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In part I of this series the general form to order c of approximately relativistic Lagrangians following
from classical Poincare-invariant variational principles of the Fokker type was established for point particles
with two-body (neutral) interactions. In this paper the relativistic action principles discussed in I are
generalized to include interactions involving classical isospin and the general form to order c of the
associated. approximate Lagqangians is obtiined by the methods developed in I, The post-Newtonian interaction
may contain up to six independent functions of the interparticle separation and of the isospin vectors of each
particle, in addition to the Newtonian potential. Unlike the neutral interactions considered in I,
nonsymmetry of the particles' variables in the relativistic interaction can be evident in order e ' as well as
c: '. The form of the ten conservation laws following from Poincare invariance and of the charge
conservation law following from invariance under rotations about the three-direction in charge space as well
as. the corresponding approximate conservation laws are derived using Noether's theorem. Examples discussed
include interactions allowing the definition of "adjunct fields" (including the scalar and vector meson
interactions) and an interaction leading to correction terms in order c

I. INTRODUCTION

Relativistic equations of motion for interacting
particles are generally multitime equations in
configuration space, and little is known about
their mathematical properties or their quantiza-
tion. Although very special examples have been
solved, ' no standard methods exist for solving such
equations. However, in some cases where a New-
tonian description of a system of particles is not
adequate, an exact relativistic description may
not be necessary. Consequently, a single-time
approximation to the relativistic description ean
be useful in gleaning some information about such
a system of particles.

'Those relativistic equations of motion that are
derivable from a Fokker-type"' variational prin-
ciple have the advantage that the conservation
laws' can be established by the use of Noether's
theorem. +' In the first paper of this series' (re-
ferred to as I) a method was developed for direct-
ly making a single-time approximation of Poin-
eare-invariant Fokker -type variational principles
describing N point particles with two-body inter-
actions depending on the particle's four -separa-
tions and four-velocities. To second order in c ',
this method was used to determine the general
form of those approximately relativistic Lagran-
gians that have a static Newtonian limit [t.e. , a
potential V,&(r,&) for particles i and j separated
by a distance r,&]. It is noteworthy that it does
not contain any nontrivial correction terms of order
c '. It includes as special cases those Lagrangians
studied earlier' which arose from slow-motion
approximations to particle interactions via various
special and general relativistic fields. The gener-

al form of the approximate Lagrangian contains
three functions of z, &

which may in principle be
independent of the Newtonian potential V,&. One
of these functions demonstrates that the effects
of a nonsymmetric Poincare-invariant interaction
can be evident in order c

Recently, the exact Bakamjian-'Thomas' theory
was approximated to order c ', classically by
Pauri and Prosperi' and quantum mechanically
by Coester and Havas. " For spinless particles,
the approximate Hamiltonian obtained by Pauri
and Prosper-i and the classical limit of the one ob-
tained by Coester and Havas are equivalent to the
Hamiltonian obtained in I.

The advantage of deriving an approximately re-
lativistic dynamics either from a Poincare-:invari-
ant variational principle or from the exact canon-
ical Bakamjian-Thomas theory is that the form ob-
tained to a given order is determined by the assump-
tions of the exact theory; if, instead, it is computed
according to what could be consistent with certain
assumptions to a given order, then this does not
ensure the existence of nontrivial results in higher
or

One way. of obtaining approximately relativistic
Hamiltonians is to start from a realization of the
Lie algebra of the Galilei group and to add correc-
tion terms of'various orders of c ' to obtain real-
izations of the Lie algebra of the Poincare group
correct to the order desired. 'This procedure was-
carried out recently to order c ', classically by
Stachel and Havas, " and quantum mechanically by
Foldy and Krajcik. " If the results of these two in-
vestigati. ons are required to be consistent with the
expansion of an exact theory, then for particles
without spin or isospin they reduce to those of I
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and Ref. 10.
In I it was noted that the approximation pro-

cedure developed there could also be applied to
exact action principles describing particles with
intrinsic attributes such as spin and isospin. Here
we determine, to order e ', the general form of
the classical approximate Lagrangian for point
particles with isospin.

A treatment of classical isospin was first intro-
duced by Fierz" to describe neutrons interacting
through charged meson fields. Patterned after
the quantum-theoretical tr eatment by Kemmer"
and Mgller and Rosenfeld" of chsrge-symmetric
meson fields —inwhichboth charged and neutral
meson fields are combined in such a way as to
preserve charge independence for the field sources
(i.e. , the heavy particles) —Le Couteur" gave a
classical theory of. retarded charge-symmetric
vector meson fields which was extended by Havas"
to half -reta. rded -half -advanced fields. In addition,
it has been shown"" that a consistent theory of
action at a distance derivable from a, variational
principle is possible for particles interacting
through both scalar and vector charge-symmetric
adjunct meson fields.

Here, a generalization of the Poincare-invariant
acti.on principles considered in Ref. 3 and further
discussed in I is presented in Sec. II for directly
interacting point particles with any value of hyper-
charge and isospin. The two-body interactions
are assumed to depend at most on the four-velo-
cities and isospin and as in I are not assumed to
be symmetric in the particles' variables. Only
interactions possessing a static nonrelativistic
limit are considered. Since the. isospin vector is
a dynamical variable, the action principle yields
equations describing the variation in time of the
charge of the particles, in addition to the trans-
lational equations of motion.

The conserved quantities which follow from in-
variances of the action principle are derived in
Sec. III. Invariance under the full ten-parameter
Poincare group leads to the usual ten conserved
quantities. Invariance under the three -parameter
rotation group in isospin space leads to a con-
served total isospin three-vector, the third com-
ponent of which determines the conserved total
electric charge. Since this is the only conserva, -
tion law required from physical considerations,
.it is sufficient to require only invariance under
rotations about the three-direction in isospin
space.

Using the approximation method developed in
I, the approximate Lagrangian is derived in Sec.
IV and in the Appendix. While, as shown in I,
the absence of terms of order c ' is a necessary
feature of the relativistic variational principles-

describing point particles without spin or isospin
if the interactions possess a static Newtonian lim-
it, here it is found that this is no longer the case '

for point particles with isospin.
The approximate conservation, laws following

from the invariarices of the approximate Lagran-
gian are also determined, via Noether's theorem,
in Sec. V. Special cases of approximate Lagran-
gians are given in Sec. VI, and Sec. VII contains
a discussion of results.

is related to the four-velocity

independent of the choice of parameter.
To describe the electric charge on particle i,

a vector r, (v, ) i'n a'n abstract three-dimensional
"charge space" is introduced" "with th'e property
that its magnitude is unity:

(4a)

and consequently

v,. d~, /d~, =o, (4b)

where the center dot denotes a scalar product and
~ a vector product in charge space. Vectors in
this space are represented by letters with a straight
line below them (an arrow above indicates a vec-
tor in ordinary three-space) and their components
wit/ respect-to a fixed orthonormal basis in charge
space are labeled by lower-case latin letters tak-
ing the values 1, 2, 3. The usual summation con-
vention applies to these as well as to the four-
space indices.

