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It is possible to represent certain quantum field theories as theories, of interacting strings when both are

defined on a suitable null-plane lattice. This representation is discussed for scalar field theories with internal

degrees of freedom and quartic self-couplings. The internal-symmetry structure of the lattice string is that of
an appropriate two-dimensional statistical-mechanical. vertex model. The internal degrees of freedom are

frozen opt in the continuum limit (confinement) unless the vertex model is critical. The simplest internal

symmetry, U(1), corresponds to Pauling s model of two-dimensional ice, which is critical. .We compute the

excitation energies of the internal degrees of freedom of the F model, a generalization of the ice model. The

F model is characterized by a parameter dL & 1, and ice corresponds to $ = 1/2. It is critical for —1 & 6, & 1.
For 6 & —1 charged states have infinite energy in the continuum limit. For —1 & 6 & 1 the spectrum of long-

wavelength excitations is that of a free one-dimensional semiperiodic boson field defined on a finite space.

When the space is a ring there is a conserved topological charge as well as ordinary charge. . The effect of
these excitations on the resulting dual model is to contribute one degree of freedom reducing the critical

dimension of space-time by 1.

1. 1NTRODUCTION

Recently, ' a method was developed for imple-
menting a string interpretation of relativistic
quantum field theory. This interpretation is made
by reorganizinp the standard Feynman graph ex-
pansion for the Green's functions of the field
theory in a combined topological-strong-coupling
expansion on a suitable lattice. The result of this
reorganization is that the sum of all Feynmann
graphs can be rewritten as a dual string expan-
sion, the leading, term of which is the dual reso-
nance model (DRM).'

The string representation for XP' theory with

Q a real scalar field has been described in detail
by Thorn. ' In this article we consider scalar field
theories with internal symmetry. We concentrate
on the simplest such theory, namely &(Q~ p)', i.e.,
g is taken complex. The only difference between
the graphical expansion of this theory and of the
neutral scalar field theory is that each line car-
ries an orientation specifying the direction of
charge flow, with the vertices constrained to
force charge conservation. We therefore have
a counting problem similar to that faced by
workers in statistical mechanics.

The topological expansion starts with planar
graphs and for these graphs the counting problem
is to find the total number of ways to place arrows
on the bonds of a two-dimensional grid subject to
charge conservation at each vertex. The answer
to this counting prob'lem is precisely the partition
function for Pauling's two-dim'ensional ice model, 4

which has been obtained, at least in the thermo-
dynamic limit, by Lieb. '

For our purposes, we need to know all the low-
lying excited states of the ic8 model, -which has
not been completely worked out in the solid-state
literature. %'e'accordingly calculate these ex-
cited states in this article. In fact, we consider
the more general two-dimensional F model for
ferroelectrics. ' There iS a close connection be-
tween these models and one-dimensional Heisen-
berg spin systems, ' so our results also apply to
these.

If the dimensions of the two-dimensional lattice
ar eIx N, we take a continuum limit M, N- ~ with
N/M fixed, and we must keep all dependence on the
shape ratios N/M which. survive in this limit. We
are therefore interested in finjte-size effects
which are usually neglected in solid-state applica-
tions.

The F model has a symmetry under the inter-
change of roles of M and N (duality} which puts
constraints on the allowed shape dependence. We
include a discussion. of the implications of this
symmetry.

We find that the long-wavelength structure of
the F model can be summarized by a free boson
quantum field theory on a finite two-dimensional
space. This boson equivalence is exact, even for
the shape dependence of the continuum F model.
The boson field is an angle, i.e., the wave func-
tional is periodic under P -Q+P, where P depends
on the parameters of the F model. .

Implicit in,our results is the statement that the
massless Thirring model defined on a finite space-
time is completely equivalent to a fr'ee-boson field
theory defined on the same finite space-time.
When the space is closed; i.e. , spaze-time is a
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cylinder, both the charge arid axial charge of the
Thirring model are conserved. In the boson ver-

0

sion, the charge is just the integral of Q over the
space. The axial charge is just the topological
quantum number which is the number of times Q
winds around its space as the cylinder is encircled.

This article is organized as follows. In Sec. II
we discuss in a general way the relationship be-
tween the internal symmetry of the field theory
and the structure of the corresponding statistical-
mechanical model. In Sec. DI we work out the low-
energy spectrum of the I'. model in detail. In Sec.
IV we discuss the implications of duality and g.pply
it to determine the parameters of the ground-state

, energy. Finally in Sec. V we discuss the Bose-
Fermi equivalence in this model and describe the
properties of the dual model derived from X(P~P)'
theory.

x'+ x"+'
i t =——

2
(2 1)

briefly review these results and consider in a gen-
eral way how the internal-symmetry structure of a
scalar field theory is mapped onto that of its cor-
responding dual model.

The mapping between field theory and dual models
is most conveniently expressed as an identification
of Feynman graphs with terms of the dual loop ex-
pansion. We shall discuss field theories of quar-
tically self-coupled real or complex scalar fields
fg„a=-l,. . . , n) in d+2 space-time dimensions.
We define the field theory in terms of Green's func-
tions computed in a mixed coordinate-momentum
representation. on the null plane':

@0+pd+ i

II. GENERAL CONSIDERATE'IONS

The equivalence between neutral &Q« theory, with
~(0, and the standard dual model has been dis-
cussed in some detail in Ref. 3. In this section we

%'e assume that the bare mass matrix is diagonal
with respect to internal degrees of freedom, so the
scalar propagator is

~+ d/. 2D„(P',T —7', X, —X' ) =5,,0(P'(T —7'))—
4w I

P'
i 2nT- v'''

P', , (r —v')
exp —

2( d)
(xd —x~)

(2.2)

This propagator carries positive I" forward in v

and negative I" backward. We build Green's
functions out of time-ordered Feynman graphs
where each line, by convention, carries positive
P'. Note that the propagator factorizes into a
space-time part identical to that of neutral scalar
field theory and the ~,~ in internal indices. In the
case of complex fields, each propagator also has
an orientation dependi. ng on the dire'ction of charge
[U(1)] flow.

We assume that g» has the structure

(2.3a)

and ultraviolet diverg'ences, respectively. The
ratio of lattice spacings a/b = T, is a fundamental
dimensional parameter of the regulated theory and
will be identified as the string tension 1/2vn' of
the corresponding dual model.

In the lattice theory, each propagator gives

dP+D„(P+,v, x, )

To k ~
rn3 lx exp ——' —X ' ———— 2.5i

for real fields, or

for complex fields. After Wick rotation, each
vertex picks up a factor -1 from ifdx' -—fd-v.

