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the infrared problem*
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General structure properties of local and covariant gauge quantum field theories are investigated and a
generalized cluster property is proved. Necessary and sufHcient conditions are given for the failure, of the
cluster property which is strictly related to "quark*' confinement. The deep relation between superselection
rules and the infrared problems is discussed.

I. INTRODUCTION

In recent years there has been increasing evi-
dence (both experimental and theoretical) that
gauge quantum field theories may be the only
quantum field theories relevant to elementary par-
ticle physics, so that it is of some physical inter-
est to analyze some structure properties of those
theories, without relying on perturbation theory.
Gauge quantum field theories (GQFT's) have a
very peculiar property with respect to the other
standard QFT's; whereas standard QFT can be
entirely formulated in terms of fie1ds satisfying
all the standard axioms (positivity included),
gauge QFT's cannot (see Sec. H). This property
seems to be strongly related to the possibility of
explaining some basic features of elementary par-
ticle interactions such as (i). scaling in deep-in-
elastic scattering and asymptotic freedom, ' (ii)
good high-energy behavior of electromagnetic and

weak interactions in unified theories of these interac-
tions, ' (iii) nonobservability of quarks and the
mechanism of quark confinement. " Also from
a more fundamental or theoretical point of view
GQFT's share some very nice properties not
common to standard QFT's:

(a) GQFT's with asymptotic freedom exhibit a
very good ultraviolet behavior, the small-distance
singularities being essentially those of free
fields. '

(b) Non-Abelian GQFT's provide a nontrivial.
combination of inter na j.-symmetry and space-time
groups, the internal symmetry being connected
with gauge groups of the second kind.

(c) GQFT's allow a mechanism of spontaneous
symmetry breaking which does not imply the ex-
kstence of a massl, ess particle for each broken
generator. "Qn the contrary, it predicts a massless
particle associated with the unbroken generator,
a situation exactly realized in elementary particle
physics where there does not seem to be any candi-

date for Goldstone bosons corresponding to inter-
nal-symmetry groups and the only existing mass-
less boson (the photon) is associated with an un-
broken internal-symmetry group. .

(d) Non-Abelian GQFT's exhibit a nontrivial. re-
lation with, general relativity, and they seem to in-
corporate as a first-order approximation some
of the basic properties of general relativity, i.e. ,
a nontrivial interplay between dynamics and space-
time geometry.

It has been stressed by several authors that the
above properties cannot be shared by standard .

QFT's, and one may therefore ask whether the
experimental (and theoretical) evidence is in fact
in the direction of a strong departure from the
standard QFT scheme for elementary-particle
interactions. More specifically one can ask:

(i) Are GQFT's really theories of quantized
fields or do they require abandoning the concept of
quantized fields in favor of Green's functions~
How strong are the modifications required for the
standard %ightman axioms' in order to include
GQFT?

(ii) What remains of the analytic properties of
standard QFT in GQFT?

(iii) Does the cluster property necessarily hold

in GQFT as in standard QFT'?
(iv) Can one provide a general treatment of

spontaneous symmetry breaking in GQFT's at the
same level of rigor as in standard QFT'?

(v) How are the infrared problem and the defini-
tion of physical states in GQFT's related to the
presence of local gauge groups and to the super-
selection rules they generate&

The present paper is an attempt to answer some
of the above questions and more generally to ex-
plore the structure properties of GQFT's in the

hope that one-. eventually gets some insight into the
more fundamental question: Why does nature
choose GQFT's among all the possible QFT's to
describe elementary-particle interactions ~

2010



LOCAL A5 0 COVARIART GAUGE QUANTUM FIR Lo. . .

II. LOCAL AND COVARIANT GAUGE QUANTUM FIELD
THEORY

W(q„. . . , q„,) =0 if q, g,V, . (2.1)

(E) (Gauge t ansformations). There exists a
(nontrivial) group o f 'local automorphisms a A of

depending on real C" vector-vat. ued functions A
with components A, ~O~, a=i, . . . , n (i.e. , of at
most slow increase)', such that th'e infinitesimal
action of n A on'the fields' Q„

0 (f)- Q (f)+b'P (f)

In order to avoid any question of semantics and
to allow an unambiguous discussion, it is neces-
sary to spell out what we mean by a local and covari-
ant GQFT. The following properties can be re
garded as basic properties or axioms for GQFT's.
Essentiall. y, one has to give a precise meaning to
the key words: local field, covariance, gauge
t ansformations.

By a local and covariant gauge quantum field
theory w e mean a quanta theory satisfying the
following. properties.

(A) (I,ocal fields) It is. defined in terms of a set
of fields Q„, u=l, . . . , n, i.e. , operator-valued
(tempered) distributions in a Hilbert space X,
with scalar prod ct denoted by (, ), having a
common dense d main D. The fi.elds g are
local, i.e. , they satisfy local commutativity, and
the polynomial *-algebra generated by the smeared
fields Q (f) will be denoted by &.

Physically interesting quantities such as transi-
tion amplitudes, vacuum expectation values, or
Green's functions, + operation, etc. , are computed
in terms of a bounded, Hermitian, nondegener ate'
sesquilinear form (, ) = (, I} ), and q is called the
metric operator.

(B) (Covariance). There is a weakly continuous
representation U(a, A) of the Poincare group', de-
fined on the dense domain D, such that the opera-
tors U(a, A) are "unitary" with respect to the prod-
uct (, ), . i.e. , (U4', Uc)=(4', 4) V4', @ED, and the
fields Q„ transform covariantly under U(a, A).

(C) (Pkysical states). There is a distinguished
(nontrivial and maximal) subspace X'C-X, such
that (cl} (4, 4') ~ 0, V4 C X'. . (c2} There is a com-
mon dense domain D' CX' such that U(a, A)D'CD'.
(c3) The unique translationally invariant state 4,
in X [i.e. , such that U(a, 1)4,=4,] call. ed the vac-
uum state is a cyclic vector with respect to the
local. field algebra , and it belongs to D'.