A generalized expression for the charge of par-
ticle i used in studies of classical charge-sym-
metric field theories" is given by (in the notation
of Ref. 20)

q, (7', ) = e[,'Y, +I@„(&,) —-,'L, y &, n, dv, le,], —(5)

where e, Y„I„andL, are arbitrary constants
and y is a unit, isovector oriented i.n the three-di-
rection in charge space. For I,=0, this agrees

II. THE EXACT VARIATIONAL PRINCIPLE

We use essentiaQy the same notation as in I,
except that A., represent. s an arbitrary parameter
along thk world line z", of particle i, which can be
chosen to be the proper time && or the coordinate
time t&. 'The quantity

dz" —(nPg )1/2
i
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58=0, 8=-8, +8, +8, ,

where

(6a)

ciA jdA.g'0 j5~

u ~j
Uj~ Sj~ r r r ~jr ~g

J

with the standard description of the charge of a
partidle with isospin I and hypereharge Y in elem-
entary particle physics (in units with N = 1). The
form (5) is compatible with linear fields and there-
fore with equations of motion of the type we shall
consider, which are derivable from a variational
principle containing only two-body interacti'ons.
For Lj 0, it is not compatible with equations of
motion for particles interacting via nonlinear
fields, "but we shall not consider direct-particle
interactions corresponding to such theories. here.

In Sec. III a conserved total charge is defined
for a system of N particles whose interactions are
invariant under rotations about the three-axis in
charge space. If the interactions are invariant
under arbitrary rotations in charge space, the
forces between particles are charge independent.
Interactions that are invariant only under rotations
about the three-axis are charge dependent. In-
teractions that do not depend on isospin are neu-
tral.

Very general Poincare-invariant variational
principles yielding equations of motion for point
particles with neutral two-body interactions were
introduced in Ref. 3 and further described in I.
The principal new feature for point particles with
isospin is the necessity of deriving equations
which describe the variation in time of the isospin
variables ~j. Such equations must be consistent
with the constraints (4). For the theory of action
at a distance corresponding to charge-symmetric
scalar and vector 'meson fields, a variational
formalism using spinors" was employed in Ref. 18.
As noted there, an alternate method is afforded
by the use of quasicoordinates, '"""which we
shall employ here. Still another approach, which
treats the isospin variables themselves as dynam-
ic variables in a variational princip'le, was in-
troduced, in Ref.. 24.

Thus, generalizing Ref. 3 and I, we consider
Poincare-invariant equations of motion for point
particles with isospin interacting through two-
body forces which may be obtained from a varia-
tional principle

7
d j jnj' j —4

1 j (6d)

and

Sjg zj (Xf) ZJ (Xf), 1 )=—d&, /dX( (6e)

The isovectors wj are the angular velocities of the
&j's. Since the &j's have fixed magnitude, we
obtain

0

~j=~j~~j ~

The action principle (6) differs from (I34) only
in the inclusion of isospin dependence in U, &

(where
the coupling constants in I are here absorbed
into U, ~) and in the presence of the term 8„which
is responsible for producing dynamic equations
for the v, 's which are consistent with Eq. (5). It
can be specialized to the action-at-a-distance
principles of scalar and vector mesodynamies. "
It cannot, however, describe the complete non-
linear theory of combined mesic and electro-
magnetic interactions, "because for any theory
possessing adjunct fields a description in terms
of two-body forces implies linearity of these
fields.

The ,N(N —1)—possibly distinct functions U, ~
de-

scribing the particle interactions may contain a
sum of several different types of interactions with
appropriate coupling constants for each type; some
of these interactions may be neutral. Each U, &

is assumed to be Poincare-invariant and to depend
only on the positions and velocities in Minkowski
space, as well as on the isospin variables 7„.
a more general form of Uj& depending also on v'j

and w& is considered in Ref. 24. In addition, Uj&
is assumed to be invariant under rotations about
the three-direction in charge space to assure a
conserved total charge for the system. 'The Poin-
care invariance will later be made manifest by
using a complete set of two-body invariants in
Minkowski space. Two-body invariants in charge
space will also be discussed at that time.

As discussed in I, in a parameter-invariant
formulation the m& appearing in Eq. (6c) are con-
stants interpreted as the 'inertial masses, which
facilitates the approximation of the variational
principle. An alternative approach is to use the
proper time as a parameter, using freely the re-
lation v", v,„=1,and to introduce Lagrange mul-
tipliers M, (t, ) (which are not constants) to main-
tain v j„6v~& = 0.

Variation of 8, and 8, for arbitrary 6z", (A., ) which
vanish at A, =+~ yields (for details see I)

OO

2c dXjmjyj,
ao

(6b)

. (6c)

68, = —Q dx, 6z",Z,„(n,V, ) (8)
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,2 0 d i@582= c'
. d&i5zi —.nzi", ( ., )

respectively, where 4,
„

is the Lagrangian deri-
vative

ili), = E dk: (I!iliI!(!(+I&I!, i!T. ,
oo

I !

(18)

(10)

and the "generalized potential" V, is defined by
OO

V)(z), —',' 'r, ) =—Q cd&, bgUgg
0O

'The operators d and 5 do not-commute when acting
on the quasicoordinates 8„butsatisfy

5d8i —d08i = 58i& d8i .
Using this relation in Eq. (18), and then integrating
by parts gives

+ g ct&g tlgUg'g ~

j&i

The variation of 8, for zi -z",- + 5z", gives

f oo

i

!

dpi -Ii&i ' 58i+Ii68i n, re] '&i
!

d Ti
+IiSUi ' 67 i+ ~Li —=-- ' I57'i

dpi'

which reduces to

To obtain the dynamic equations for T, from the
variational principle, we treat the components of
the angular velocity I, as derivatives of quasi-
coordinates 8& defined by (for details see Ref. 23)

(f8)/d)t) = Ã( . (14)

