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Splitting in energy and splitting in angular momentum of the classical field
of a radiating point charge

Carlos A. Lopez

(Received 13 December 1977)

A splitting of Maxwell s energy tensor of the retarded I.ienard-Wiechert field into three dynamically

independent parts is considered. Two of them are identified as representing the emitted and bound energy-

momenta. Tlie third one is a sourceless tensor, built from a part of the interference field, which gives no
contribution whatsoever to the total emitted or bound energies. This splitting induces a similar decomposition

of the angular momentum tensor into' three parts which are also independently conserved outside the world

line of the particle. One of them corresponds to the bound angular momentum, and the other two describe two

kinds of radiated angular momenta. The part associated with the sourceless energy tensor gives rise to the
radiation of intrinsic angular momentum. The remaining part accounts for the angular momentum carried by
the emitted energy.

I. INTRODUCTION

The physical picture underlying the energy-mo-
mentum content of the retarded Lienard-Wiechert
field of a point charge is clearly understood due
to a splitting, introduced by Teitelboim, of Max-
well's tensor into two dynamically independent
parts, Te(b) T(f) T(r)

Pv Pv Pi Qv i (1.5a)

stood. It is precisely the object of the present
paper to show that, in fact, they may be complete-
ly disentangled. Towards this purpose, we per-
form a new decomposition of the energy and angu-
lar. momentum density tensors into three dynami-
cally independent parts:

—T(r) + T(b)
gP pP gP & g(b) (ri) (re)~~~v=M~~. +~~~. +~~~v ~ (1.5b)

which are conserved outside the world line of the
particle,

evT (r) —0 81 T (b) —0pv & pv

Each term in (1.5a) and (1.5b) is independently con-
served outside the world line. Moreover, both
decompositions are related by formulas analogous
to (1.4), i.e. ,

Here T'„"„' accounts for the emitted energy-momen-
tum, and T"„'describes the energy-momentum that
remains bound to the particle.

Later, a similar decomposition was found"' for
the angular momentum density tensor,

(t') + (b)Mq„„=M „„M~„„.

M)tg 2@p Ty ]
W(b) e(b)

Rye 2+Dl.Tg )v &

(r&) (f)

),gv 2+@,TQ 3v '

(1.6a)

(1.6b)

(1.6c)

~xgav 2+ptT+ ~& ~ (1.4)

It so happens that the bound energy-momentum
density tensor T",„' contributes both to M~"„and to

On the other hand, T',"„'gives rise only to a
part of M,'"„'„.

This intertwining among the energy and angular
momentum contents of the bound and emitted fields
is rather obscure and deserves to be better under-

The emitted (M~"„'„) and bound (M„'~'„) parts, which
are also conserved off the world line, possess
similar properties to the corresponding pieces of
Maxwell's, tensor. However, the separate parts
in both splittings are not connected by the same
formula relating the. whole tensors, namely,

The bound energy-momentum density tensor T~(b„)

has been split into a free (sourceless) tensor T„'~„'

and a second tensor T„*„"'which turns out to pos-
sess the same energy-momentum content as T(b).

Similarly, the associated bound angular momen-
tum density tensor M,*„~„', given by (1.6a.), is phys-
ically equivalent to the oM M,"„'„. On the other
hand, the emitted energy tensor T„'"„' gives rise to
the external radiated angular momentum density
~„'"„'„', namely the tensor which contains the angu-
lar momentum carried by the emitted energy. The
remaining intrinsic part of the radiated angular
momentum density tensor M„'"„'„', as shown by (1.6b),
arises from the free energy tensor T'„„'. However, '

contrary to T„'f„', the intrinsic term M„'"„'„'does have
a source on the world line of the particle and gives
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II. THE FREE ENERGY-MOMENTUM TENSOR

I et us consider the simple case of a point charge
without internal structure. As shown by Teitel-
boim, ' the energy-momentum density tensor T„„
of it@ Lienard-Wiechert field may be decomposed
into two parts separately conserved outside the
world line of the particle:

T(b) T( 4) + T( 3)
gv pv sv (2.la)

T(&) T(-2)
Pv 4V (2.:1b)

The notation (-n} is introduced to indicate those
terms in T„„which behave like the power -g of
the invariant distance z. The bound part T(b„' has
the interesting property, pointed out by Van Weert, 4

of being the divergence of a local "superpotential"
Kgb»

a flux of angular momentum along the light cones.
The reason for this peculiar behavior is the pres-
ence of x„ in (1.6b), which contributes with an
extra factor linear in the distance.