Finally„we regulate infrared and ultraviolet di-
vergences by replacing integrals overI" and 7'

in each graph by sums over discrete variables:

I =Pa, k=1, 2, . . .
(2 4)

The exclusion of I"=9 and v =0 regulates infrared

and each vertex gives

dv'dx, 2~I!(ZJ")V-g( il, ,)
s

XV bc@ AQ ~

(2.6)

Note that a and 5 appear only in the combination
Tp As discussed in Ref . 1, continuum fie ld theory
divergerices arise, in amplitudes anvolving finite
P' and v', from large integer factors of order
P'/a and 7'/b The paramete. r T„plys aa role
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classical system at fixed temperature or of g,

one-dimensional quantum system, m at temperature
1/7. This one-dimensional quantum system is
the closed or open lattice string' of P' =Ma. We
may write Z as

Z(M, N) =P e +~r &»

(N+t)b T P~(N)

FIG. 1. The fishnet graph for the bare closed-string
propagator. The vertices on the dashed lines A are
identified.

analogous to that of the renormalization point p,

in other regularization schemes.
It was pointed out in Ref. 1 that, for any Green's

function carrying finite P' and spanning finite 7,
there is a maximum order in. perturbation theory
(in X) which can occur. .The maximum corre-
sponds roughly to graphs in which every line car-
ries minimum P'=a and propagates a minimum
r =b. These graphs are roughly of order P'r/ab.
The sum over all graphs can be organized about
this limit apd the terms put in one-to-one corre-
spondence with the. dual expansion on the same
lattice. ' The building blocks of this lattice dual
expansion are closed- and open-string propagators
to which we now turn.

Closed- and open.-stiing graphs are fishnets of
minimal propagators as shown in Figs. 1 and 2,
respectively. , Closed strings have the topology of
a cylinder while open strings are planar. Both
graphs. can be represented on a 7-P' plane, as
shown in Figs. 1 and 2. The closed string has
periodic boundary conditions in P', the open string
has free ends in P'. We take P' =Ma and v =Nb
so there are M lines propagating (horizontally)
through the closed-string diagram. These graphs
correspond to bare propagators D of their respec-
tive strings. Thy Feynman graph is the corre-
sponding latticized free-string functional integral.
We note that the amplitude for each graph factors
into a. factor. arising from transverse spatial
degrees of freedom identical to that of neutral
Q' and, a factor from internal degrees of freedom.

Our priinary. interest here is the spectrum of
low-lying free-string states in the continuum
limit. &he spectrum is most ea,sily extracted from
the trace (sum over identical initial and final
states) of the propagator We shall. therefore con-
centrate on configurations obeying periodic bound-
ary conditions in z. The trace Z may be identified
as the partition function of a two-dimensional

where fr) is a set of quantum numbers labeling
states of the one-dimensional system. -E„is the
dimensionless energy of the lattice string state
~. We identify P as the coefficient (1/b)E(M)
of r in the exponentially decreasing term as-
sociated with state x. In the continuum limit,
M=P'/a-~ and we expect

(M) ~ QM+P + . ~o o ~
y (2.8)

glvlng

P„(P') - o. —
~

+ P„~+ (2 .9)

(i+~) b

JIG. P, . The fishnet grapP for the bape open-string
propagator.

The terms proportional to n and P are divergent
and noncovariant in the continuum limit.

As dj.scussed by Giles and Thorn, ~ the bulk co-
efficient o. (which is the free energy per site of
the two-dimensional statistical-mechanics analog)
is the same fpr all closed or open low-lying ex-
citations and corresponds to an unobservable in-
finite phd, se in ep, cQ P' channel of the continuum
Minkowski-space dual theory. p„is a finite lattice
energy which must; b|. zero for states which sur-
vive the continuum limit if the resulting con-
tinuum theory is to be covariant and dual. In
the case of no internal degrees of freedom, P
is a surface energy which depends oddly on the
number of boundaries of a free string state and
vanishes for the-closed strjpg. Ip a lattice string
theory, P may be arranged to vanish by adding a
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local surface counterterm to the action which de-
fines the theory. ' For a dual model derived from
neutral XI|I', P of the open string depends .on the
coupling X and vanishes only for a suitable choice
of bare coupling (see Sec. IV):

1-d /2

~critical 4
(2 .10)

The term y„is finite and covariant and gives a
mass squared:

m —2Top» ~ (2.11}

For the neutral case, the string ground states
have

~clos d 6

gd
yop85 24

(2.12)

giving the usual tachyons of the dual resonance
model.

Because the partition function Z of string states
factorizes, the contribution of internal degrees of
freedom to the spectrum is additive and the prob-
lem of internal symmetry can be considered in
isolation. The internal partition function Zz(Ã, M)
may be regarded as the partition function of a
two-dimensional assembly of links (propagators)
each with n possible states, corresponding to
a = 1, . . . , n, and, in the case of complex fields,
with orientation corresponding to the: direction
of charge flow. Each configuration, of, links is
weighted by the appropriate product-of V,,~.,„'sover
its vertices. This sort of problem. is, that of a
two-dimensional statistical-mechanical vertex
model, and it is well known that. such. models can
have relatively complex phase- structure:dypending
on the vertex couplings V„,„.""

As we have characterized them sq. fai;, tht:. two-
dimeg. sional vertex models arising from. ,

' seal, ar
field theories may be quite complicated. How-
ever, they share one important simplifying fea-
ture. This is self-duality in the statistical-mech-
anical sense. The partition function on vari N & M
lattice is identical, up to boundary conditions, to
that of the M ~ N lattice which is a result 'of a rota-
tion by 90'. For the closed string, w'hich has
periodic bound, ary conditions in both d'irections, the
partition function is exactly self-dual:

Z„„,~(M, N) =Z„„,d(N, 18). .. (2.13)
p' I

For the open string, a duality transformation maps
the open-string partition function into the closed-
string propagator summed over independent initial
and final states. The implications of self-d'uals'ty
are discussed in more detail in Sec. IV.

%'e may translate our questions about the string
spectrum to the statistical-mechanics language
of vertex models. We are particularly interested
in the P and Z terms in the energy. Unfortunately,
the most commonly addressed problem iri the
statistical-mechanics literature is the calculation
of the bulk free energy per site, a. P and p are
finite-size effects associated with the boundaries,
and are of no interest in the thermodynamic limit.
For the ground state, P is simply a surface energy.
Nonzero y reflects the existence of long-range
correlations between the boundaries. Thus, the
ground- state can have nonzero p only at a critical
point.