The true coordinates are the Euler angles, with
&, .playing the role of the usual three-direction in
a hypothetical "body" set of axes. The relation

d&i = d8i & ~i

is then an identity, as is Eq. (7). The isospin
equations of motion result from the variation 8i
—8i + 68i which induces

Q7i ——$8i n, 7i .
Performing the variation on 8„weobtain

(16)

An integration by parts turns this into

'The translational equations of motion following
from the vanishing of the sum of Eqs. (8), (9), and
(12) are

0

dA. i
' 4c' ' yi' l)i c'

d
&8 . dki&8i ~ Ii7'i + ~Li p, 7 ii

(20)

by virtue of Eq. (16). The dynamic equations for
~i following from the vanishing of the sum of
Eqs. (18) and (20) are

0

I —'~ 'f, -=i n, r, = — '~ v, . (21)
dA. Q

— 87 ii

The parameter-invariant equations (13) and (21)
govern the dynamics of the system of N particles.
Using Eq. (10) together with

P pii (i!!)'!) i!, . ii „)', ii, a !a,„)(22 )Sb,"- b ( &(b (/b)) b ( b(

in Eq. (13), and subsequently choosing the arbitra-
ry parameter X, to be the proper time v, [and thus

(v", v )' '=1] in both Eq. (13) and (21), we ob-
tain the following for them:

d ~ d7' ~ d&i
d~, ' 4c' ' dv,. d~,

+ vie88] d'~i Qevi evi

d7. , d 7I —' + —'L —'& 7.= p7'i'd7. . ' ' d7.'i

respectively.

and using Eq. (16) .gives

8+i
dgiyig8. — A yi8+ (17)

The variation of 8, is identically zero, while varia. -
tion of 8, for arbitrary 58, yields

I

III. THE EXACT CONSERVATION LAYERS

Invariance of the variational principle (6) undei.
the ten-parameter Poincar6 group leads to ten
conservation laws. One of these corresponds to
the conservation of energy, three to the conser-
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vation of linear momentum, three to the conser-
vation of angular momentum, and three express
the uniform motion of the center of mass.

Invariance under the three-parameter group of
isospin rotations leads to three additional con-
served quantities interpreted as the components
of a total isospin vector T. The conservation of
T, corresponds to conservation of charge. Since
this is the only conservation law required from
physical considerations, it is sufficient to require
only invariance under rotations about the three-
direction in charge space.

The Poincard invariance can be made manifest
through the use of the following independent in-
va ia ts".

2=—
Sgg =fjffP Spy S)g~ GOgg =V) Vg~ ~

(25)

corresponding to Fokker-type variational prin-
ciples invariant up to a divergence under either
the Poincarb group or the Qalilei group and not
necessarily symmetric in the particles' variables
were derived in Ref. 3 using a method simQar to
the one introduced by Dettman and SchQd ' for
electrodynamics. Here we obtain the conservation
laws using Noether's theorem, which has not pre-
viously been formulated in a way appropriate for
application to Fokker-type action principles. Such
a formulation will be discussed elsewhere. '

We consider the principle (6) modified in the
form

7 ~

dA] I]w] v]- 4L]

-m]c y;- 2y]V]2 (27)

F~=y 7~, Y]~-=y 'v( sr~.
(26)

For neutral interactions, the conservation laws

These are a complete set of independent invari-
ants formed from the four-dimensional separation
s",

&
and the corresponding four-velocities v~ and

Vg,
Invariance under rotations about the three-di-

rection in charge space can be built into the vari-
ational principle by considering U,-~ to depend on,
isospin only through the independent quantities

where A f and Xf* are arbitrary, and V, is defined
in Eq (11). The variations leading to the e(lua-
tions of motion are performed with the limits
X&- —~ and A.,*. *-~, for all i. Then for those in-
finitesimal variations

(28)

that leave g~~* invariant up to a divergence, i.e.,

ee; =-P f '
e~, ~, (2

g

it follows that'

e

~ ~ ~$' V 2'

dX,- f ~
—' — l~ —

f - ~ g 042 b~ ebgf g iC) — 6ee ~ I(T)+2L) =@7')+ 6s) m c —4I. 2 ~+ (n P )

+lE 2 J f — f eezex[e, (e, e,v„)-e,(e,ep„)[I
4&j i Xg ~ Xy

e 4 ( i f) (e 2—-&~~ ' 1~~~+ 2 L~ —6z", m, c, ——,L, - e',.(eye'))I (ee)

8 ~ 8 8
Q]=-Qz] ~ +Qt)) „+Q]'Tg A

8z) 8b]
(31)

and 2,
„

is defined in E(l. (10). The conservation laws follow from E(l. (30) when the e(lu(ations of motion
(13) and (21) are satisfied.

E(equation (30) together with the constant infinitesimal space-time translations

6z"= c", 58 =0

for which M~~* vanishes, gives the law of conservation of energy-momentum

(32)
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p„(~„~„.. . , 7„)=0, i=1, . . . , &,

1 d7',. dv',. 1 ~ &V; , aV,
2 I i~+ 2 M 6 ~ iv 4 f p

4c ' dv. . dz. eg]
i

+~gZ( f '- 'J' )c~.~;'!', (33)

where we have used E!l. (22) and subse!luently chosen proper-time parametrization. The law of conserva-
tion of angular momentum and the center-of-mass theorem follow from the vanishing of 5P~* due to the
invariance of g under the infinitesimal four-dimensional rotation

&vos&/~ ~ &vs= &au~

where the &„,. are arbitrary constants. For proper-time parametrization Eqs. (30) and (34) yield

(34)

jg pp v v pv.cd7', d7', p" [q'"(z",+ z",) —q'"(z", + z~)]

(35)

where, again, Eq. (22) has been used before letting X, -r, .
For the case of charge independence we have

sfI, ,/sr, .= sU„./sr, = sU, ,/8T, , = 0,
and the variational principle is invariant under the infinitesimal transformations

(36)

e~,'=0, (37)

where Q is an arbitrary constant isovector. The last of these equations implies the infinitesimal rotation

Qt,- = Q h7',-.
-Using E!ls. (30) and (36), we obtain the law of conservation of total isospin:

(36)

T(~zr ~2i ' r ~sr) = Or i= it tN,

7=+ Iqv!+2I) 'r7', +2 QQ Cd7 d7'~ A 7;) — '

A7~
BU)~ eU)~

i j (39)

in proper-. time par ametrization.
We now define the total charge to be

(40)

which by Ecj. (39) is conserved. 'By virtue of the
definition (5}of the charge on each particle, we
interpret E!l. (40) together with (39) to mean

(41)Q=gq, c+harge in transit",

in analogy to meson field theories where the
interaction is mediated by a field which carries
charge.