In Sec. II we discuss in detail the properties of
the splitting (1.5a} of Maxwell's tensor, for the
simple case of a point charge without internal
structure. To accomplish this we make use of a
description of the bound part in terms of a super-
potential introduced by Van Weert. In Sec. III we
make a similar analysis of the decomposition
(1.5b) of the angular momentum tensor. In partic-.
ular, we find the 5-function sources on the world
line for the separate parts of the emitted angular
momentum tensor. In Sec. IV we extend the pres-
ent analysis to the general case of a point particle
with an arbitrary multipolar electromagnetic struc-
ture.

Te(b) erK(-3)
gv . QVY (2.6a)

T(f) gK( 2)
~lav ivy ' (2.6b)

By virtue of the antisymmetry of (2.4a) and. (2.4b)
in their last two indexes (v, y), these tensors are
also conserved off the world line,

VT g(b)
flv

evT(f) =0Qv (2.7)

T+tb) T(») (27f)-ls2g 6~»s s (2.8a)

T~„=T~„+(2))) s K K s~s„. (2.8b)

The sum of (2.8a) and (2.8b) correctly gives (2.la).
Note that both tensors are symmetric despite the
fact that their superpotentials are not. We shall
examine first the properties of the free energy
tensor T„(f„).

It is easily shown from (2.8b) that T~~„' satisfies
the relation

(2.9)

i.e., it gives no flux through the light cones drawn
from points on the world line of the charge. This
relation allows us to find the source of this tensor.
'To this end, let us apply Gauss's theorem to T„'f'
in the region depicted in Fig. 1. The integration
domain is the volume in Minkowski space between
two light cones with vertexes op the:world line,
separated by a proper-time interval d&, -and cut

, The explicit expressions for both parts are readily
obtained from (2.4) and (2.5):

Tgv = 8 Kgv~ ~ K~vy=Kewv
(b) (2.2) ltee

where K» is given by

(-3) (-2}K„„--.=K„„„+K„v„, (2.3)

with

j.+ gK 'g~L„S),)), (2,4a)

X„'„'„'=, (2))) 'e'II' 's„(e'vt„sw —v (2,4b)
I

This splitting, of the superpotential. suggests a na- .

tural decomposition of the bound energy tensor'
*

(2.5).

where

FIG. l. Integratioii region considered in the evalua-
tion of the emitted fluxes of the free Maxwell tensor
7 „f h,nd Che intr'insie radiated angular momentum ten-
sor- Mz"„»„. Gauss's iritegral theorem is applied to these
tensors in the four-volume of-Minkowski space en=
closed by two light cones with vertexes at the point z"(v)
and g~(7+de.), and two ]3habha tubes 0& and 02.
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by two cylinders having a constant retarded ra-
dius z, and v, (Bhabha tubes). Taking into account
relations (2.V) and (2.9), one obtains

the related decomposition (1.5b) of the angular mo-
mentum tensor. We thus obtain three pieces in-
dependently conserved outside the world line,

(2.10) avM'r" =0 avM(r') =0 . 8"M*")=0X&v ~ Xgv ~ Xev (3 1)

do"= [~v" —(1 —d)s"]dQd~, (2.11)

which shows that the flux of T„'„' is constant along
the light cones. The surface element of these
Bhabha tubes is

These conservation laws are an immediate deduc-
tion from (1.6). We now study each part separately.
l,et us first compare the new definition (1.6a) of
the bound angular momentum tensor with the pre-
vious one introduced in Ref. 2, namely

where dG is the element of solid angle in the in-
stantaneous rest system of the charge. Hence
(2.10) reduces to

M& & 28 D„Tp ]v + 2S ~)tT ]v (3.2)

For this purpose we insert (2.8a) into (1.6a) and

arrive at
T'~'do "=g T~~~v"dAdT =O(K ') (2.12)

Mq„„—M~„„—2z p T~(b) (&) (f) (3.3)

S"T„'~„'(x)=0 everywhere. (2.13)

It is a straightforward consequence of this re-
sult that the total energy-momentum-content of
T„'„' is zero. In fact, after integrating over the
hyperplane cr'(T) orthogonal to the world line at the
present position s" (v), we obtain

P'„"(v) fT„'~'dv„"-==0,
ty0(v)