Excited states may or may not have the same P
as the ground state. If the lowest excited states
have a different P, there is a finite gap in the lat-
tice energy and thus no long-range correlatatioris.
In the continuum limit, such a finite gap on the'
lattice corresponds'to an infinite gap in P=. Thus,
if the vertex model i.s not critical, all"-exditations
of internal symmetry 'in the continuum dual theory
are frozen out —this may 'be aptly called confine- '

ment.
In this paper, we 'shall consider only the si:-m-

plest of vertex models 'arisi. 'ng from field theory.
Consider the case of a Simple' complex scalar
field P. The corresponding ve'rtex model has
only one type of link ihose only degree of free-
dom is its orientation. Ne regai. d each link as
an arrow. Vertices'are restr'i'cted'by the require-
ment that two arrows must come in aiM two m'ust

go out. This model i:s the'two-dim'ensional ice
model. "' The description as ic6 'i.s apparent if we
identify vertices as oxygen ato'm's 'and arrows as
polar hydrogen bonds. A'n arr'ow pointing toward
a given vertex indicates that the'corrt'. Bponding
hydrogen atom is associated with the oxygen atom
at that vertex —hence the "ice' 'condition" that t~o
arrows enter and two leave '-each ve'rtex. Iri-our
interpretation, the "ice c6nditi:on" is simply
charge conservation. The six possibI. e v'ertex cori-
figurations are indicated i.n Fig. '3'."' ' '

A straightforward generalization'of the- ice' mod-
el is the I' model' where vertices shown'in Fig.
3(a} are given some weight, v, arid those of 'Fig.
3(b) retain weight 1. The vertices in Fig. 3(a) ha've
net polarization in some channel'w'hil'e those'in Fig.
3(b) do not. This is a model of a, two-dimenntsional.
ferroelectric. ' In the next sectio6 'we shall:con'-
sider this generalization of the iCe iso'del i)i some
detail. It i;s evident that, though the 'E'model is
self-dual, there i.s no field theory whose' inter-
nal-symmetry structure leads to it in the'dual
limit. This is obvious because the distinction '
between the vertices of Figs. 3(a) and 3'(b) is inean-
ingful only relative to the plane in whic'4 'tfiey are
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FIG. 3. The six vertices for the & model, . Those, in
(a) have charge flow in some planar channel, those in
(b) do not.

embedded —no such distinction arises in the origin-
al field theory.

However, the F' model may represent a simple
approximation to the more complicated structure
of a U(N) theory for large N. In the U(N) case,
each link has N degrees of freedom while vertices,
in addition to conserving charge, contract par-
ticle-antiparticle indices in all possible ways.
Thus, we can regard each term of the internal-
symrnetry partition function as a collection of
oriented nonoverlapping loops. Each such term

,contributes to the partition function a factor N
where L =the number of loops on the graph. For
large N, the leading internal-symmetry diagram
is planar in the sense that all loops are of minimal
area. Diagrams which deviate from this planarity
might be approximated by allowing different ver-
tex weights as in the F model.

We close with the observation that though every
self-dual internal-symmetry structure on the lat-
tice need not correspond to a field theory, they
certainly lead to dual models in the continuum limit
and are therefore interesting in their own right.

III. LOVf-LYING EXCITATIONS OF THE FMODEL

Iri this section, we consider the F model in some
detail and relate i.ts phase structure and low-lying
excitation spectrum to the corresponding U(1)-sym-
metric string m'odel. The version of the F model
derived in Sec. II is almost identical to that con-
sidered by mariy- solid-state physicists as a two-
dimensional ferroelectric model. ' The tmo ver-
sions have the same vertex weights, but the con-
ventional solid'-state E model is defined on a rec-
tangular-" r'ather than diamond-shaped lattice.
The thermo'dynamic properties of the F model with
periodic boundaiy conditions in space and time on
the rectangular lattice can be computed exactly.
The model was first solved by Lieb' in the ice
case, v =1 and by Lieb and by McCoy and Wu"
in the general case. Correlation functions have
also been computed. " Qur discussion will be pri-
marily a review and a translation of these results
to a language more suitable to the problem at

hand.
First, we argue that the quantities of greatest

interest to us are insensitive to the differences
between the rectangular or diamond lattice. The
structure of the low-lying spectrum in a critical
phase depends on excitations of wavelengths very
large compared to the lattice spacing. The sym-
metry of the local vertices under 90' rotations
leads to isotropy of low-lying excitations in the
continuum limit. Therefore, we expect that terms
of order 1/M in the ground-state energy and in the
excitation spectrum will be correctly given by the
r ectangular lattice.

In contrast, it is to be expected that the surface
terms, P, will be sensitive to the local structure
of the lattice near boundaries and mill. not agree
numerically for the diamond and rectangular lat-
tices. Note, however, that for the ground state
at least P must be renormalized (by an appropriate
choice of A, ) to zero in order to obtain a dual mod-
el. Therefore the numerical value of P in the
ground state does not affect the structure of the
resultant contiriuum model. In a phase where
there is a finite gap &P between the ground state
and first excited state, the value of &P computed
on the rectangular lattice is expected to differ
from that of the diamond lattice. However, the
existence of such a gap reflects the phase struc-
ture of the system and is expected to be indepen-
dent of the lattice orientation. Any finite gap has
the same consequences in the continuum limit-
the freezing out of the internal degrees of freedom
of the string. The F model can be solved exactly,
in the special case v = 1/W, on both the diamond
and rectangular lattices. On both lattices, P van-
ishes for the low-lying excited states and the spec-
tra of excitations whose energies are of order 1/M
are identical. .

In the rem'a'inder of this section, we consider the
F model defined on an N && M rectangular lattice
with periodic':boundary conditions in space and
time (Fig."4)'with six vertices as s}iown in Figs.
5 (a). .and: 5(b)'.

Analysis of-the F model reveals that there are
two very clifferent cases, depending on the value
of v. For v&2, the excitation spectrum of the
one-dimensional string theory (viz. , the rows) has
a finite gap and gives confinement of charge in
the continuum limit. For alt v & &, the system is.
critical; there are long-range correlations and a
nontrivial spectrum of states with excitation ener-
gies of order 1/M.

These results can be anticipated qualitatively
before plunging. into. the actual calculation. In the
limiting case v =0, there are only two possible
.graphs for the partition function. These corre-
spond to the two ways of arranging the vertices



STRING REPRESENT TATION FOR A FIELD THEORY WITH. . . 2063

FIG; 4. Rectangular lattice for the E model.

of Fig. 5(b) in such a way that they alternate along
every row and column. The corresponding par-
tition function is Z =-2 and the energy is

with each other in the partition function, we ex-
pect that the actual spectrum will be a band of finite
width about 2ln(1/v). Qualitatively, as v increases
the center of this band is lowered until, at some
point (namely v = —,) there is a level crossing and
therefore critical behavior. To obtain more quan-
titative results, we proceed to describe the exact
solution of the model.

The solution of the I" model is most naturally
described in terms of the one-dimensional lattice
quantum theory associated with the two-dimension-
al vertex model as described in Sec. II. We focus
first on a. given row of vertical arrows. Such a
row can be in 2" possible "states" since each ar-
row can be up or down. Each arrow can be repre-
serited conveniently as an elementary spin- —,

' ob-
ject. We may define the transfer operator T as
that (2" && 2")-dimensional matrix whose matrix
elements between row states is the sum over all
ways of going from the initial row states to the
final one through'one row of vertices, weighted as
in the partition function. In the spin basis, T
can be represented in terms of the set of Pauli

8 = lim —(-1nZ(K, M)) = 0.„N (3.1) spin operators pe&, j = 1, . . . , M). The partition
function is

The directions of arrows on the graph are the
directions of local current flow. Thus the ver-
tical arrows between rows of vertices correspond
to the charge density. We see that along each hor-
izontal row, these arrows alternate direction, so
that in the continuum limit the charge density of
this state is zero.