(D) (SPectral condition). The Fourier transform
W(q„. . . , q„,) of the n-point vacuum expectation val-
ues % (x„.. . , x„)=W(x, -x„.. . , x„,—x„) of the
fields Q satisfy

-=»m fs(lxI)f&(x,)[~,"(x), P (f)]d'x.

(2.2)

[fs, E&(R'), fs(lxl} =1 «r lxj&)l, fs(lxl) =0 f» lxl
&B+e, f, 6u( R), ff„(x,)dx, =1 ]5.P„depends
linearly and continuously (in-the' Ou topology) on
A, and 8 "J„(x)=0. The automorphisms nq are
called local gauge transformations. The elements
a A corresponding to nonconstant A are called
gauge transformations of the second kind.

The elements n~ corresponding to A =—(A, =const,
A, =0, b 4a) and such that there is at least one
gauge tra, nsformation of the second kind with A
—= (A, tconst, A, =O, bxa) define the subgroup G

of local gauge transformations of the first kind.
The -corresponding local generators are denoted
by &'„(x). They are assumed to be local transla-
tionally eovariant conserved currents, with the
property that there is a skew- symmetric local
fieM 6,"' = -G"," such that

(C, Z', 4)= (4, B,G.'"4), v4, @ED',

8p( f)D' = [Jp(f) —8"G',)p—(f)]D' C: D'. (2.4}

The above properties are a slight adaptation of
the similar well-known properti. es which charac-
terize a local and covariant formulation (or gauge)
of quantum electrodynamics (QED). ' For a famil-
iar and simple interpretation of the above concepts
we refer t'o the Gupta-Bleu). er formulation of free
QED." The following remarks are meant to pro-
vide general. motivations and discussion.

Property 4 is just the standard definition of local.
fields. The requirement that the algebra & is
large enough to allow approximation of every vec-
tor in X by vectors KD, = [5+0( [cyclieit-y of the
vacuum, assumption (c3)] ean be regarded as a
charaeteristie feature of what one should mean by
a local' "gauge. " The orily nonstandard element in
property A is the allowed possibility that the physical-
ly interesting matrix elements are computed by
using a product (, ) which is not the natural scalar
product in X (@=1 would correspond to the stan-
dard case).

P~oPe~ty B is essentially the standh. rd definiti;on
of covariance in QFT. The main difference is that
rio commitment i.s made about g = 1 or g t 1 Since
the covariance of the Wightman functions only re-
quires the "unitarity" of U(a, A} with respect to
the product (, ), in general the operators U(a, A}
need not be unitary and/or bounded operators.

is generated by local operators J„(x) in the follow-
ing sense:

-i b'0.(f}= »m [Qs, 4.(f)]
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JI d'a e'~'(O', U(a) C ) = 0, if P g V, , (2.5)

for any 4', 4 e D, -=[5'O'J . The physical interpreta-
tion of the theory requires only a weak form of
the spectral condition, namely,

e' 'd'a(4', U(a)4) = 0, if p $ V, (2.5')~

~

for any 4', 4 CD'c X'. The stronger form (2.5)
is suggested by perturbation theory, and it can be
justified by arguments based on the asymptotic
condition, the "support of the spectrum" of U(a)
then being dictated by the free in/out fields for
which in all the free-field gauges known to us Eq.
(2.I) is satisfied.

Furthermore, the above spectral condition is
strictly connected to the possibility of formulating
the theory in terms of the Schwinger function
(Euclidean formulation) by analytic continuation.

PxoPerty E provides a precise definition of local
gauge transformations. The term local here is
meant to indicate a symmetry at the level of local
fields, i.e. , a local automorphism of the algebra
of local fields (in the Lagrangian-fieid-theory
language such are the local transformations of
the fields which leave the Lagrangian or' the equa-
tions of motion invariant). Local symmetry has
to be contrasted to global symmetry (or global

In order to have a physically acceptable inter-
pretation of the theory in the general case @~1,
one has to specify which vectors of X describe
physical states (the correspondence need not be
one-to-one). This is essentially the reason for
condition C.

Since the matrix elements between two "physi-
cal" states 4, 4 H X' do not change if one adds to
4 and/or to 4' elements')t E- X ' with vanishing "q
norm", i.e. , (y, )t)=0, it is more convenient to
characterize the physical state corresponding to
4 by the equival. ence class [4]. The quotient
space X,&„=X'/X", X"=h H X'~ ()t, )t)=0j will
be called the space of physical states (without
quotation marks). X»„., is equipped with the posi-
tive-definite scalar product ([C], [4])3 „=—(4, 4')
induced by X'.

The assumption of the uniqueness of the vacuum
is essentially the statement that a physical theory
corresponds to a "pure phase. " The physical moti-
vations for this have been discussed in the lite-
rature'o and'we do not insist on this point, the
essential argument being that the presence of
more than one vacuum state would give rise to a
decomposition of the Hilbert space. into phases,
which describe, in general, different physical
theories.