(2.14)

since this integral may be decomposed into a ser-
ies of vanishing contributions like (2.10) along the
world line of the charge from the remote past up
to the present proper time w. From (2.14) we in-
fer that the tensor

which tends to zero in the limit z-. Thus the
constant flux (2.10) vanishes for all z. This means
that T(f' has no source on the world line, so that

It is a straightforward matter to verify that the
second term in (3.3) is a divergenceless tensor
giving no ft,ux through the light cones starting on
the world line. Moreover, it behaves like z ', so
that the same argument employed in the preceding
section to the tensor T~~~) applies equally well here.
Therefore M~*„(„"has the same angular momentum
content as M~~'„. lt also follows from (3.3), (1.3),
and (1.5b) that

M~&v ™x~v™~wv™x~v+2&(iT»(r~) (re) (r) (f) (3.4)

i.e. , the new radiation tensor also has the same
content as the old one.

To understand the physical meaning of the sep-
arate parts of the emitted angular momentum (3.4},
we consider more closely the intrinsic term. From
(1.6b) and (2.9) one obtains

Tw(&) T(&) T(f )
gv Nv pv (2.15}

p~ (ri)&v 0)tp v (3.5)

has the same energy-momentum content as T('„',
l.e.,

P&»(~) = Tt»do" = T*&»do"
0 pv 0'

C0(&) C0(1')
(2.16)

III. THE THREE PIECES OF THE ANGULAR

MOMENTUM TENSOR

As pointed out in the Introduction, the splitting
(1.5a) of Maxwell's energy tensor gives rise to

Besides, as a consequence of (2.13), we know that
both tensors possess the same source on the world
.line. However, as we show in the next section,
only T„*„'gives the correct angular momentum of
the bound field.

Therefore M)("„'„) does not give any flux through the
light cones and is conserved outside the world line.
Thus, via Gauss's theorem, we can look for the
source of this tensor. Using the same domain of
Fig. 1 we arrive at

(3.6)

Pj("&)yg —/PM( &)g"ygy7.agv — Xuv (3.V)

To explicitly compute this expression we replace,
in (1.6b), x„ from the relation s„=x„—z~(&), where
s~(&) is the retarded point on the world line corre-
sponding to x,:

The value of this constant flux along. the light cones
ls



SPLITTING IN ENERGY AND SPLITTING IN ANGULAR. . . 2007

M&„v ——2~0,T &„+28f&T(r i ) 0'). (/) (3.8)

We have already seen that the first term here does
not contribute because it behaves like x '. On the
other hand, the presence of s~ in the second term
gives the right K

' dependence. Referring to (2.8b),
(3.7), and (3.8) we deduce that

J ~"M~"'~de =
Xvv

Tour-vol u me
inside tube

surf ace
of tube

(s.12)

The flux on the right-hand side is obtained from
(3.11), recalling that there is no flux through the
light cones in both extremes. We thus obtain

Mx gv dO = 2K S
~& T+ ]v 5 (3.9)

(3.13)

or, introducing the explicit expression' for T„'„",

M)(r& &do" (4z)-le2( K(K-22s v

+ K 2SL)~v» ) )dQdT (3.10)

The integration over dQ is straightforward (see
Ref. 2) giving

0

(3.11)

time

Here M~~»"(v) is the intrinsic angular momentum
radiation rate. This result l.eads to the 5-function
source of M~~"„'„' on the world line. Following the
standard procedure, "we apply Gpss's theorem
to the intrinsic angular momentum tensor in the
region of Minkowski space inside a small Bhabha
tube surrounding the world line, and cut by two
light cones drawn from the points z" (v') and
z"(s+dT) (see Fig. 2). Thus we have

whence" '

e"M('„'„'(x)=f dx)) "(x—e(x))ee'v& )„j~((3.14)
~00

This expression shows that the intrinsic angular
momentum tensor has an independent source on
the world line of the charge; the intrinsic angular
momentum is thus independently emitted by the
charge and propagates along the light cones all
the way up to infinity. This implies that the ex-
ternal angular momentum tensor M„'"„'„' has as its
source

e"M„"„J'(x)= f dxe'v(x —e(x))
~00

(s.15)

We verify from this relation that the source of the
external part depends on the coordinate z~ and van-
ishes when the origin is chosen at the retarded
point. On the other hand, as shown by (3.14}, the
source of M„'»'„'(z) is independent of the origin.