Interactions that are invariant only under rota-
tions about the three-direction in charge space
(in addition to Poincard invariance) imply that
Q = Qy in E!l. (37), and E!ls. (3 6) no longer hold.
Then only T, is conserved, which is sufficient for
conservation of the total charge,
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We take the nonrelativistic limit of the action
principle (6) to mean a variational principle

5@=0, dt L,[r,(t), v, (t); 7((t), ((/((t)],

L = 7+A —V, T =Q ~z(v(2, ,

i=i) )X)

' 2v;:, A =—~(f(N/( 7'( —@ L(7( )& (42)

V = Q Q V(/(r(/. , r(/, F(& i'/, T((),

IV. THE APPROXIMATELY RELATIVISTIC LAGRANGIAN ~,.'s are constants which we choose to be equal to
1 for agreement with Eq. (4). The system of N
particles described by Eqs. (43) thus requires
6N+4N initial data; for the case L, =O, 6A+21V
initial data are required. On the other hand, the
number of initial data associated with particle
systems described by relativistic equations of
motion containing A independent parameters has
not been established even for neutral interactions. "

To apply the approximation method of I, we first
choose the A' arbitrary parameters X, in the rela-
tivistic action principle (6) to be the coordinate
times t„thus relating the four-dimensionai form-
ulation to a "three-plus-one*' formulation; this is
appropriate because, as in I, the nonrelativistic
limit has been chosen in three-plus-one form.
Thus

r] —rg a", (t,) =(t„r,(t,)), , (44)

1 8V]~ 1 BV~)
/pl ]a) = —~ — rgy.—,rfg

f&~ re Br~ y&f rff 'ar

-
( )

d'r, (t)
dt'

(43a)

Just like the corresponding limit of the neutral
case discussed in I, this is not the only possible
limit of variational principles of the form (6).

Equation (42) generalizes the traditional Newton-
ian variational principle by the inclusion of iso-
spin, but it still leads to forces which-are static .

and central. The two-body potential energy V,&

need not necessarily by symmetric in 7, and 7'&,

analogous asymmetries in the neutral case con-
sidered in I appear fi.rst in order c '.

Owing to differing space-time concepts, sub-
stantial differences exist between the relativistic
variational principle (6) and the nonrelativistic
principle (42). The relativistic principle involves
2' independent variables in charge space and 4Ã
coordinates and A' parameters in a four-dimen-
sional space-time, while the nonrelativistic prin-
ciple involves the same number of charge-space
variables, but 3A coordinates and a single time
parameter in a Euclidean three-space. The equa-
tions of motion following from the .relativistic
variational principle (6) are given by Eqs. (23)

:. and (24), while the nonrelativistic principle (42)
yields the dynamical equations

and

( r ( —(l v 3/c2)l/2
dt's

", =a(/a =r (l, ).

(45)

Following I, we now build the restriction of the
existence of a static limit directly into the vari-
ational principle (6). As shown in I, although not
all of the invariants in the set (25) possess a
static limit, an equivalent set which does have
this property is

cr, / c's, ,' =-= c'(t; —t,)' —
~
r((t;) —r/(t, .) ~'

2 2 ~ 2C ff ~ rgb

v, (t,) v, (t/)
(a) ]~ —y]y~

dt -m(c'+ 2m(v('(t)-
~OO

X((-c(((—-r([ct(( —c v((t;) 'r(((t(& t/)1&

f(/ =. Cl((=r/[ct(/ —c v/(t/) ' r(/(t(& t/)] &

where use has been made of Eq. (45).
Here, as in I, the approximation will be carried

out only to order c '. ((, in Eq. (6c) can be easily
approximated using Eq. (45) and then expanding
in a Taylor series in c ' to obtain

\

d7'g ". g:; -
.d '7'] '-- -. —.' ~ 8 V. . ~ 8V~gI, +&L, ~ n &&= ~ "+~

f&f 87k ~&1 87

(43b)

Equation (43b) implies that the magnitudes of the

where the particle label on t,- has been deleted,
since it becomes superfluous once all two-body
interaction terms in 8, are written in terms of
a single time. Similarly, the approximate form
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of s, is obtained by using Eq. (45) in (6d) and then
expanding in c"'. This yields

oO
VI

dt J,w, 7;. .——', L;ip 1+ —' ', ).-. (48)
i moo

I = L2+A2 —V'+gpN,

where

(49a)

(49b)
I

The approximation of s, can be accomplished by a
straightforward application of the method developed
in I. The details, which are quite lengthy, are
given in the Appendix.

The approximately relativistic Lagrangian can be
, obtained from Eqs. (47), (48), and (A19) as

V 2

A, = g I;w; ~ 7,. 4I—, i—,'.1+. —,
'

C
(49c)

V is the nonrelativistic potential energy given in
Eq. (42), and the post-Newtonian interaction is
given by

~ Bg
(v —v.) ~ r,~A, .+ r.PN c j j j ia

i&j ia

1
vi ' v jVij —vi ' rij vj2C

e

j' BT.ja-

"+ (v; —v, )'(y, ,+K,&)+. [(v, —v~) r„j'Y,~.
ij ij

+ ( v,.' —v, ~ v,.)W„-[(v,. ~ r, ,)' —v,.

BV;j BW;j
&j ia BT BT ia jb

ia ia

ijVj ri +Vi ' rijTj +' rij Brij a BTja BTJa

B Zij
BTi BT

b

(49d)

The sevenfunctionsof r;j, T;, and Tj appearing in

Eq. (49d) are determined by the relativistic inter-
action kernel, U;,. as described in Eqs. (A17) and
(A20). If U, , is symmetric upon interchange of
the space-time variables of particles i and j, then
both 8,, and Wij vanish.

/

corresponding to the c'onservation of energy, of
linear and angular momentum, and of total isospin
(for arbitrary charge-space rotations).

To order c ', the charge on particle i is

q;(t)= e —,
' Y;+ I)T),

V. THE APPROXIMATE CONSERVATION LAWS

JC

+-,'Liy ~ P,.n Ti 1+
c (52)

' 'dP

dt

BL
pi=-

Vi

BI
Ti Ii

Bzv i
(50a)

(50b)

J= g r,. xp. , (50c)

(51)

The approximate Lagrangian (49) is invariant
under the seven-parameter group of time and space
trarislations and spatial rotations, and either the
one-parameter group or three-parameter group
of charge-space rotations for charge-dependent and
charge-independent interactions, respectively.
The associated conservation. laws established by
Noether's theorem are

dE =0, E= (p; v —+I;T; w;) —I, ,
i

which results from using Eq. (45) in (5) and ex-
panding to order c '. The total charge is given by

Q= e(Q —, F+ T), (53)

which, by Eq. (51), is conserved both for charge-
dependent and charge-independent interactions.