The spectral condition D is equivalent to

automorphism) which is realized when the local
symmetry generates a symmetry of the states
(one briefly characterizes the latter case by say-
ing that the local symmetry is not spontaneously
broken). Gauge transformations depending on the
space-time points (A 4 const) and the correspond-
ing subgroup of constant-phase gauge transforma-
tions are distinguished by calling them of the sec-
ond and of the first kind, respectively. (Some
authors use the terms local and global for this
purpose. )

The group G is by definition a local internal-
symmetry group of the theory; it has, however,
a very special property with respect to other local
internal. -symmetry groups that the theory may
have, namely, that of being associated with non-
trivial gauge transformations of the second kind.
In the Lagrangian-quantum- field-theory language
one would say that the equations of motion are not
only invariant under the following transformation
of the "charged" fields

g(f)- P(f)+i A, Q'P(f) . (2.6)

A, = const, Q' being a finite-dimensional repre-
sentation of G, but also under the corresponding
transformations of the second kind, e.g, ,

(2.7)A„(f)-A„(f)+(&„A)(f),

for suitable nonconstant functions A —= [A, = A, (x)].
The property of being associated in the above
sense to local gauge transformations of the second
kind, gives a very special character to G. It is
interesting to note that the presently available ex-
perimgntaL and theoretical evidence indicates that
most of the (local) internal-symmetry groups
which are relevant to elementary-particle physics
are of this type. This suggests that perhaps the
most interesting feature of GQFT is that they offer
the possibility of such a nontriviat combination of
internal -symmetry and space-time groups.
Furthermore, the relation between the internal-
symmetry group G and the space-time-dependent
gauge transformations of the second kind is of the
same type as the relation between the Lorentz
transformations and'the space-time-dependent co-
ordinate transformations of generaL reLativity.

Conditions (2.3), (2.4) require some comment.
In describing Local automorphisms of the field
algebra in axiomatic quantum field theory one has
to abstract their basic properties, e.g;, from L'a-

grangian QFT, so that one may give a character-
ization which does not rely on the equations of
motions and/or the Lagrangian function. In the
case of a continuous Lie group of local automorph-
isms the basic feature is provided by Noether's
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theorem, according to which each generator Q' of
the group is not only a constant of motion but also
the space integral of the fourth component of a
local conserved current Z&(x}:

(2.8)

The above equations are the basic properties
which can be easily translated into QFT as a
characterization of. a continuous local group of
automorphisms of the algebra of local fields,
through its infinitesimal action

= lim [J,'(f„f), (P (f)], (2.8')

s "Jg(x) =0

Equations (2.8') play a crucial role in understand-
ing local symmetries in QFT and their spontaneous
breaking. It is important to remark that the cur-
rent conservation provides a local version of
"charge conservation" which still retains a mean-
ing even if a global conservation law fails to exist
(symm et ry b reaktng).

In passing from continuous (finite-dimensional)
Lie groups to continuous infinite-dimensional (or
gauge) Lie groups, the invariance of the Lagran-
gian or of the equations of motion yield an addi-
tional characterization. Clearly the A = const sub-
group G of the gauge group is a finite-dimension-
al continuous group, so that again Noether's the-
orem applies, but now because of the connection
with an infinite-dimensional (or gauge) Lie group,
the currents J'„(x) associated with its local gen-
erators Qs have a very special property: They
can be written as the divergence of antisymme-
tric teesors O'„, , J'„=&'G', „.

Condition (3) is the QFT translation of this basic
feature, and we take it as a characterization of
those local internal symmetries zohich are associ-
ated with local gauge groups of the second kind. "
The deep physical consequences of condition (3)
will be discussed in Sec. EV. .

Conditions (3) and (4) can also be regarded as a
kind of gauge invariance of the matrix elements
between "physical" states. In fact, putting 8„'
—= J& -& G», by Eq. (2.3) one has 8&3C'c X "and
therefore condition (3) can be read as the state-
ment that the physical states are equivalence
classes with respect ta the gauge-type transfor-.
mations 4- 4+8„'X':, 4 C X'. It.is.worthwhile
to stress that the. existence of local gauge auto-
morphisms (of. the second kind} is strictly related '

to the existence of the unphysical field 8„, which
has vanishing expectation values between "physi-
cal" states, but it has a nontrivial action on local

(4q, 4q) = 0 (jf W 5)( R ) .

If ri would be semidefinite (~0}, the above Eq.
(2.9) would imply

(2.9)

as a consequence of a generalized Schwarz in-
equality, and then

4~ = 0 '(tf &S( R ), (2.10)

since q is not degenerate.
One can show that in a local (and covariant)

gauge quantum field theory a generalized version
of the Reeh-Schlieder theorem holds (Sec. III) so
that Eq. (2.10) yields

Ja evGa
vp. '

and therefore

(2.11)

lim[Qs, (p„(f)]=0,

for any local field Q„(f), contrary to the, assump-
tion that G has a nontrivial representation on .
Thus, g cannot be semidefinite.

In many of the formulations of GQFT discussed
in the literature, the emphasi. s is on the property
of positivity at the price of losing locality and

(manifest) covariance of the basic fields (nonlocal
and noncovariant gauges). The above theorem
says that this is a general fact, i.e. , gauge quan-
tum field theories are nonstandard QFT's.

The simplest candidate of a local gauge quantum
field theory is provided by a local formulation of
quantum electrodynamics. In this case the gauge

fields (gauge transformations).
In condition A the possibility was left open that

in some cases one might choose g = 1 or at least
positive. This would imply that all the standard
Wightman axioms are satisfied, and one would
have a standard QFT. As we will see, the exis-
tence of a nontrivial internal-symmetry group G

associated with local gauge transformations of the
second kind in the sense of property E (i.e. , a non-
trivial combination of internal and space-time
groups) implies that q must be indefinite: Thus a
characteristic feature of local gauge quantum field
theories is the lack of positivity.

Theorem l. In a local gauge quantum field the-
ory, if the local (internal) symmetry group G

associated with local gauge transformations of
the second kind (property E) has a nontrivial rep-
resentation on 8', i.e. , the charges Qs do not in-
duce the trivial automorphism on W, then the form
(, ) must be indefinite.

Proof. Consider the state 4& ——[J„'(f)-s'G;„(f)]4', .
Since 4, & D' by (c3), so does 4z as a consequence
of. condition (4). Hence, by condition (3)
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transformations of the second kind, corresponding
to the c-number functions A satisfying A = 0, are
generated by the local currents

J„(x)=-A(x) 8„S~Ap(x)+oa'[A(x)E„,(x)j,

& being an arbitrary constant, and A ~ denoting
the vector potential.