If e is small but nonzero, we can imagine com-
puting the partition function perturbatively. On @

given rom we can introduce two vertices from the
set of Fig. 5(a) in such a way that the net charge.
of the rom is 2. It is clear that at least two such
vertices must be located somewhere on each of the
adjacent rows though not necessarily:in the same
column. Therefore, every row has two such ver-
tices and the energy is greater than that of the
ground state:by a term of order 21n(1/v). This
is the gap to which we have referred. ', Because
there are M(M-1) such states on each. row which
all have energies of order 2ln(1/v) and: which mix

Z(M, X) = Tr[r(M)"]. (3.2)

An eigenvalue t of the transfer operator corre-
sponds to energy

E = -in/. (3.3)

The transfer operator is the generator of dis-
crete time translations on the lattice, so the nega-
tive of its logarithm is the analog of the Hamil-
tonian.

The exact solution of the E model follows from
an analysis of this transfer matrix. The transfer
matrix can be constructed for the general (v &0)
I' model by use of techniques discussed in Refs.
5 and 9. The total z component of the spin S,
is conserved, that is, the transfer matrix element
vanishes between states of diffe. rent spin. This is
simply charge conservation.

The expression for T in terms, of cr matrices is
complicated and is not directly useful to us here.
The interested reader is referred to Ref. 9, where
the T matrix is constructed and, studied in great
detail. In this reference, the observation is made
that the transfer matrix, expressed in terms. of
g matrices, commutes with the Hamiltonian of an
anisotropic Heisenberg spin model". :

+Heis = -& Z (os o i+~+ o"i o'~+a+ 4+«i+z) ~ (3.4)

FIG. 5. The six vertices for the rectangular vex!sion
of the I" model.

where

28 (3 5)



2064 ROSCOE GILES, LARRY D. MeLERRAN, AND CHARLES B. THORN 17

Since H and T commute, they can be simulta-
neously diagonalized.

The eigenstates of T are given by the Bethe
ansatz. ". Any state with m arrows down and M
-m arrows up can be labeled by the positions of
its m down arrows: i, & i, & ~ & i . The Bethe
ansatz is that the wave function takes the form

g '"'(i~,i„.. . ,i„)= Q Ap exp i Q kpi,
P

'

g
l

(3.6)

k,. = —I, (m, fX. 3) ——Q 8 (k, , kq) .
j=1.

The set of numbers (I,) are integers for odd m

and half-odd integers for even m. The set of
numbers (I,) completely specifiy the momenta

k, and, hence, the state $(m, (I)). The matrix
8 is

(3.7)

where the sum, Z~, is over all permutations of
the distinct momenta k„.. . , k . It can be shown
that g vanishes if a,ny two momenta are identica. l.
Moreover. , it can be shown that g diagonalizes H
when the momenta k, satisfy the nonlinear matrix
equation"

M —1 M —1

M —1 M —1

The eigenvalue of the transfer operator corres-
ponding to a given set of k &'s is

t=2( —1) ~' II cot
k

i=1 2
(3.10)

The low-lying states correspond to the maximal
values of t. Note that t is negative unless there
are an even number of negative k; 's.

To understand the significance of negative t, we
return to the diamond lattice, which is the appro-
priate one for our interpretation. For that lattice,
one must include two steps in ti.me to obtain the
full dynamics of the theory. For the case ~ = 0,
this two-step transfer matrix has positive eigen-
values, and gives the same low-lying excitation
spectrum as T' does in the rectangular lattice.
We conclude that the fundamental quantity is T',
not T, so the negative sign is inconsequential. We
accordingly take the absolute value of (3.10) and
write

6 sin- (k, —k,.)
cos-,'(k;+k, ) -icos-,'(k,. —k~)

' E({k))= -ln2 —g ln
~

cot2 k,. (3.11)

(3.8)

The eigenvalue of the transfer operator corres-
ponding to(k, ) is'

t(k,.$ = exp ——ln2(1 —L)

As long as (k, ~& v/2, -ln (cos-,'k,.
( is negative.

Therefore the ground state has all possible modes
with [k~ ~& m/2 occupied. This corresponds to
m= —,

' Mwith the set of half-odd integers chosen
to be

I

x i&A(k, )+ $$A(-k, ), (3.9)
I =j -z -p m, j=1,. . :,m(o) ~ (3.12)

where we define:

( )
2i —1 —e"

i —e''
The special case 4 = 0 is trivial to solve, yet

gives us some. insight into the structure of the
nontrivial critical cases 0& ~& ~& 1. For con-
venience, we will take both m and M/2 to be even
integers. '

'

For 6=0,, ithe functions &(k;, k&) all vanish, and
we have-", ,

'
' 2'

k~ = ~ II

where eachI, ls a half-odd integer
Two-Bethe. states defined by k,.'s which differ

by a multip'le:. of: 2v give the same state (3.6) so
we may'take v& k~ & v, -'-whence ILI~}I must be some
subset'of': "::

as illustrated in Fig. 6. Note that this state is
neutral: @=M —2m=0. The asymptotic form of
the ground-state energy for large M may be easily
computed using the Euler-Maclaurin formula

Eo(Af}
M

-M ln2 — -- .+0 (3.13)

a ~ '

--, P-, ,
- 0, ,:.-0 0 ~ ~ ~ ~ ~

i- -l~ 0+~/~

. 'FK' '8!:The I&'s for the ground state. All available
valuei'ar'e: indicated by closed and open circles, the
closed, circles being the ones actually taken.

Note that ther e is no gap term and that the term
of:order 1/M has the same coefficient y as we have
found for each transverse dimension in the neutral
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o 0 0 0 I 0 I I I 0 0

-'/2 0 +/2

These have energy (2w/M)l'. The momentum of
such a state is

FIG. 7. The I,-'s for the lowest state in a nonzero
chirality sector.

P=lm 1 ——. .(3.1V)

string model. This will be seen to be true for all
b and signals the fact that the internal degrees of
freedom of a critical phase are equivalent to
transverse dimensions in their contribution to the
ground-state. mass.

