined'at distance scales B primarily by nonper-
turbative effects.

(2) The combinatoric problems associated. with
color correlations have arialogs iri some statisti-
cal-mechanical systems. The spin correlations
in the Kondo problem are one example. ~ It is
possible thai similar techniques with similar
consequences could be applied to the Computation
of the partition function in these systems. Even
within QCD, it seems likely that analogous com-
binatoric problems might arise in different con-
texts. %'hat effect do they have, for example, in

a semiclassical treatment of vacuum structure
and the QQ potential'P
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