In order to discuss the energy-momentum spec-
trum it is convenient to introduce the truncated
vacuum expectation values %" through the recur-
sive relations

m, (x,) =~,'(x,),
m, (x„x,}=m,'(x, )m,'(x, )+m,'(x„x,), . . . .

Clearly, with the above definition, the truncated
expectation values are translationally invariant
since so are the W's and, therefore, one may in-
troduce the truncated Wightman functions

err ~ / 4 —rjr. &i""n-1( 1 2& 2 3& ''t Xn-I Xnj ""n( 1&' & n}

(2.13)

Definition 2. The Wightman functions W(q, q„)
are said to have a "mass gaP" or, equivalently, to
satisfy a strong sPecA'al condition if there is a
positive p such that

W (q, q„)=0

if q,.'& p,
' for some j. The Wightman functions are

said to have no mass gap if there exists at least
one Wightman function W(q, q„)for whichthere is
nopositive p, suchthatW (q q )=0 ifq'& p, 2.

Bema&&. Since we are working in an indefinite-
metric theory the absence of a mass gap for the
Wightman functions does not imply the absence of
a mass gap in the physical spectrum, i.e. , in the
spectrum of U(a) in K'.

Definition 2. The physical spectrum of U(a) is
defined as the union of the supports of the 8' dis-
tr lbutlons

4~ X', 4 aD'.
Clearly, by the spectral condition U~~(P} = 0 if
pg V'. We will say that the physical spectrum of
U(a) has a mass gap (0, p, ) if g a positive p. such
that VC e X', 4 CD'

Otherwise the physical spectrum of U(a) is said to
have no mass gap.

E a xm/ PeTwo-dimensional QED where in the
local Gupta-Bleuler gauge the Wightman functions
have no mass gap, whereas the physical spectrum
has a mass gap.

III. GENERAL (MATHEMATICAL) PROPERTIES OF LOCAL

AND COVARIANT GAUGE QUANTUM FIEI.D THEORIES

U(a) t qU(a) =3}, (3.1)

where the U(a)t denotes the Hilbert-space Her-
mitian conjugate of U(a), and the above equation is
required to hold on the domain D. The lack of
unitarity of U(a) has sometimes been regarded as
a violation of the spectral. condition since for- non-

Since, as shown in the previous section, gauge
quantum field theories cannot satisfy all the stan-
dard Wightman axioms, it is of some interest to
analyze how much of the results of standard axio-
matic QFT can be generalized to GQFT. For the
reasons explained in the previous section we will
discuss this problem for local and covariant
GQFT.

The first question of principle is whether a QFT
with indefinite metric, and in particular a GQFT,
is completely defined by its vacuum expectation
values. More precisely, since:the Green's or the
Wightman functions are ultimately the objects of
direct physical use, it is natural to ask whether
one can define a QFT as a set of Wightman func-
tions, satisfying some basic properties, without
necessarily implying the existence of quantized
fields, i.e. , operator-valued distributions, in a
Hilbert space 3C. I n the standard positive-metric
case, the positivity property guarantees that quan-
tized fields can always be constructed whose ex-
pectation values are the given set of Wightman
functions (Wightman reconstruction theorem). "'"
In the indefinite-metric case, such reconstruction
is not possible in general, and one may take the
attitude that indefinite-metric quantum field the-
ories represent a substantial departure from the
standard scheme of QFT's. One may, however,
find a substitute of the positivity condition, which
allows the introduction of a Hilbert-space struc-
ture and the reconstruction of the quantized fields
(Hilbe2"t sjace st2'u-ctuxe condition). " This con-
dition can be formulated in terms of regularity
properties of the Wightman functions, and most
of the mathematical properties of the theory, such
as the unitarity of space-time transl. ations, are
direct consequences of how strongly the Hilbert-
space structure condition is fulfil. l.ed. "

The main technical difficulties in extending the
standard results of axiomatic QFT to GQFT are
(a) the lack of positivity and (b) the possible non-
unitarity of the representation of the translation
group U(a). In fact, the translation invariance of
the Wightma~ functions only requires that the
space-time translation operators U(a) are "uni-
tary" with respect to the indefinite product (, ),
i.e. ,
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unitary operators U(a) the standard spectral the-
orem does not apply. However, this only means
that the theory may have worse singularities in
momentum space than in the standard case. [For
example, the Fourier transform of the two-point
function need not be a measure and, e.g. , 5'(P')
singularities may appear. ] This does not imply
a violation of the spectral condition given in con-
dition D, which concerns only the support proper-
ties of the Wightman functions in momentum space.

One of the main advantages of using a local and
covariant formulation of GQFT is that the analy-
ticity properties of the standard Wightman QFT
carry through easily.

Theorem 2. In a QFT satisfying A-D the vacuum
expectation values W(x„. . . , x„) are boundary val-
ues of holomorphic functions W(~„. . . , z„), z,
=x, -ig, , j=1, . . . , n, the domain of holomorphy
being the tube V'„=[a„.. . , z„~ 7)q~V, }.

As a consequence of the covariance property B,
the holomorphic functions S" have a single-valued
continuation into the extended tube V'„' = [L,(L) 9'„—,
L, (C) being the set of all proper complex I orentz
transformations} and, when so extended, W trans-
forms covariantly under L, (C).

Furthermore, by locality (condition A), W has
an analytic continuation to the permuted extended
tube.

A direct consequence of theorem 2 is that local
and covariant GQFT's have PCT symmetry.

Theorem 3 (PC T symmetry) AQFT s. atisfying
A-D has the PCT symmetry:

(@„y„(x,) ~ ~ (8(x„)4,)
=i~(—I)'(0' P8(—x ) y (-x,)4,&, (3.2)

where J is the total number of undotted indices in
the spinor fields p, . . . , gs appearing on the right-
hand side, and E is the number of half-odd integer
spin fields.

