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+e present a model for self-coupled scalar fields which, when solved subject to a self-consistent constraint,
exhibits the same diagrammatic structure: as the covariantly quantized Einstein theory of gravity. The

graviton appears naturally as a dynamical Goldstone boson. Formal expressions for the graviton propagator,
as well as scalar-graviton and graviton-graviton vertices, are derived.

A model recently proposed by Adler-' suggests
photon pairing as an origin for the gravitational
interaction at the quantum level. The gravitational
field is described by composite pairing amplitudes,
which arise as expectation values of local quantum
fields, but are not themselves local quantum fields.

We preSent here a heuristic "pai.ring'" model for
gravitation which, similarly, does not introduce
a fundamental quantum field for the graviton.
However, the gravitonis described by a quantum
field, a composite operator constructed from the
interacting matter fields. The Lagrangian con-
tains only matter terms; for simplicity we treat
here the case of self-interacting massless scalar
fields.

The theory is of the type originally considered
by Nambu and Zona-Lasinio, ' which breaks vacuum-
chiral invariance in order to generate the "piori"
field; this theory has been shown to reproduce the
linear o model. "~ Bjorken, ' and later Guralnik, '
have shown that a theory of this type, containing
only a four-fermion current x current interaction
and solved subject to a self-consistent constraint,
is completely equivalent to spinor quantum elec-
trodynamics, The Bjorken model assumes a non-
Lorentz-invariant vacuum; the photon appears as
a dynamical Goldstone. boson.

The same method is applied here to generate the
graviton dynamically. %'e assume the existence of
an infinitely degenerate set of non-Lorentz-invar-
iant vacuums. Unless otherwise noted, all vacuum
expectation values (VEV's) are taken with respect
to one such vacuum state, denoted as b). Solving
the theory s'ubject to certai. n constraints imposed
upon the VEV of the scalar stress tensor results
in a theory possessing the same diagrammatic
structure as the covariantly quantized Einstein
theory of gravitation (QGR).

The organization of this paper is as follows:
In Sec. II the model is presented, and the equiva-
lence to lowest-order QGR is demonstrated. In
8ec. III the zeroth-order solution for the scalar

propagator is found, and the lowest-order pertur-
bative corrections are calculated, giving rise to
expressions for the graviton propagator, scalar-
graviton, and graviton-graviton vertices. - Finally,
Sec. IV presents a summary and discussion.

II. THE MODEL

We consider the case of a mmssless, Hermitian
scalar field, with derivative self-coupling, de-
scribed by the Lagrangian

2 = —
&„y(x)&"y(x)

-g, T„„(x)T""(x) J„,( )xT—""(x)

—= g +g. (2 I)

T„„(x)-=T„„(x)—27)„„T(x), (2.3a)

T(x) = q„„T'"(x), -
and the analogous form of Eq. (2.3a) will define

(2.3b)

(b)

k)

FIG. 1. (a) Four'. -scalar vertex computed froin Zl.
(b) Lowest-order Feynman graph describing scalar-
scalar scattering. The wavy line represents the gravi-
ton.

Here, T'"(x), given by

T'"(x) -=-,'[s'y(x)&"y(x) -&q""s q(x)& q(x)],
(2.2)

is the scalar stress tensor, computed in the usual
manner from the free part of the Lagrangian R~.
In our notation
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(l)g —g + (l)gF Iy

)g —g[()T ( )j

(2.4a)

(2.4b)

any "barred" second-rank tensor. The bare cou-
pling constant go is assumed to be positive, and
has dimension (mass) ~. The external source for
the stress tensor J„„(x)has been introduced for
convenience; after all calculations the limit
J„„-0will be taken.

Unlike the Nambu-type theories mentioned pre-
viously, ' ' ' the interaction here may be iterated,
A new stress tensor, "'T""(x), may be computed
from the full Lagrangian (2.1). This tensor is then
used to define a new Lagrangian,

and the process is repeated; the stress-tensor
self-coupling reflects the essential nonlinearity
of the gravitational interaction. In general
'"'T""(x) goes as (&y)'". Since, as will be, shown,
the gravitational field operator goes as (By)', this
nonlinearity gives rise to 2-scalar-n-graviton
vertices.

A stress tensor && stress tensor self-coupling is
the obvious generalization of Bjorken's current
x current interaction. However, we have chosen
the coupling to be T„„T'"rather than T„„T'"in
order that the four-scalar vertex derived from
2», I'(k„kf, k„k,'), shown in Fig. 1(a), and written
as

I

r(k„k,', k„k,')=(2v)'6'(k, +k, -k,' k,')[(k, k,)(k,' k,')+(k, k,')(k, 'k,')-(k, k,')(k, k,')], (2.6)

iS used to calculate the functional Schwinger-Dyson (SD) equation for

1 (b, out I T(y(x) y( y)) I b, in)»
i (b, out I b, in)»

the scalar two-point function. The superscript J indicates the VEV's are taken in the presence of the ex-
ternal source. The two-point function satisfies

~

~

~ ~[tt„„(igt,„(x)+Z„„( )x)—] "x" x (ig t ()+xg( „)„)x"-xtg tx„„(
)

x" ig t „„( )
x'x IG(xy)=-()'(x —y),

(2. I)

(2.8)
where we have defined

has the same tensor structure as the lowest-order Feynman graph, shown in Fig. 1(b), describing scalar-
scalar scattering via one-graviton exchange in the QGR coupled (scalar) matter-gravity system.