We are interested in excited states whose en-
ergies are of order 1/M relative to the ground-
state energy as M -~. The set of mode numbers
(I&) which characterize such states necessarily
differs from the ground-state set (Iz"''I only for a
finite (as M-~) number of I&'s near the bound-
aries,

~ k& I
- w/2. The energy associated with

such a mode

(3.18)E(Q,)= 2w
4M

Equatioii (3.14) gives E=
~
P

~
for each same=:

side particle-hole pair. For any set of particles
and holes on the same side, we have

(3.19)

In the large-M limit all low-lying states will have
total momentum of the form P= lw+. O(l/M) so.
that the number $ gives a good qugqtum number in
the limit. We define this quantum number by

Q, = 2l and call it the "axial charge" or "chirality"
of the state. The energy associated with a sector
of chirality Q, is

M 2 —1

is, to order 1/M,

2w—(n -2). (3.14)

where P is the total momentum carried by particle-
hole pairs on that side.

Thus we have the following description of low-
lying states. States fall into sectors defined by
the two quantum numbers Q and Q, . The ground-
state energy in the (Q, Q, ) sector is

It is clear that we can express the low-lyj. ng ex-
citation energies of the 2 =0 problem as sums over
such &„'s.

First consider the ground state in a given (m
even) charge sector Q= -4k. The set of I&'s cor-
responding to this state is similar to I &" but with
k modes removed from each boundary. The cor-
responding excitation energy is

0 1

n= -4+ I

For Q =+ 4k we obtain the same result. We denote
the set of modes for the ground state:of the charge
Q sector byl''.

We may construct any set of mode numbers cor-
responding to a state in the charge Q sector by
adding "particle-hole" pairs to the set I ' '. 'Here
a "particle" refers to a mode number I not in the
set I'@', while "hole" refers to the deletion of: '

some I~ contained in I'~'. Any particle-'hole:p'air.
may be characterized by its momentum:, -. ;.'. .

'

P= k„„.„,—k„„,. -(3.16)

Particle-hole pairs having energies of order 1/M
fall naturally into two classes depending on
whether the particle and hole are riear the-'sa~e or
opposite boundaries ~f I''; The only opposite- .

side particle-hole excitations we need to cops.iver
are those which correspond to moving a b)ock of-
l ps, rticles from one side to the other (Fig.: V)."

"

w w Q' Q,
6M' 2 4M

' '4M ' (3.20)

'\

The ground state of the (Q, Q,) sector corresponds
to a set of I&'s which form an unbroken sequence
of length (M —Q)/2 whose center is offset from
zero by Q,/2. Excitations within the (Q —Q,) sec-
tor correspond to the introducti. on of yarticles and
holes in this chain and have excitation energy:

~Z,„„.„.„.„=)P, I+ )
I f, , (3.21)

where P~, P~ are the total mo~enta of particle-
hole pairs on the left and right side, respectively.

The analysis of the general case
~

b
~

& 1 is
immensely more complicated than that of the case
6=0. For m, M ~, the nonlinear matrix equa-
tion (3.V) can be approximated by. an integral equa-
tion to leading order in 1/M. Yang and Yang' have
analyzed the structure of this equation, and proved
that it gives the true ground-state energy density
in each charge sector, solving it exactly for Q = 0.

The low-lying spectrum may be computed }ay

retaining the 1/M corrections to the replacement
of the sum by an integral and allowing finite Q and

Q, and "particle-hole" pairs near the ends of the
set I . The perturbation series in 1/M so developed
is an asymptotic one for the energy, . The:.proce-
dure is outlined in more detail in the Appendix.

A remarkable property of the genera3;-ca, se is
that, after lengthy calculations, it is fogged that the
low-lying spectrum is very similar tp that of:tb@.
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4=0 case. Again, sectors are characterized by
qua, ntuin numbers Q and Q, . The ground state iri
the (Q, Q, ) sector has energy

++ particle hole = PE
~

+ (3.23)

where P~ and P~ are the total momenta on the left
and right sides. Notice that, since 8 (k, , k,.) is
antisymmetric, the total momentum can be written
in terms of I~'s.

%e see that the only b, dependence of the low-
lying spectrum comes in the reciprocal variatior1 in
the slopes of the Q' and Q,

' terms in the energy.
As we discuss in detail in the next section, this
reciprocity is a reflection of duality. Q and Q,
are interchanged under the duality transformation.

This result is quite reasonable. If w'e perform
a Jordan-Wigner transformation on the Heisenberg
Hamiltonian (3.4), we arrive at an equivalent ferm-
ion theory. In the ~ = 0 case, this theory is a free. ,
massless lattice field theory which is chirally
symmetric for all M. In the ra = 0 case, Q is the
vector charge while Q, is the axial charge. (Note
that Q, =N~ NE. ) For 4—& 0, the theory is not
exactly chirally symmetric. For large M, the
matrix elements of the chirality-breaking term
between low-lying states are small and the Harn-
iltonian goes over to that of the massless Thirring
model. " Again Q and Q, are the fermion charge
and axial charge. In thoro dimensions, the vector
and axial-vector currents are dual to each other
(in the sense of differential geometry):

(3.22)
where we have defined 4 = -eos p. , 0 & p, & m.

Again we have further excj.tations defined as
sets of same-side particle-hole pairs whose energ-
ies are identical to those in the ~ =0 case":

IV. DUALITY: CONSTRAINTS

ON LOW-ENERGY SPECTRUM

The E model for an M &N two-dimensional lat-
tic'e has a symmetry under the interchange of M
and ¹" This symmetry is simplest when the lat-
tice has periodic boundary conditions in both di-
mensions and is valid for either the diamond or
rectangular array. Thus, in terms of the transfer
matrix, we have the relation

Z(M, N) —= Tr[T{t'trrf)" ] = Tr[T(N) ]. (4.1)

In our interpretation, the eigenvalues of T(M) are
identified with e "("~ where R„(M)are the P
eigenvalues of the M parton state. They may be
extracted from the partition function-by writing the
expansion

Z(M N) = Q e NE" (E) (4.2)

and duality gives a relation

excitations have finite energy only if the corres-
ponding two-dimensional statistical-mechanical
system is critical. For the E model woe have
two phases:

v & 2, 6& —1 confinement (Q=O),

v&2, -1& 4 & 1 Qaa0 states have
finite energy.

In a field theory with U(N) symmetry we might
speculate that 1/N plays a role similar to v; cer-
tainly the limit N- freezes the system into a
locally singlet state. If this is the case we could
hazard the conjecture that there is a critical N,
such that the theory confines U(N) degrees of free-
dom for N&N, , but not for N& N, .

-SE (Q) -HIE„(E) (4.3)

For 4 & —1, as w'e have mentioned, there is a
gap. Yang and Yang compute this gap explicitly
between the ground states of the various charge
sectors:

Johnson, Krinsky, and McCoy" have computed
correlation functions of the E model (a,s a limit
from an eight-vertex model) and find no long-
range correlations for 6 & —1.