Conversely, if the PCT condition (3.2) holds in a
QFT satisfying 8—D, the weak local commutativity
holds in a real neighborhood of the Jost points

08(x.)~o& = ~ (+., 08(x.) "~ (x.)+0&

(3.3)

The above theorem 3 is particularly relevant
since it provides an explanation of the observed
I'CT symmetry in elementary-particle physics,
where there is evidence that some of the elemen-
tary-particle interactions are described by GQFT.
This result shows how suitable is a local and co-
variant formulation (as defined in Sec. II) for dis-
cussing general structure properties of GQFT's,
in contrast to nonlocal and noncovariant formula-
tions.

Another deep result of standard (positive-metric)

~.,(f) "~.,(A)+. , f, ~~( R), suppf. «:
(~, X)=0
or, equivalently,

(~', x&=o.

By using an analyticity argument as in the stan-
dard case, one deduces

(4", C&=0

for any 4 of the form

(12)

v'.,(fi) ' ' ' v'. ,(f,)@. fa& &( R') .

Since @, is cyclic with respect to 0, Eg. (12) im-
plies

(@',C»=0, v 4 EK

and therefore, by the nondegeneracy of q, 4 '=0
and 4 =g4'=0.

Theorem ~. If 6 is an open set such that 6'
= (set of points which are spacelike with respect
to every point of 8}is not empty and T Z F(8),
then

=0

implies T =0.
Proof. If @=AC'o, A C $(8'), then for any T

~ S(8)

(T4, 4& =(AT@„4&= 0, V C W fP4,},
since. the vectors 4 run over a dense set and the
metric is nondegenerate, the above equation im-
plies TO=0. This in turn yields T=O, because

QFT, which extends to GQFT is the Reeh-Schlie-
der property.

Theorem 4 (Aeeh-Schlieder property). Let 6
denote an open set of space-time and $(8)
the set of polynomials in the fields cp (f),
smeared with test functions f having sup-
port contained in 8. Then in a QFT satisfying A—D

4, is a cyclic vector for 8'(8), i.e. , any state
4 HX can be approximated by local states
[P (8)4'g as closely as one likes.

Proof. One first notices that the nondegeneracy
of the metric q implies that qX is dense in X,
since

(4, X) =0, v@wrIsc, i. e. , 4'=@4", 4"w X

implies

(4", )(&
= 0, v 0"C K

and therefore g=0.
Thus, if 5'(8)C, is not dense in R, there must be

at least one vector 4 E qX, say 4'=q4', which is
or'thogonal to any vector y of the form



2016 F. STROCCHI 17

{6:(6')@o]is dense.
By fully exploiting the nondegeneracy of the

metric, one similarly proves the analog of the
theorem on the irreducibility of the field opera-
tors (theorem 4-4 of Ref. 6).

IV;- SUPERSELECTION RULES AND INFRARED PROBLEM

In this section we will discuss the case in which
there is a nontrivial internal-symmetry group G

associated with local gauge transformations of the
second kind, in the sense discussed in property
E, and the group G is not spontaneously broken.
A theory of this type has been suggested to de-
scribe strong interactions (quantum ehromodynam-
ics or QCD)." For the following discussion it is
useful to recall briefly the basic expected features
of such a theory and their physical motivations.

The problem of the classification of low-lying
baryon states in the quark model and the n"- 2Z
decay strongly sugg'est that if the hadrons are
made out of "quarks, " the quarks obey a para-
statistics of rank three. ""This is equivalent"
to the existence of an unbroken SU(3) group which
commutes with all the observables, called SU(3)
color gxouP.

On the other hand, the results of the SLAC ex-
periments on deep-inelastic scattering and, in

particular, the observed scaling property cannot
be explained in a standard QFT and the basic fea-
ture of asymptotic freedom requires a non-Abelian
gauge QFT. It has then been suggested" that the
SU(3) color group, motivated by the low energy-
properties of strong interactions, has to be as-
sociated with gauge transformations of the second
kind in order to explain the (high-energy) small-
distance behavior of strong interactions. 'The re-
sult is a non-Abelian gauge theory of the type dis-
cussed in Sec. II with a nontrivial unbroken group
G = SU(3), associated with gauge transformations
of the second kind in the sense of property E. For
the sake of concreteness we will discuss this par-
ticular case in the following, the generalization to
an arbitrary compact Lie group G being straight-
forward.

In the definition of the QFT model of strong in-
teractions it was explicitly assumed" that such a
theory should exhibit three basic properties: (i)
the SU(3) color, group is unbroken, (ii) all obser-
vables are color neutral, (iii) all physical states
are color singlets. %e will discuss point iii in
Sec. V. Here we mill discuss i and ii and some of
their consequences.

First, it is important to stress that property ii
can be proved to be a consequence of i in a local
gauge QFT.

Theorem 6. InalocalGQFT, if thelocalinternal-

symmetry group G associated with gauge transforma-
tions of the second kind in the se'nse of property E is
not broken, then its generators Q' commute with all
the observables, i.e., they define superselection
rules.

Proof. A necessary condition for an operator A
to describe an observable is that (a) it satisfies
locality or miscroscopic causality, (b) its matrix
elements between physical states are well de-
fined. The locality property and its motivations
have been discussed at length in the literature. '0'
In a local GQFT the second property b means that,
for any O', 4'&X', the matrix elements (+,A C')

depend only on the equivalence classes [4'], [4'],
which uniquely define the corresponding physical
states (see Sec. II, remark on condition C) as ele-
ments of Xphy, —=K'/X". Thus, property b implies

((++ ~,),A(4+X,)) = (C,A 4) (4 I)
for any X&, X,~X",4, 4 E X'. Hence if A de-
scribes an observable one has gC, 4 EX'and for
any generator Q' of G [see Eq. (2.8')]

(q, [Q', A]C) —= lim (4, [Q',A]c')

= lim(4', [Q'-(BG)',A]c')

= hm[(e,'e, A C) —(4,Ae„'C)]

=0 (& 2)

The first equality follows from the locality of A
and Gauss's theorem, "' the last equality follows
from property E, Eqs. (2.3), (2.4).