The conservation laws (50) and (51) are valid for
both Newtonian and approximately relativistic La-
grangians, since they result from invariance pro-
perties which apply to both Newtonian and relati-
vistic variational principles, and thus to approxi-
mately relativistic principles. However, the cen-
ter-of-mass theorem for Galilei-invariant and for
Poincare-invariant particle systems are generhted
by different transformations relating inertial
frames ig. relative motion. These do not corre-
spond to exact invariances of the approxi. mate
Lagrangian.

Instead, the approximately -relativistic Lagran-
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gian is invariant under another three-parameter
set of infinitesimal transformations' ":

6t= — 2, 5 ri=q I, 5/i=0,g ~ H(f)

vrhere it is sufficient to calculate R from

C2
R(t) = — d t P ( r, ( t ), v,.( t ); v &( t ), go &( t ))

(54c)
which leads to a center-of-mass theorem

go ~ gN: c
6= —R- Pt (54b)

with the help of the equations of motion.
The conserved quantities can be expressed in

terms of the canonical momenta p;. %'e have

BI, 1p. =— = m —,L r v.+ —, (m v )v, -~A, . r"—~A "r"
v ' 4c' ' ' ~ 2c' ' ' ci

+ 2 r„.( v, —v,.) ~ r „Y,~+. (2 v,.—v~) W„+r „(v,~ r„)...

+ 2 vIV~; — ~r;( vq ' r);} — —2( v) —v;)(V);+ X~))
1 1 BP.;

1 Bg.i—2 r g(vg —vg) ' r)g Y)g —V.W
g
—r).(2 v( ' rgb -vg rgg) Ji-

(55)

Similarly the generalized canonical isomomentum 1',. equals

(56)

'Using Eq. (55) in (501) and simplifying gives

P = ~ pi = P~+ P~, .

By, , BV,, -
+r ) (57b)

1 BW;; . ~ BWi~ (57c)

Thus P depends only on V,, and W,,, just as in the neutral case treated in l. Using Eq. (55} in (50c}gives
the total angular momentum
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1J =—~ r] x p] —~ gyes) —— 2-I p'] + ———2m)v) lg & v)4c — 2e

1
(r, x v, +r, x v, )V~ +r, && r~~v, + v~) r~2c 0 8

~ 2r)~ x (v( —v~)(V)~ yX)~) + [r) x (v) —v~) + r)~ x v)]W)~

1—r( x rg(v( —v~) ' r)g

(56)

which again depends only on the same functions that the corresponding J depended upon in I.
To obtain the total isospin. we insert Eq. {56)into {5l). This yields

v~ ~ r]~ —=- -- h g] v] r)~ + h p~C g~~
— 7'],T ] 7~ 7$

2 2

A 7 ] Y]~ p 7ii
gb k ib

which does not depend on A, &, X,z, or E'„..
The total energy is obtained by inserting Eqs. (49), (55), and (56) into (50a). After collecting terms we

obtain

E = Q (pg
' v) +INST(

' gtg) —I
e

4
2

~
2 2 3

m, c + —, m, — ', L,i; v, +-, .m, , —,I,v, 1 —~)—4~2 C 0

P
+ — ~ ~ vg

'
vgVgg —v) '

r)yves
' rgj — + (vg —vg) {Vgy+X)y) + [(v) —vg) ' rig] F)g2c ~1)~

+'(v, —v, v, )W,~-[(v, ~ r„)—vi rove ~ r, s] --S +vg'rg~&g, S
+

8yl f r~f 7'~a ~
ya

which does not contain any terms of order c '.
For the conserved center-of-mass quantity (54b),

we seek an expression for (E/c')R such that its
time derivative yields P given by Eq. (57), as re-
quired by Eq. (54c). The appropriate expression
is

r,~W, (r)q, r„v'~). . (62)

which for L, =0 has the same form as for the neu-
tral case considered in I. It is clear by inspection
of Eq. (57) that P~ is the time derivative of

E 1 ~
2 1

c
&

' 4c —
. 2t."R — RZg —

2 g~g + —
g fg]v] rg

+ —,~~[(r, + r)) V)+ r))W, ~],2c (6l)

The time derivative of the remaining terms in Eq.
(62) can be shown to equal P„byusing the non-
relativistic equations of motion (43) to eliminate
the resulting 7', 's and a, 's which appear in order
c '; this is facilitated by noting that Eq. (43b) im-
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plies that

Equation (62) can also be written in the form

ling, then U, &
must be symmetric in the variables

of particles i and j.
Generalizing the form of U, &

given in I, the de-
sired separation is possible when U, &

consists of
a sum of separable terms each having the form

—2R= ~M)r],
C

1
,—J-,Y', +- --,—m, v,4c — 2c

'I

+ —-; ~ (V)~+ W)J)+ ~ (V~) —W~)),2c

which exhibits the same general structure as in
.the Newtonian case, i.e., a sum of terms each
multiplied by a. single position vector.

&I. SPECIAL CASES OF APPROXIMATE INTERACTIONS

We shall consider a class of exact interactions
which allow the definition of adjunct fields, """
and give two examples of thiq class corresponding
to charge- symmetric scalar and vector adjunct
meson fields"; as is well known, the nonrelativis-
tic limit of these two interactions is proportional
to the Yukawa potential.

As another example, we shall consider a special
case which does not possess adjunct fields, which
also implies the Yukawa potential in the limit e '
-0, but which,

' unlike the previous examples,
l.eads to correction terms of order e '.

As discussed in Ref. 3 and in I, the special ease
of theories possessing adjunct fields can be ob-
tained from variational principles of the form (6)
provided the generalized potential V, given by Eq.
(ll) can be separated into a sum of terms which
are products of two factors, one of which involves
only the coordinates z", of particle i. 'Then this
factor, with the dependence on z", replaced by x",
can.be considered as an adjunct potential defined
at all points in space and determined by sources
which invol. ve all particles other than i. If all par-
ticles are to act as i.f they were field sources that
are similar except for the strength of their coup-

U'& "'"'=Z g f(r, )f(r, )~f,(~„r,r, ) T',;
O&„„.O. .& "~I&XI&fg&p&&

"
(c&&),

(65)
f

where l, m, n, p, q, s are non-negative integers, g,
and g& are coupling constants, f is an arbitrary
function and O,„...„(ofrank n) may consist of a
sum of terms each built up only from zr", and
8/sz", The quantity v, , —1,. I'& is separable because
it can be written in the form

I gX g
7 .

gyes

jy + 7$27g2

cb ka jb &

where the Cartesian tensor

&,~=—.diag(1, 1, 0)

(66a.)