As we have indicated in our general discussion
in Sec. II, the significance of this gap is that in
the continuum limit all internal-symmetry excita-
tions have infinite energy. The only allowed
charge state is the (neutral) ground state. This is
our. paradigm of confinement: Internal-symmetry + 0 (

itt —iver)- (4.5)

The limit N-~ leaves only the ground-state con-
tribution on the left-hand side whereas, in gener-
al, arbitrarily large eigenvalues contribute to the
right-hand side.

The duality constraints become very powerful
when there are 1/M excitations above. the ground
state. Let us suppose that

E„(M) o(M+ —"+ 0 . . (4.4)
r

Then (4.3) takes the form for both M and N large,
M/N fixed,

, e-, y, /' e-y„ /'
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For N/M large, (4.5) relates the lowest va, lue of

y„,yo to the distribution of large values of y„.
Let us consider first the 6 =0 E-model partition

function for large M and ¹ From (4.5), we need
only consider the O(1/M) excitations which have
been discussed in Sec. III. For ~ = 0 these excita-
tions are identical to the excitation of four sets of
noninteracting fermion oscillators

y(» y(2) d(» d'(»

with the anticommutati. on relations

(d', d„'}= 5"5

all others zero. 5 flips a down spin up, d flips
an up spin down. The excitation energies are dif-
ferent in even and odd fermion sectors. In the
even fermion sector each b~, d raises the energy
an a,mount (2v/Ma)(m ——,'), m = 1, 2, . . . . In the odd
fermion sector, each b~ d~ raises the energy an
amount (2m/Ma)m, m = 1, 2, . . . and in addition
there are nondegenerate zero modes b„d,which
do not change the energy at all.

The ground state has total spin zero, and the
ground state in the odd fermion sector is doubly
degenerate with spin tl, and has an energy w/2Ma
above the true ground state. To keep track of all
these possibilities let us define (x —= e '" ")

Z(M, N, 9) =—Tr[T(M)" e' 2«]

e-zo(N) Ã g (I+ x2«-I ete)2(1+ x2«-1 -ie)2+ (g g )
N, N-+~, " —k —].2

oo

+ 8 '" '"(-') (1+ e")(1+ e ' ) I [(1+ x"e' )'(1 + x".e ' )'- (0 - 8 + m) . (4.6)

If Z(M, N, 8) is expanded in a power series in x and 8", the coefficient of x"8'™ecounts the number of
states with excitation number n and total spin rn. This expression can be simplified by the identity"

(4.7)

By letting z =z/x in (4, 7) we obtain

1+ —g (1+x"Z) 1+x'",—= P „gx ' z
Z y=l. ' Z ' 4=1 ?n

Using (4.7) and (4.8) in (4.6), we find (z = e' )

(4 8)

Z(M, N, z) -e ""' 1,«2 — P x z + — P x (-z)

%e simplify further by writing

(m+ 1/2) 2 + X( 1/2) Z'
2 m= -~m= -oo

(4 9)

1 2

m2
x z +(z--z) = '.z" x" '&"- '

n even. , '::m=. —, ~

&ri &n2/2 &2m2

and similarly

so that

+(m+ 1/2) Zm + Z Zn+n /2 +2m

n odd m

ztM, x, a) —e-"'"'"ll „:---::Px-')
«I, sr «=i ( x ")

OO QO

m- n= -~
1

gJ (, ).-. (4.10)
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= (e),
and this relation requires that y'= w/6-

(4.11)

The duality transform X—R is just the Jacobi
imaginary transformation x Q' with

in& lnx =m',

and duality requires

The various factors in (4.10) can be seen to cor-
respond to the different types of excitations de-
scribed in Sec. III. QP, 1/(1 —x")' accounts for
the number of particle-hoLe excitations within a
given charge sector and "chirality" sector.(Z„„zx ~') accounts for the energy shifts of
the ground states within each charge sector, and(Z„„x'") accounts for the energy shifts of the
ground states within each "chirality" sector. For
610, but -1&6&1, it is only these latter two en-
ergy shifts that are modified. From Sec. III, we
infer, uslllg 'yo = w/6-) cosg = —.6

(4.12)

Note that we could have inferred the modification
of the second factor given the modification of the
other two from duality.

It is amusing to compare (4.12) to the partition
function for the coordinate degrees of freedom of
the (D-2)-dimensional closed string':

g . =~ && &/6 . (gp ~P&/~&o Vclosed string

but not identical to duality used in other statistical-
mechanics problems. " We have seen that duality
gives information about shape dependence, i.e. ,
finite-size effects. In most other problems the
infinite-size limit is taken and these effects are
neglected. The fact that there are 1/M excitations
is associated with the infinite-volume system being
critical. This is because a correlation between
edges in one dimension goes like

TT
LL (1 x34)2(D-2) (4.13)

O( N/N)-
The internal degrees of freedom behave like one
coordinate degree of freedom except that the mo-
mentum is discretized,

and there is an extra discrete zero mode. In Sec.
V we shall discuss the properties of the resulting
dual model and the interpretation of the second
zero mode.

The duality we have:exploited here is similar

so the correlation length

for the infinite system.
As another application of duality, let us calcu-

late the open--string partition function including the
gap term from our knowledge of the complete
closed-string propagator. ' We observe that the
open-string partition function is just the closed-
string propagator evaluated between states of total
momentum density equal to zero:

Z'"'(N+1, M) = dq.'dq„-(q„',N+1 ~q. , o&

2" 'e ' +" ' — dx ln2(1+ sinwx) — (1 —e """'~' ") 'V M
3M

but n/ow (N+1)/M=P'/TT, and to extract the spectrum we must perform a Zacobi imaginary transforma-
tion. The result for all the (N+1)/M dependence is the expected open-string partition function, ' and the

gap and bulk terms are trivial:

~+T 1

exp —, dx ln2(l + sinwx)
4& To o

~TT, T
exp +' + ln2 gg

&
.,rzo~/I (4.14)

Now including the coupling-constant factors (-X/16w')(T, /2w)~~' ' at each vertex, we obtain
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(D —2)aT, (D 2—)wT,

d /2-1
A —Acritjcal = -32m

7 0
(4.16)

The effective expansion parameter in the strong-
coupling expansion is

q g/2-1T0 2d/2 2»
$6+ 2g ~ ~cri tical

dcri tical '

V. BOSE-FERMI EQUIVALENCE AND THE DUAL
RESONANCE MODELS CORRESPONDING TO F MODELS

The form of the partition function (4.12) for the
F model makes transparent the fact that the low-
lying excitations of the transfer matrix are pre-
cisely those of a set of boson harmonic oscilla-
tors, in spite of the underlying fermionic charac-
ter of the degrees of freedom. This boson-fer-
mion equivalence is much deeper than identical
spectra and has been recogriized in several con-
texts. It has been known for a long time that the
massless Thirring model is equivalent to a non-
interacting scalar field theory. '. '"" This sort of
equivalence has also been exploited by workers in
statistical. mechanics in order to solve the critical.
behavior of one-dimensional quantum -spin sys-
tems 222 23

The Hamiltonian for the Heisenberg spin system
!:~!