Theorem 6 has a very interesting consequence
peculiar to the non-Abelian case. As it is clear
from the discussion in Sec. II, the physical mean-
ing of the local charge Q~ is roughly that of the
charge contained in the space region O~ of radius
R. In fact for local charged states 4', ; localized
in a region 0 contained in the causal domain of OR

(4'„,Q.'~, &=~'(~,', ~„).
In the Abelian (QED) case Q~ describes the elec-
tric charge confined in the region 0„, and it cor-
responds to a well-defined physical observable.
In the non-Abelian case we have the following.

Corollary. In QCD, if the SU(3) color group
is not broken, the local color charges Q~ cannot
be observable.

Proof. The proof follows from the structure of
the algebra of charges [Q', Q~]=if'~'Q~ and from
theorem 6.

'The above corollary implies the existence of
non-Abelian superselection rules in QCD, and it
has strong consequences for the labeling of physi-
cal states. Clearly, since the charges Q' are not
observable, only the Casimir operators of
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SU(3),..., can be used to label the physical states.
If we decompose 3C' into a direct sum of irreduci-
ble Subspacei Rl', with respect to the color SU(3)
group we have

3C'= SK'

where the index I identifies an irreducible repre-
sentation of SU(3). Thus, if 4„4', E Kl differ only
on some color quantum number (e.g. , they are
eigenstates of color charges with different eigen-
values) they describe the same bhysical states,
since all the observables commute with SU(3)
Similarly, any coherent superposition of +, and 4,
is not observable and two different superpositions
of 4'~, +, define the same physical state. This
means that physical states m.e described by mix-
tures saith respect to' the color quaritunz numbers's,
within a given irreducible representation of SU(3),
and they are labeled only by the index I.

It is important to stress that the above argument
does not involve what is usually caned the mech-
anism of confinement; it is only a consequence of
the (local) underlying (non-Abelian) SU(3) color
symmetry. Furthermore, the above argument
implies that if such a.theory has particlelike states
with nonvanishing I (e.g., quark and gluon states),
they will exhibit rather peculiar properties and
the physical interpretation of the theory will then
require a careful analysis. " For example, the
result of a scattering experiment will strongly de-
pend on bceuf the incoming states have been pre-

pared'o

The above characterization of physical states
leads to an important clarification of the infrared
problem. It requires in fact that a scattering amp-
litude for a+ b-a+ d is labeled in the color space
by the indices I„ I„ I„ I~ which label the irreduc-
ible color SU(3) representations to which a, b, e,
d belong, respectively. Thus, inaQFT formulation
based on local fields one has to average over the
color number of each incoming particle and sum
over the color number of each outcoming particle.
The important result is that with the above "aver-
aging" procedure required by a correct definition
of physical states infrared singularities cancel. ~

Moreover, one can easily define a renormalized
gauge-invariant coupling constant for nonneutral
(I&0) channels, a problem which has attracted
much attention recently. ~' The amplitude
(I,I~

~
S ~I,'I~), S being the scattering matrix, is in

fact gauge invariant if S is, and this allows one to
define a renormalized coupling constant by follow-
ing the standhrd procedures.

A much deeper question is whether a'non-Abelian
GQF has "asymptotic" particlelike states with non-
vanishing color, i.e., I& 0, and inparticular wheth-
er there are particlelike states with quark and/or

gluon quantum numbers. Clearly, these questions
are of nonperturbative character, and one cannot
rely on perturbation theory (typically infinite sums
of diagrams are involved). A mechanism which
prevents the existence of particlele states with
nonvanishing color (quark confinement) will be dis-
cussed in Sec. V.

V. CLUSTFR PROPERTY IN LOCAL GAUGE QUANTUM

FIELD THEORY AND QUARK CONFINEMENT

The success of the quark model and the failure
of detecting quarks have given rise to speculations
about possible mechanisms which would prevent
the existence of particle states with the quark
quantum numbers (quark corifinement). The main
(heuristic) line of thought has been that of regard-
ing the observed hadr'ons as bound states of quarks
with a binding potential which does not decrease
at infinity. Typically for qq states speculations
have been made about a qq potential, V(r) behaving
like x ~ as r ~, N&0. Actually, there is strong
experimental evidence from the P-wave charmon-
ium states that a nonrelativistic approximation of
the qq interaction involves a linearly rising poten-
tial. 6 Thus/ in order to explain the phenomenon
of quark confinement one should not only account
for the nonobservability of quarks, but also for
the experimental evidence that the heuristic pic-
ture of a linearly rising potential is valid.

When translated into the QFT language, the non-
observability of quarks means that "quarks" are
associated with a basic set of local fields g, (x), but
no particlelike asymptotic states exist with the
quark quantum numbers. In this picture the quark
model should be interpreted as a, sort of one-part-
icle approximation to the quantum-field-theory
Green's functions. Moreover, the behavior of the
potential for large spacelike separations is con-
nected to the cluster property, "and then the lin-
early rising qq potential can be regarded as the
nonrelativistic trace of the failure of the cluster
property. Since the validity of the cluster property
plays a crucial role in the ex'.stence of the asymptotic
limit of a field 'operator, the failure of the cluster
property for the quark field's P,.(x) is strictly related
to the fact that the states g, (f )4', do not have an asyrnp-
totic limit belonging to X! This agrees with the
picture of two-dimensional QED where the cluster
property fails, and one can view the dipole states
as a 'sort of bound states of "electrons" interacting
through a potential increasi. ng at infinity.

It has been pointed out" that it is difficult to
understand such a mechanism in a local quantum
field theory since in a QFT satisfying all the stan-
dard Wightman axioms the validity of the cluster
property is a theorem, ""and it is strictly related
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to the property of locality. In the two-dimensional
QED ease, the failure of the cluster property has
a rather accidental origin since it is crucially con-
nected to the pathologies of the massless scalar
field in two dimensions; more precisely, it is re-
lated to the fact that the Fourier transform of the

. two-point function of a, massless scalar field is
not a, measure. '0'3' It is, therefore, natural to
ask whether this phenomenon can survive in four
dimensions without requiring a departure from
local QFT, as has been suggested in the literature.