(66b)

is invariant under rotations about the three-axis
in charge space, The quantity &,

&
may appear

only in even powers because we require U;& to be
symmetric in the variables of particles i and j,
whereas T,&= -T&, by Eq. (26).

'To facilitate displaying of the separated form
of V~&'""~"' corresponding to Eq. (65), we define

U( l mnPqs) U(1mnPqs)fi

since U', &™~")is symmetric, and introduce the
notation

ia]p la& laa lap &

&
—~~ye ~(e ' ''~(of

1 . 2

(66)

Then choosing the arbitrary parameter ~,. to be
the proper time 7,. [and thus b, -(v",.n, „)'~'=1],in-
serting Eq. (65) into (11), and using the definitions
(46) [with (25)1 and (26), we obtain

V' ""'"'=I;cf( )1[&.1 [& ].[(&~Z )a].[&~.].O;„-.[&&.])[&~sl 0,'.,"":.,",a', 'a .'a, ""...; ', ,

P e V, eZ" sag, 8y""-Offt ( Ph
4a '"C 5 '~a) d "'d e "e &~i ~ &g)

j+5
cd7,.f(r, )[v,,]~[a„v,,],[(~r.r y),],[~,,],

x d,' -'"[g,". ],[s,', j„g,",y~,.',""I(o, ,) .

While the question of the existence of suitable equations determining the Q,
'."..(x ) directly from the

source distribution is of no concern for a theory based on a variational principle of the form (6), it is pos-
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where

y —Q Q y'(i eS)U!iIIIO)(y ) (76b)

Equation (V7) is a special case of (73) withf = 1,'p
=1,q= s= i=m=0. To obtain the approximate La-'
grangian we need only

I

af 2 ig & 1/2 1 $J

(77)

where K is a constant having dimensions of recip-
rocal length (corresponding to p. c/5 in quantum

theory, with )). being the meson mass); J, is the
Bessel function of order 1, and

is the nonrelativistic potential. ei,„contains no
correction terms of order c for relativistic in-
teractions of the form (V3), but this does not nec-
essarily follow for the more general interactions
(65) 'which allow the definition of adjunct potentials
because operators 0,.„...„.can be constructed such
that U,-j is not time-reversal invariant.

The action-ht-a-distance variational principle of
charge-symmetric scalar mesodynamics" is given
by Eq. (6) with

U„=-gg, v; v, G;,(o,,),

U= g-igiv, 'r„G(g'—r') . (79)

Then the only nonvanishing functions in 8 are

V . = -g.g.v. v dgG f'-r' (8Oa)

(80b)

Kri j
~ j g L g L~7 7 f ~i j

(81a)

and Eq. (80b) integrates to
I

These integrals are evaluated in Ref. 24. Equation
(80a) reduces to the Yukawa potential

1, Oif &0
Z;j=gigjT- 7 jK 8 (81b)

'(""= io, ... o. (78) Thus, since Eqs. (81) represent the only nonvan-
ishing functions in 8~, Eq. (49d) takes the form

e"Kri
8 =, QQg, g, r, ~ ~, —[(v,-v,.)'+v, ~ v, ]

%Kri j-Vi' ijVj' lij 2 +K
Xij

Kr
~ ~ ~ ~ 8 ij—(v, r;,T, ~ i, -vi ~ r, ,v, ~ v, )

which is of the form (76) with l=m = p = s = 0, p =1, and

e ""ij
+Ti Tj

K
(82)

I
'I

'&-Kri. .
v(000) = -g g E(100) =7 (83)ij - i:j &. &

'. ij. ' i j
The action-at-a-distance variational principle of charge-symmetric vector mesodynamies" is given by

Eq. (6) with (choosing proper-time parametrization)

. 1
p

B 1Uj=gigjf'i'7 j Vi+ 2 2 Vz „pB vj„+ 2 2 Vg gB p Gij
K c BgiBgiy K c Bg j Bz

where G, ,(o„)is givenby Eq-. (77). This isof the form (65) with f =1, p=1, q=s=l=m='0, and

(84)

(85)

Bo'i,
Bg

BQ',

Bs;-

Carrying out the indicated differentiations in Eq. (84) using

B0';,.= 2c sifv ~ I

Bi".
I -j

'.IL L

(86)

and subsequently employing definitions (46) with {25)yields
r

Uij=g;gf7'; ~ 7'ju,-j G 0 +, G+, 4G~+20'G«
4 1

0
L

8 ' 1'
, g,g, r, v&)l, ,l„G+,(4G, +2vG„)

I

(87)
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which is a sum of two terms, each of the form (73).
The integrals in Eqs. (A17) and (A20) for U, , given by (87) together with (77) are evaluated in Ref. 24.

The results are
Kri j

Vj gigjTi T j ij
W'i j = F;j =A.;,. = Bij = 0,
Z- ~ = -g-g 7 7. K i8-Kri j+ 2K-2y

for which Eq. (49d) takes the form

(88)

j~ Yi vi vj
i(j

+ 2 QQgg~ (VI'r; T,'.2c

+vi 'r;j vj

(89)

The interaction kernels of the charged scalar
and vector meson theories can be obtained from
the charge-symmetric ones given by Eqs. (VV) and

(84), respectively, by replacing v, w,. by v„.-I',.I',.
[see Eq. (66a)]. The corresponding approximate
Lagrangians can be obtained by employing this
substitution in Eqs. (81) for scalar mesons and in
Eqs. (88) for vector mesons.