"c .!'

H„.„=--,' Q (o!' o,'„,+ &o',o!„),:,. . (5.1)
A2

after the Jordon- Wigner transformation ", ,

crt -=—,'(o", +io', )

X.(T,/2m)'i2-' 8 2—
+ —ln ', — ln2

2g ]am

(4.15)
which is finite only if

The values of the k's will depend on boundary con-
ditions but will be spaced by 2m/M. The ground
state has M/2 overturned spine of momenta k„
i = 1, 2. . .M/2 distributed symmetrically about
zer-o:

2
iW=—

2

P+/ T0 ~
e!" ('p.2: j'@l2) (5.2)

g = 1r——=—k &k & ~ ~ &k
2 1. 2 M/2 2

Luther and Peschel22 explain how to obtain an
effective continuum Hamiltonian which reproduces
the dynamics of'(5. 2) for k=+k~=+w/2 and also for
k =2k~= r. The contributions of k far away from
these points should only affect microscopic phy-
sics and be lumped into renormalization of bulk
parameters. This continuum Hamiltonian can be
rewritten 'completely as a quadratic form in boson
operators which are themselves local bilinears
in the Fermi variables. In thi. s form the Hamil-
tonian can be diagonalized by a canonical trans-
for mation.

This whole discussion ignores boundary condi-
tions which would determine the detailed spacings
of the low-lying states; 9ut we have this infor-
mation- by direct calculation. . What we learn. from
Luther and Peschel and other workers is that the
macroscopic continuum properties of the Heisen-
berg model wave functions are accurately given

.by a local free quantum scalar, field defined in the
&, 0 parameter space of the string. Knowing this,
we can guess with complete confidence the dual
model which has the iriternaI degrees of freedom
of the I' model.

In addition to the (D —2) tran!svA!cree coordinates
x'(o', t) of the string, we introduce another field
Q(o', r) whose excitations will account for the in-
ternal degrees of freedom. P is essentially the
total fermion number density. SinAce't'he boson
modes are noninteracting iiiass'less' waves we take
for an action

= 5g exp g& ~ Gybe
j=1

1
O~] = 2bt)bq —2

and the Fourier transform

1
p jvl

can be rewritten as"

I!!!' Q(,I !(!,'l, j c'I,

I'"j j I )

To obtain the correct groundt-. gtatg energy in each
charge sector, we must hav'e

P+/ T0
do'T2$ =k[2(w —p, )TO]'~'; k = 0, +1,+2, . . . .

(5.4)

This is enforced by requiring the waVe'functional
to be unchanged under

I

ff„.„=-2+-cosk 5,5, + p(k)p(-k), I5;2!)
k

where

2'i
4(o, &)-4(&,&)+

~2( )T ]1/2 ~A

For the closed string we require

&!2S

f Abi 2!'.
A' ' 2. i

0
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since we demand that o'=P'/T, be physically equi-
valent to o =0. / is a topological quantum number
which counts the number of times P winds around
its space as 0 goes around the string. When we
calculate the propagator of the closed string, we
must sum over all values of l. This we do by
writing"

(t), (o, 7') = P(o, k)

2m) O'To"
[2(w —p, )T,]"' P'

with (t) periodic, and changing variables from (1) to

o""»"" '= g f de exp— T
2

r 1
dkdo'(P + P' )

exp d(t) exp—
2

dkdo'(p +p") (5.6)

The functional integral over (t) gives the same re-
sult as a transverse coordinate except that the
"momentum" is discretized according to (5.4).

The left running waves of (t) can be identified
with the density of left runriing fermions, and
similarly for the right running waves. The two
conserved quantum numbers of the closed string
are linear combinations of the two fermion num-
bers of each type of wave: The "momentum" (5.4)
is the sum, the topological quantum number l is
half the difference of the two fermion numbers,
which we identify as chirality. For an open string
there is no topological quantum number: The
boundary conditions (t)' = 0 rule out a linear term
in o. In the limit that the total charge becomes
continuous ((u - ll), all the States of nonzero topo-
logical quantum number get infinite energy and

play no role.
We close this section with a description of the

[a)I, a,] = k5,5 [b„,b,] = kbs

The ground state in each sector is labeled by con-
tinuous momenta p„the total charge 0, and the
topological quantum number /. The Hamiltonian
is then

dual model which has the E model as an internal-
symmetry dynamics. At the end of the discussion
we shall specialize our results to the X(Q (t))' case,
i.e. , when the E model is the ice model.

We represent the excited states of the closed
string on a Fock space of D —2 "coordinate" oscil-

' lator s akak, k = +1, +2, . . . with ak = a „.The un-
primed variables correspond to right running
waves, the primed to left running waves. For the
internal-symmetry degrees of freedom we intro-
duce a similar set bk, bk. These oseillations have
the commutation relations

1, s 2l)'~To
2 (D —1)2llTo

closed 2Pe po + 2(v )iTok+ ' I' —
8

' + 4&To (a „,a.„,+ a', a.',, + b „.b,, + b's, b',.) (5. I)

where k, l = 0, +1, +2, . . . .
We have calculated the l.ow-lying exeitations of

the E model correspondoing to open-string boundary
conditions for the special case ~=0. VVe quote
the partition function for even and odd M in both
their Fermi and Bose,forms (x= e '~ " and we
delete bulk terms):

8 24 ' (5.9)

In (5.8) no and Po can be inferred by considering
that interchange of the rolesof N, M shows that
either of these expressions is also the propagator
of a closed-string evaluated between initial and
final states of zero "momentum" (i.e. , charge)
density. ' This requires

M even: Z(M, N) = x o II (1+x" ' ')'
k-"&

~eo ~m /2

m~-& x

M odd: Z(M, N)=2x oQ (1 )'
(5-.8)

The Bose description for the free end boundary
condition will still be given by the action (5.3)
where Q at o =0, P'/T, are varied independently.
To get the correct quantization of charge we allow
bot'h periodic and antiperiodic wave functions un-
der y -y+ 2l//[2T, (l/ p, )]'/'.

o-l/s ~ (l/s)Osel/sl
nl~ oo k, 1 —X

(5.10)
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where the (+) corresponds to the ' even" sector
and the (-) corresponds to the "odd" sector. As
in (5.7), we can summarize a}1 excited states of
the open string by, writing

duce the variables p, and n by

& = -cos(p. ),
e' —e
fp +at,'

(A2)

1 2 2 (D —1)2m TOP = k po + 2(lf —p)Tok

+ 2 "To~ (a-k ' aa + &-k &k»
k'= z

k=0, +-,', ~1,+ 2, . . . , where we have inferred the 4
4 0 result from duality. We remind the reader that
ttk =2&/S for field theory. Other values of p, give
a consistent planar dual model, but do not corre-
spond to a field theory. We shall describe these
dual models more full. y elsewhere.