The above argument. s should make it clear that
the question at issue for a mechanism of quark
confinement is tbe cluster property in GQFT."
Since GQFT cannot satisfy all the standard
Wightman axioms, the cluster property has to
be investigated anew. The advantage of using
a local formulation of GQFT (as defined in Sec.
II) is that in this case tbe above problem can
be clearly posed and discussed.

Quite independently of the above physical moti-
vations the discussion of the cluster property in
indefinite-metric QFT has its own justification as '

a necessary step in the extension of the results of
the 'standard (positive-metric) Wightman field
theory to. QFT's with indefinite metric.

We first discuss the case of an indefinite-metric
local QFT in which the Wightman functions have a
mass gap (Sec. II, definition 1). This implies that
the theory is free from infrared singularities and
in particular that the physical spectrum has a mass

gap (see Sec. II, definition 2). In the standard
(positive-metric) case with mass gap (0, m), the
cluster property holds and the clustering for large
r is approached exponentially fast (-e ") as in the
large-distance behavior of the Yukawa potential. '9

In the indefinite-metric case one has a rather close
analogy.

Theo~em ~. In an indefinite-metric local quan-
tum field theory satisfying properties A-D of Sec.
1I, if the Wightman functions have a mass gap (0,p)
(or satisfy a strong spectral condition) (definition
1, Sec. II), then the cluster property holds, i.e.,
for any spacelike vector ~

limW(x„. .. , x&l x&„+Xa, . .., x„+Xa)
g-+ +oo

—W(x„..., x~)W(x~ i, . . . , x ) 0,
the convergence being in 8'. Moreover, if B,(x,),
B,(x,) denote two clusters

B,.(x,) = dx', ~ ~ dx'„(;)f,(x'„... , x„'(;)),

x (t)(x,'+ x() ~ ~ ~ y(x'(() y x,.)

f(@(R r )) i 12
D„,„,-=the set of points f for which &[B,(x,),
B,(x2)]& vanishes by locality, D, = the convex clo-
sure of the complement in the plane ($, g, =0].
of the intersection D, , Cl f$, $, =0j, then if $ is
spaeelike to every point in D, and [$]= tbe shortest
distance between g and D, is ~ 6&0, one has

l

I &~.,B,(x,»,(x.)~.&- &~.,B,(x,)~.& &~.„B,(;)~.& I-.C[~] '"exp(-~[~])[~]'"(I+
I ~, I/[~]), (5.1)

where C is a constant independent of $ and 1V is a
non-negative integer. The above equation (5.1)
implies that if the fields B,(x,),B,(x,) are separated
by a large spacelike distance 8, &B,(x,)B,(x,)&
tends to zero at least as fast as A ' 'e '"g'".

As already mentioned in Sec. III, the difficulties
in extending the results of standard QFT to gauge
field theories are the indefini. te metric and the pos-
sible nonunitarity of space-time translations. ""
This implies that in the Jost-Lehmann-Dyson rep-
resentation the spectral functions p((m2, y) are
not measures and one has to modify~ the Araki-
Hepp-Ruelle proof.

The above theorem makes clear that the picture
of R qq potential increasing' at infinity and, in gen-
eral, a failure of the cluster property is incompat-
ible with locality if the Wight~an functions have a
mass gap. An infrared mechanism is therefore
crucial for realizing a quark confinement in loca,l
gauge QFT" (infrared slavery).

Theorem 8.~ Inanindefinite-metric local quan-
tum field theory satisfying properties A-D of Sec.

II, if the Wightman functions do not satisfy the
mass-gap condition (definition 1, Sec. II), then E(I.
(5.1) of theorem 7 is replaced by

I &+., B,(x,)B.(x.)+.&'I - C8] '[(]'"(I+
I (, I/[&]'),

(5.2)

and therefore the cluster property may fail if E&0.
Proof." One considers the truncated vacuum

expectation values
'

h„(&)-=&B,(x,)B,(x,))', h„(-g) =- &B,(x,)B,(x,)&'.

(5.3)

By the spectral condition, , k,2 is the boundary value
o'f an analytic function h»(z), ,analytic in the for-
ward tube E,. Similarly, h»(-g) is the boundary
value of an analytic function h»(x), analytic in E .
For $ sufficiently spaeelike hi, ($) =h»(-$) by lo-
cality and, therefore, there is an analytic function
h(z) in T', U W U (neighborhood of sufficiently large
post points] such that h»(z) =h(z) for z (= v'„h»(x)
=h(z) for s c 1' . As a conse(luence of the Bros-
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one can therefore repeat the Araki-Hepp-Ruelle
argument, and one gets Eq. (5.2).

One might think that the upper bound (5.2) on the
generic behavior of the truncated expectation value

(B,(x,)B,(x,))r for large spacelike separations is
too weak and that there could be room for a strong-
er bound implying the validity of the cluster prop-
erty, in general. This is not so, since one may
find soluble four-dimensional local GQFT models
in which the bound (5.2) is saturated and the cluster
property fails. Thus, the above theorem cannot
be improved if one wants to cover the general
case, and it is clear that the cluster property is
allowed to fail in a local GQFT compatible with
locali. ty and without requiring a nonunique vacu-
um."4'

The next problem is to characterize the case in
which the large spacelike behavior of
(B,(x,)B,(x,))r is given by the right-hand side of
Eq. (5.2) with N 40.