An example of a relativistic interaction which
does not allow definition of adjunct fields is given
by

the terms proportional to 6(g) =de(g)/dg have been
omitted because the arguments of 6(g) and 6(g' -r')
cannot be zero simultaneously. Inserting Eqs. (92)
into (A1V) and (A20) yields

{93a)

(93b)

+ e '"a|I(L,.)]6(o,,), respectively. The post-Newtonian interaction for
this case is given by Eg. (49d) together with Egs.
(93). This example serves to emphasize that re-
quiring U, , to be symmetric in the particle vari-
ables is not sufficient to exclude the possibility of
nontrivial correction terms of order c '.

where a is a constant having dimensions of recip-
rocal length and the 8 function is defined in Etl.
(V8). This interaction is symmetric and Iightiike.
From Egs. (46) it can be seen that g,

„

is propor-
tional to the time difference ti -tj in the rest frame
of the jth pa, rticle and that X,,- is proportional to tj
—t; in the rest frame of the ith particle. Conse-
quently, since the sign of t, , is an invariant for
null separations, Eg. (90) is equivalent to

VII. DISCUSSION

In Sec. II of this paper the neutral Poincare-in-
variant variational principles of Ref. 3 have been
generalized to describe point particles with iso-
spin. The method developed in I for approximating
such principles was then employed in Sec. IV to
obtain the general form, to order c ', of the clas-
sical approximately relativistic Lagrangian de-
scribing point particles with two-body interactions
depending on isospin as well as the particles' vel-

. ocities and interparticle separations. Only those
relativistic interactions that possess a static non-
relativistic lira. it have been considered. The
charge on the ith particle is determined by Eg. (5),
which reduces to the standard relation for the
charge on a particle when L, , =O. The application
of this approximation procedure is straightforward

(91)

To obtain the approximate Lagrangian corres-
ponding to this interaction, we need

V =g g.~. v [e 'e{g)+e"e( . g-).
],
6(g' r'), --

V, =g,g, v, r, ( a)e ".~8(.g.).6-(g'-r'),

V„=g;g, r, 7,( a)e'~8( - . r-)5(t' r-'), -
U~= lU,

(92)

Uzx =g;g, v, .v, a'e' 8(-t)6(t' r');—

e ' i~6(o. .) t)t.
' xUi j=gi gj'T ' 7' QP ~

~ij & j i



APPROXIMATELY RELATIVISTIC LAGRANGIAN S FOR. . . . III 1999

and results in Eq. (49) with the charge given by
Eq. (52).

Unlike the neutral case, effects of order c ' are
not excluded for point particles with isospin if
their relativistic interaction is not time-reversal
invariant, a fact which may be of interest in nu-
clear and elementary particle physics. In the neu-
tral case, as shown in I, terms of order c ' in the
approximate Lagrangian constitute a total time
derivative and thus can be omitted. For interac-
tions involving isospin, this is the case only for
special classes of interactions; however, these do
include the time-reversal invariant interactions
corresponding to charge-symmetric scalar and
vector meson theories, "for which. the post-New-
tonian interactions are given in Sec. TI. Relati-
vistic interactions that are symmetric in the par- .

ticles' variables imply B„=W,.
&

= 0. in Eq. (49d),
but do not exclude effects of order c ', an example
of such an interaction is included in Sec. 7I. The
appearance of e ' terms is also not restricted to
interactions of a non-field-theoretical character
because operators 0;,...„canbe constructed so
that Eq. (65) is not time-reversal invariant.

The form given in Sec. VI of relativistic inter-
actions for which adjunct fields can be defined is
a generalization beyond the inclusion of isospin
of the form given in I. In special cases, this
more general form reduces to a sum of terms
each of the form considered in I, multiplied by
the appropriate isospin factors; the approximate
Lagrangian has been obtained here only for this
type of field-theory related interaction.

The exact conservation laws following from the
invariance properties of the relativistic variational
principle (6) are given in Sec. III. Invariance under
tne Poincare group leads to the- usual ten conser-
vation laws. In addition, invariance under rota-

tions about the three-direction in charge space
leads to a conserved total charge, while invari-
ance under arbitrary rotations leads also to a con-
served total isospin vector, whose third compo-
nent determines the total charge as in elementary
particle physics. The approximate conservation
laws obtained in Sec. V follow from the invariance
properties of the approximate Lagrangian (49). As
in the neutral case, the center-of-mass theorem
derived by the method of Ref. 7 contains a center-
of-mass coordinate which is a sum of terms each
proportional to a single position vector. These
approximate conservation laws have also been
derived in Ref. 24 by direct approximation of the
exact conservation laws.

The approximately relativistic system of N par-
ticles with interactions possessing a static non-
relativistic limit is described by 6N+4N initial
data, while the nonrelativistic system is described
by 6N+ 4N initial data for L,.c 0 and 6N+ 2N initial
data for I., = 0 (the standard description of charge).
Thus, unlike the neutral case, the specification
of initial data to order. c ' for the approximately
relativistic system differs from that of the non-
relativistic system when L,.=O, under the assump-
tion of a static nonrelativistic limit. The construc-
tion. of the Hamiltonian for the case J,=O must be
treated separately from the case L,0, and the
canonical formalism associated with the approxi-
mate Lagrangian (49), discussed in Ref. 24, will
be presented elsewhere.

APPENDIX

To apply the approximation method developed
in I, we use Eqs. (45) in (6b), with the space-time
dependence of U,, restricted to the Poincare in-
variants (46), and then make a monotonic change of
of variable from t, to &„.as in I to obtain

OO OO'

g ~~ df -). d)- iJ( ij& ij& Xij»ij& —i& i)

tCJ «OO ' «OO (d gg +

(Al)

where
~

nieans that the expression is to be evaluated with

(A2)

following from the last of Kqs. (46). Equation (A2) is an implicit relation for t„which is handled by
employing a Lagrange expansion as follows:

f(t t) —f(l t)
nD ' i t~-t. (A3)

for any infinitely differentiable function f(t„t~). Here
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9= d

dt's g, t~constant
(A4)

We shall follow the convention used in I of omitting particle subscripts on quantities where confusion is
not likely to arise. The integrand in Eq. (A1) depends explicitly on c through o~, &o~ 2 and ]]~ [see (143)],
and implicitly on c ' through Eq. (A2). Since an approximation is desired only to order c ', this integrand
is first expanded in a Taylor series to second order followed by a Lagrange expansion to the same order.

Because the isospin dependence of Ui& embodies no explicit factors of c, the Taylor expansion of
U,.~/+, , ~. proceeds exactly as in I and results in (I54), which has the form

2 1
]l —Q ~ Ch 1 — (v —v~)2 — v~2

df 'U(f)+ [2f—'U, v~ ~ r+'U„(v,—v~) ~ r]
C

where

+ 2, ( 2' U(v& r)' —2g"U,v&'+4+'U, „fv,~ r v&
~ r- (v& ~ r)']

2c

+'U (v, —v, )'+O'Ur(v', *—v, ')+'U„„[(v,—v, ) r]']) (A5)

8U eU eU
U —

&~
U — 8~, Ux-

eX

The superscript zero represents explicit c ' 0, so that

0U(f) —= U(t2 —r2(f;, ty), 1, i;, i;;-r)(t])2~v(t~)) = U(Uc2U(0, 0]t, f; T~, I'], I'~, T(~),

which differs from (I49) only in the dependence on isospin.
The Lagrange expansion of the term of order c is

1 1 ]] 'U(g) 1,820U(g)
U(& ~iZ Zs)+ '—'(t;+ v~ ~ —r)

t + 2,c - c i j
where

U(g, ~;r„r,)='U(t;)~. ...=U(t2 r'(t, f), 1-, 0, 0;r, (f),~~(f)).