k(n) = -k(- n), (A4)

sin p.cosk =-cosy. +
cosh@ —cosjU

(As)

For -1&&&1, we have 0&p. &m. The range of
momenta -(v p, ) &k&w —p. is mapped onto —~ &n

Yang and Yang" ha,ve shown that this range
of momenta corresponds to the range allowed by
the lowest states with Q ~ 0. The following iden-
tities are consequences of Eqs. (A2)-(AS):
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APPENDIX: THE SPECTRUM OF LOW-LYING STATES

IN THE FMODEL
'

s1np, s1nhe
sink =

cosh' —cosp

dk sing.
do. coschn —cosp

6 (k, k') = ktcc" (ccttt tach
)2

-=8(n n')

A(n, P)-=—8(n, P)
1

2n BP

Sln2Ij '

2w cosh(n —P) —cos2ju
'

Expressed in these variables, -

(A6)

In this appendix, we shall determine the spec-
trum of low-lying states in the E model for,'0&~&

~

&1. The solution of the I' model in the thermody-
namic limit (M-~;Q/M, P fixed) is much dis-

.cussed in the solid-state literature. In this limit, the
energy density can be computed aS a function of
charge density and momentum by converting sums
over discrete Bethe wave numbers, k&, into inte-
grals over a continuous spectrum OX 4,s.

We want to compute the 1/M corrtecttions to. the
ground- state energy and the excitation-, spectrum
of states whose charges are fixed and who. se mo-
menta are within O(1/M) of a multiple of m. , We
adapt the integral equation technique. ac-qqx;dinghy. t

'fhe resulting expression for the energy of fow-
lying states is seen to be the leading ter'm in an
asymptotic series in 1/M. Our analytic. results,
have been checked by a computer analysis. . ., ,--;;:

The equation for. the momenta is

l =&

As discussed in Sec. III, different choices of I&

characterize the distinct excitations of the', l@tt!ice.
Before proceeding to the M- , we first intvo-

2w
k(nq) = Iq —— —8(nq —n, )

j «1
t

(A10)

and the energy is

(e ""—e )e"E= -In

2 tt'

R(n) —= ——
do.

(A12)

we differentiate Eq. (A10) with respect to n to ob-
tain

dk—= R(n)+ dP K(n P)R(P) . —
dQ

(Als)

The end points of integration, n and n, are de-
termined by the charge density

+(n- —n) . (All)

In the thermodynamic limit, we replace the dis-
crete sum in Eq. (A10) by a continuous integral.
For charge and chiral excitatitons, where the I& are
uniformly distributed in a closed' interval, we may
convert this. equation into a linear jntegra1 equa;
tion. Defining
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~1( Q) + '.dc'—R(n)2' (A14) 4Q—R(n),2' (A23)

and the momentum density

+ dt's—k(n)R (n) .2' (A15) dQ

2w
—R(n) . (A24)

Corrections to the replacement of sums by in-
tegrals in (A10)-(A13) can be obtained from the
Euler-Maclaurin formula. These terms generate
the -m/6M correction to the ground-state energy,
but do not affect the excitation energies of low-
lying states to order 1/M. We do not: discuss the
derivation of -v/6 in detail here. Indeed, the
—w/6M can be inferred from the spectrum of low-
lying excitations and duality as discussed in Sec.
IV.

For n, -~, n --~. Eq. (A13) may be solved by
Fourier transformation. The result is

E —E 2
dn e~'i"R(n)

&M m
0

(A25)

Q 1

M m —p,
da R(n), (A26)

(A27)

for n) n, )) 1, Eq. (A21) simplifies to

The charge excitations arise when n, = —n =a,.
For these excitations, R(n) =R(-, n), and,

Ro n
2pcsohm . /n2p, (A16)

/

R,(n) =R(n)+ dP J(n —P)R(g) .
0

(A28)

P=Q =0. (A17)

This choice of n, corr esponds, therefore, to the
ground state. The bulk energy. E~ may be deter-
mined from

(A18)
E dn 2(e 2fP . col)esl4—ln0

M „2r ' -e" —1

To evaluate the charge and ehiral excitation en-
ergies, we follow Yang and. Yang, ' and transform
Eq. (A13) into an equation for R(n) for n outside
the interval [n„aj.

'

With the resolvant operator

The solution to this equation is accomplished by
Laplace transforming, and using the Wiener-Hopf
factorization. " These techniques yield

E —E~ m —p, Q2

M 4
'

M (A29)

To determine the energies of the lowest statps
in nonzero chirality sectors we consider z, @-n,
but both large. In this limit, it is not hard to ver-
ify that the end-point contributions to the energy
are such that it is of the form

C,Q'+ C,P'.

we may use the identity

1 dk
I +E djy. .

to transform Eq. (A'13) into

(A19)

'

(A20)

Since we already know C, from (A29), we may eval-
uate C, in the limit e - —~. In this case Eq.
(A29) for R(x) applies. The energy is precisely —,

'

that of the case n, = —e = n, . Using

P =,.— .. .Q, . (A30)
2

we fDld

R (a) =R(n) dg J(n —P)R(g)

dg J(n —P)R(g) . (A21)

E —E
(

dn R(n)
2v coshnn/2p, ' (A22)

This equation may be used to obtain expressions
for the free energy, charge, and momenta as in-
tegrals over R(n) for n outside the interval
[n„n). The techniques used in this transform-
ation are discussed by Yang and Yang. '~ For ia, i» 1, the results are

E E, n p, /
Q' -1 P'

M2 +,. (A31)M

Finally', "w'e determine the particle-hole exci-
tation' energies. " We shall consider the excitation
energy'. in the charge zero, chirality zero sector.
Since-the evaluation of charge, chiral, and par-
ticle-hole excitations involves fir it-order pertur-
bations of the ground-state wave function, the re-
sult derived here also applies to the nonzero
charge and chirality sectors.

The particle-hole excitation we consider arises
from choosing the set I~ as
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j 1 rn
$~» j~» j2

jo+ 1»j» m+1.

(A32)

(A'33)

The change xn the free energy &s

s111 p
ig 2 cosp +l

We evaluate the momenta k(a) for this choice of I&

by expanding around the k(o.)'s appropriate to the
Q=P=O ground state. With

g(n) = MM(o. )R(o.) —,dQ

Eq. (A10) is

where e(x) is the step function. The parameter n,
is determined from

d &x

( )
slnh(x

cosh+ —cosy,

&& + . (A37)cosh+ —i cosh(y —cps 2p.

The singularity at n = 0 is treated by a principal-
value prescription which arises from a careful
treatment. of Eq. (All).

Equation (A36) is easily evaluated by Fourier
transformation. The resulting X(n) is inserted in-
to Eqs. (A36) and (A37) with the result

dQ dk
X(o) —.

2% dQ
E E, lJl

M M (A38)
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