Proposition. If [.U(a), q]=0, then N=O.
Pr oof. The proposition follows essentially from

the argument of Ref. 29.
The above proposition clarifies the role of the

indefinite metric in the failure of the cluster prop-
erty in a local QFT and it shows that standard lo
cat QF T's cannot exhi bi t the mechanism of quark
confinement discussed at the beginning of this
section. Since local GQFT require an indefinite
metric, they appear as natural candidates for a
mechanism of quark confinement. This statement
points in the same direction as the exclusion of
standard QFT's for accounting for the scaling be-
havior in deep-inelastic scattering. '

For a refined characterization of the failure of
the cluster property it is useful to introduce the

following.
Definition. The space-time translations U(a) are

said to be unitary (or to commute with q) on the
light cone if there is a suitable neighborhood of

. the light cone (p'=0] on which the distributions

U, , (p) = d'a e'"&~., e.(f,) -e.-,(f,)U(a)

are measures vk, j.4'

x 4~ (fi) ~ 4~ (f~)@o)

Epstein-Glaser theorem" one can write

h(z) = z'"H(z),

where N is a nonpositive integer and H(z) is such
that H»(z) =—H(z) for z c E, is the Laplace trans-
form of a continuous function H»(p) of at most
polynomial increase and with support in V, [simi-
larly for H»(z) = H(z)—for z c E ]. For the function

G(g)
—= H„(g) —H, (-g)

Theorem 9. In a local QFT with indefinite met-
ric the cluster property fails if and only if the
space-time translations are not unitary on the
light cone.

Proof. From the proof of theorem 8 it follows
that the cluster property fails in those channels
in which the translations fail to be measures on
the light cone, since then the large spacelike be-
havior is given by the right-hand side of Eq. (5.2)
with N 40.

A simple example of the above theorem is pro-
vided by dipole fields, for which the two-point
function in momentum space is proportional to
5'(p )&(po) [the corresponding propagator is -I/p4
(Refs. 42 and 43)]. Clearly, the above theorem
covers a much more general case, and it reduces
the failure of the cluster property to the occur-
rence of (infrared) singularities in the Fourier
transform of the Wightman functions. (Clearly
the quark confinement requires that such singular-
ities occur in colored channels. )

In two-dimensional QED this phenomenon looks
rather accidental since the space-time translations
fail to commute with the metric on the light cone
because of the pathologies of the massless scalar
field in two dimensions.

VI. CHARGE SCREENING AND THE MECHANISM
OF CONFINEMENT

In Sec. V we discussed a possible mechanism by
which charged local fields do not give rise to
"asymptotic" particlelike states with the same
quantum numbers. At thi.s point it is worthwhile
to distinguish two quite different situations in which
this may happen.

The first ease is the charge screening induced
by the Higgs mechanism. This is crucially con-
nected to a phenomenon of spontaneous symmetry
breaking. As a consequence, the Wightman func-
tions are not invariant under the local symmetry
assoeiatt:d with the local charge which becomes
screened: The long-range force disappears (i.e.,
the vector boson acquires a mass) and the physical
states are all neutral. This is what happens in the
Abelian Higgs-Kibble model. ~&4'

The second possibility is realized when the sym-
metry associated with the local charge is not bro-
ken and the physical states are neutral (confine-
ment mechanism) as a consequence of an infrared
mechanism. As in the Higgs phenomenon the 5(P')
singularities become unphysical and disappear
from the physical spectrum, but without inducing
a symmetry breaking. This is the case of two-
dimensional QED (local gauge) where no Higgs
phenomenon oeeurs, 4' and the charge disappears
because of the bad infrared behavior of the mass-
less scalar field.
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It is the second case which should be realized in
QCD since one wants the color SU(3) to be unbroken.
The sum over the color charges in the m'-2Z de-
cay and in other physicaL processes (see Sec. Dt')

requires the invariance of the Green's functions
under the color group. No genuine Higgs mechan-
ism is therefore expected in this case.

We will distinguish the two phenomena discussed
above by calling them charge screening and con-
finement mechanism respectively.

Since the two mechanisms have the basic feature
in common that the infrared singularities are not
physical, one might speculate about the possibility
of using the Higgs mechanism as an infrared reg-
ularization of non-Abelian gauge theories. The
mass I of the Higgs model would play the role

of an infrared regulator, which is removed by let-
ting M -~ at the end. It is expected that such a
limiting procedure will define a non-Abelian. gauge
theory in which the confinement mechanism oc-
curs. As a matter of fact, there are strong indi-
cations that the Higgs mechanism necessarily re-
quires the failure of the cluster property [i.e.,
nonunitary U(a) on the light cone ]; thus, in the
above limiting procedure the cluster property fails
at each step, and it looks very likely that it will
also fail in the limit M - when the symmetry is
restored. ~' This appears as a possible mechanism
for resolving the ambiguities (infrared problem)
in the definition of a non-Abelian GQFT, in such
a way that the so-defined theory exhibits a quark
confinement.
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mental Particles (Freeman, San Francisco, 1967).

4~A tempered distribution is a measure if its singular-
ities are smooth enough so that a smearing with a
continuous function is enough to yield a finite result.
For a more precise definition see L. Schwartz,
Theories des Distributions (Hermann, Paris, 1967).

+QFT models with 1jp propagators have been discussed
in the literature (Ref. 43), but even in these simple
cases the relation with the indefinite metric does not
seem to have be,en realized.

43See, e.g. , S. Blaha, Phys. Lett. 56B, 427 (1975).
44P. W. Higgs, Phys. Rev. 145, 1156 (1966); T. W. B.

Kibble, ibid. 155, 1554 (1967).
4~J. A. Swieca, Phys. Rev. D 13, 312 (1976).
6We do not agree with the statement appea. ring in the
literature accordi. ng to which the symmetry is broken
in the local formulations of two-dimensional (QED).
one can easily check that the Wightman functions arq
invariant under the symmetry g e~~ g, A. 4
These transformation, induced by the electric charge,
are therefore implementable in X, but have only the
trivial representation in X'.

47Since the mechanism has a nonperturbative character-
the Kinoshita-Lee-Nauenberg theorem is no( applicable.