A very interesting property of the intrinsic an-
gular momentum emitted by the charge, which
follows from (3.9), is that it only depends on the
interference part T'„„"of Maxwell's tensor.

On integrating (3.11) along the world line from
the remote past up to the present position, we ob-
tain

r
M,'»" (v) = 4, e'v, „(~')v„(&')dT'

m(O

and consequently (see Ref. 2),
T 0

M~("„"(7')= 2zt), (v')P»'",'(r')dv'.
~00

(3.16}

(3.17)

~ ( y)

FIG. 2. Integration region considered in the evaluation
of the 6-function source of the intrinsic radiated angu-
lar momentum, tensor Mz"~„. Gauss's integral theorem
is applied to this tensor in the four-volume of Minkow-
ski space inside a Bhabha tube 0 surroundirig a segment
of the world line and cut by two light cones drawn from
the points z"(y) and z"(7+d7).

This formula means that M)(,"„"(r)is the angular
momentum carried by the emitted energy. On the
other hand the intrinsic term M„'"„"(r)is not asso-
ciated to the emission of any kind of energy, be-
cause it is:constructed from the sourceless ener-
gy tensor T~~„'.

IV POINT PARTICLE WITH AjRBI"-fRARY MULTIPOLAR
lVJOMENTS

In this section we generalize the results obtained
so far to the case of a point particle possessing
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an arbitrary multipolar electromagnetic internal
structure. %'e shall use the results obtained by
Van Weert. He has shown in Ref. 3 that the bound
energy-momentum tensor is also the four-diver-
gence of a third-rank tensor K,„,:

lows us to show that T~~' j.s sourceless. The proof
which we worked out in Sec. II applies here also.
%'e again consider .the integration domain of Fig. 4

and obtain the following expression for the constant
flux along the light cones:

(4.1) T„„da"= tPT„'e"dQd& . (4.10)

Here the opened parenthesis (-3 indicates all
terms in T„v of third and higher order in the in-
verse retarded distance K. The superpotential
K„„„maybe split into a form analogous to (2.3),

The free energy tensor T„'„' behaves like z ' as is
easily verified from (4.6). Therefore (4.10) van-
ishes and T(f) obeys the conservation law

l.e.) &"T„'~'(x)=0 everywhere, (4.11)
(-3 (-2)

&wvr +&~vr & (4 2)

T(&) Tw(&) + T(f)
Qv pv pv ~

where

(4.3)

Te (&) er~(-s
pv yvr ~

(4.4a)

where both terms are antisymmetric in their last
two indexes. Hence we may define

i.e. , it is sourceless.
This result shows that there exists in this gen-

eral case a splitting of Maxwell's tensor contain-
ing three terms with similar properties to the
simple problem of a nonspinning charge. The same
is true for the angular momentum tensor. Let us
define the intrinsic radiated angular momentum
part as

T(f) er~(-2)
gv . .ger p

(4.4b) xyv = fx NI v 2Xp +y ]vy,
«&) — (f) r (-2) (4.12)

which are conserved off the world line,

evT +(&) P ev T(f) PQv gv (4.5)

or, introducing

s)„=x~ —z, (v),

To show that they are also symmetric, we make
use of the relation [ see Ref. 3, Eqs. (3.5) and (3.6)]

(~t ) (f) (~3)= 28~&T& lv + 2SI&Tv 3v

I

(4.13)

(f) =T( 3'+s erT(~v= fv + v fr (4.6)

g T(-)
or y& (4.7)

It also follows from (4.6), (4.7), and the property
[Ref. 6, Eq. (29)]

T'-"sv = Ppv (4.8)

that T„'f„' does not give any' flux through the light
cones drawn from points on the world line of the
particle

The first term is symmetric by definition; the sec-
ond is also symmetric as a consequence of the
property [Ref. 6, Eq. (30)]

~(„"'(v)=f 2vvrt Pv"v*dQ, (4.14)

a result already found by Van %cert. ' Thus, in
practice, we need only consider the interference
energy term T~„3' for the evaluation of the intrin-
sic angular momentum emitted by the particle.
However, it is T„'f' and not T'„„"the tensor which
possesses an independent dynamical existence.

The first term here is divergenceless and does
not give any flux through the light cones drawn
from the world line of the particle. Moreover, it
behaves like v '. Therefore the same argument
leading to (4.10) states that it gives no flux along
the light cones. We thus obtain from (4.13) the
intrinsic angular momentum radiation rate

T(f)s O (4.9)
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