To evaluate Eq. (A8), we need

8 U(g) () ( )
8 U

ty i 8 ig p

i . . ia

(A8)

(Av)

(A8)

(A9)

g2 oUlgl gOU g20U

ia ia ib

a'U ..
7ia ib 8 ia~.

ia
(A10)

whereby Eq. (A8) takes the form

'U(2)]. =U(2, T'Tg Tr)v —(4+ —v, ~ r)(-2U, v, ~ r+
' )T

ia

2f'[UU(a-; ~ r+ v&')-2(v; ~ r)'U~, ] - 4i," ' r'&, v& ~ r+ g' t„i,~+ g' V&, l (All)

it should be understood that all expressions which are coefficients of a barred quantity are evaluated at
f, =tz t. Similarly, the Lagr—a--nge expansion of the terms of order c in Eq. (A5) yields

[2f v& ~ r U, +-(v; - v,.) ~ r Ux]
4

4f v& ~ vz U, —8f v& ~ r v& ~ r U„—4[(v& ~ r)' —v; ~ r v& ~ r] U„,+ 2(f &
~ r+ v& —v; ~ v&) U„

8U~ ~ .- ~Ux ~+4(v, ~ r ' r,.+2(v, -v, ) ~ r r,.I.87 ~ 7ia
(A12)
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The Lagrange expansion of the terms that are already of order c ' requires only the substitution t, t& =t.
Thus, inserting Eqs. (All) and (A12) in (A5) and simplifying, we obtain

a, = gg dt' U(g, x; v „7~)+— (v, —v~) ~ r(U„—2g U, ) i g
BU

OO fa

+ 2, (v& v~)—'( U„-U+ f U„-2f' U,) v~'—U+2(v~ ~ r) U, -4 v, ~ r v~ ~ rV,

+[r, v-, ) ~ r]'(V„„4—f V„,+4&'U„)+a, r(2&V„—2f V, )

8Ux
+2(v,. —v&) ~ ri, g

" —2P
8~&a

8U, 8'U ~ . , 8U
+2v& ~ r 7&,

ia ~fg~fb ' ~ia

ln t»s expre»ion, unlike the neutral case of 1, the terms of order c do not constitute a total time
derivative and thus can not be omitted. %'e can write them in a form which also includes ~v' by adding to
the time integral of Eq. (A13) the total time derivative

(A13)

(A14)
d, " — 1

" " — 8U ~ 8U ~

+&V = —
g dg -2gV, (v, v, ) ~ -r+g r„+g

I

which is irrelevant for the variational principle. The acceleration and 7', dependence of Eq. (A13) can be
removed by integrating by parts and omitting the irrelevant integrated term. %'e have

dt a, ~ r(2&V„—2g'V, )+ i' 7'„
~la

dg -v &'yv,- ~
v& 2g U„—2f'U, + —v,' ~ r '+v, ~ rv& ~ r ——2& U„—2g'U,

—v .r 7' — (2i; Vz —2f'V, ) —v& ~ r r&, —(2g V„2f'V,-)+2(v& —v&) ~ ri;, g'
ie ga &a

~ia&.-~ —&'
8~&a ~~& ~la 7&a

Using Eqs. (A14) and (A15) in (A13), we obtain

1 ~ ~ — —
g &U ~ g BV

df U(f, r; 7'(, 'r~) + —(vq —vj) .r(U„—f U, ) + g f
00 C " 7 fa f'~e

v, ' U+ (v; —v&)'(U —U„—f V~+2&' V,)+ (v, ' —v, v;)(2f Vz —2g' V, )

+ 2[(v; —vz) ~ r]'(2& Uz, - 2P U„)+[(v& ~ r)' - v& ~ r vz r] ——(2& Uz —2$' V, )

+2[2v, ~ rv& r —(v& r)'] V, —[(v, —v&) ~ r]'Vzx

yv& ~ ri&, — (2&Vx-2i; V, -2V)+v& ~ r i&, (2&U& —2& l7~)
Tf~

ga 8g

82 U

ig gb
(A16) .

'

The terms of order c' and c ' that do not contain i, or iz have the same form as in (163). Consequently,
they can be simplified just as in I„sothe nonrelativistic two-body potential energy. is given by

df U(f, r; r), ~r),

and we define the functions
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W)~(r; rq, ~r) = df i;(U„+U~), (A17b)

X;~(r;Z„Z,) f=--dL(U, +00,), (A17c)

F,~(r; r„rq)-=— (A17d)

as the natural generalization of the corresponding neutral functions introduced in I. The ideality

df (2g U„—2P U, ) = V)~+ W)), (A18)

proved following (I67), is also valid here provided U and its derivatives vanish sufficiently rapidly as'
f- +~. . Then, also using Eq. (A18) to simplify the terms linear in v;, and v;„Eq.(A16) reduces to

1 . aB,, . OB,,8~ —Q ~ dt: Vgy(r' v)~~V)+ — (v ~ vg) ' rA)y+ &) —&yc 87 ]~ 87'gg

1 1 8&
v; v~V&z-. v, rvz ~ r — +tv;-v&)'(V, ~+X,&)

y[(v, v~) ~—r]'y, q+(v, ' v, ~ -vq)W~q —[(v, ~ r)'-v, ~ rv~ r]—
Sx

Q2

+ v& r v&, (W;& —V;&)+v; ~ r i'&, (W&&+ V&&)+ r&, r&~
-', , (A )

7 f@ . Ty~ 7 ~~g Yp~g

where

A,, (r; v„v~)=- —,
'' df (U„+IT,), (A20a)

B,~(r; v, , v, )= (A20b)

Z, ,(r; v', , v', ) —= df f2 U. (A20c)

A;& is identical to the coefficient of (v,. —v, ) ~ r in order c in Eq. (A16) because

di;(U„—f U, )= 2 dg(U„+!7,), (A21)

. which follows from

U. —Ux+U
dU

and the assumption that U-0 as f
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