The field equation satisfied by y(x),

i [p„„-(g,T„„(x)+ 8 „(x))J~"S" —~"(g,T„„(x)+J„„(x))~'jy(x)= 0, (2.6)

1 ( b, out I T(T,„(x))I b, in)»
i (b, out I b, in)»

and the T symbol denotes the usual time ordering.
The corresponding SD equation in QGR is easily computed. One finds

[t) —(xg'„„(x)„)x„]x"x"—x"(xh'„„(x))xs"-tx" „8"-i „ tt"x"IG(x,y)=-()'(x-y). .~ ~

~

(2.9)

(2.10)

Here,

(
—

( )» (0, out I T(hg„(x))10, in)
(0, out I 0, in)» (2.11)

hg„(x) is the fundamental quantum field associated
with the graviton, and the constant a with dimen-
sion (mass) ' is related to Newton's constant G
through tP= 32m G The vacuum s. tates ~0, in), and
(0, out~ are the usually defined Lorentz-invariant
states.

To lowest order in ~ the two systems are formal-
ly identical if we make the identification

ig,t„„(x)+ J'„„(x)= (zh„„(x))»', (2.12a)

or

ig, t„„(x)+ J,„(x)= ([(:h„„(x)) (2.12b)

—= c„„&0, (2.13)

with &„„aconstant tensor, thus ensuring that
vacuum translation invarianee is maintained.
Self-consistency is ensured by requiring

that is, we identify the VEV of the scalar stress
tensor taken between broken vacuum states with
the "normal" VEV of the graviton field.

The theory is, to.be solved subject to the, sym-i
metry-breaking condition

(b, out I T(T„„(x))lb, in)» .

(b, out I b, in)»
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(0, out I T(T„„(x))l 0, in)
(0, out l0, in)~

(2.15)

I

with C a (possibly divergent} constant. In the follow-
ing, T„„(x)will everywherebe replacedby: T„„(x}:,

(0, out I T(T„„(x)}10,in)~

(O~outl0q ln) Jy,v=0

(2.16)

It is seen that the VEV of:T„„(x):taken with re-
spect to the broken vacuum vanishes as b)- 0).
Since the expectation of the gravitational field is
associated with the VEV of:T „(x):, gravitational
effects vanish in the absence of symmetry break-
ing.

HI. GRAVITON PROPAGATOR AND VERTEX FUNCTIONS

We seek a lowest-order solution to (2.8) which
respects the symmetry-breaking condition (2.13).
Higher-order corrections will be calculated per-
turbatively about this solution.

To this end, we write G(x, y) as a power series
in a parameter E:

G(x, y) = G'"(x, y)+&G")(x,y)+ e'G(2)(x, y)

(2.14)

that is, the VEV of T„„(x) is written as a function
of the scalar two-point function, as determined
from the Schu)inger Dyso-n equation

In the evaluation of the VEV of the scalar stress
tensor a form of "partial regularization" is re-
quired to ensure that only the contribution due to
the breaking of vacuum Lorentz invariance is in-
cluded as-a gravitational effect. The VEV of
T„„(x},taken with respect to the Lorentz-invari-
ant vacuum 0), need not vanish. Lorentz invari-
ance will be maintained if

The first approximation to the scalar propagator
is obtained by evaluating (3.2) in the J„„-0limit.
In momentum space the propagator i.s given by

(0)' '" "-=k ~.,k.k" (3.4)

d eG '(x, e)G(x, y)=5 (x-y),

we may express the functional derivatives of
G'"(x, y) appearing in (3.3) in terms of the varia-
tions of G"' '(x, y); these may be calculated from
the zeroth-order Schwinger-Dyson equation (3.2).
The result is

G"'(k) „„,= (xh(,'„')' ~, ,G'."(k)k"k"G'"(k)

+ G"'(k)Z"'(k) G"'(k) (3 6a)

d'
Z' (k) =—ig() (2 )4 [aq ~k (k —q) -k (k -q)~]

and describes a massless scalar propagating in a
constant gravitational potential. A constant po-
tential produces no physical effects. In obtaining
(3.4) use has been made of the symmetry-breaking
condition (2.13). Combining (2.14) and (3.4} allows
the constraint condition to be cast in the momen--
tum-space form

d'a 1
~vv 2igo (2&)+kv v k2 ~ knk() kv.

As in all theories of the Nambu-type, the con-
straint or "gap equation" involves a divergent in-
tegral, introducing the question of a cutoff. ' We
leave as an open question whether an actual cut-
off A shall be imposed. One possible heuristic in-
terpretation is that as A- the coupling constant
go 0 in such a way that a weak-coupling s ingular-
ity exists, and (3.5} is satisfied.

We now turn to the calculation of the perturba-
tive corrections to the scalar propagator. Noting
that

+ ~ ~ ~ ~ (3 1) x Dg~)~„„(q)[2))"vk ~ (k q) k"(k q)"]
all functions of the scalar propagator are expanded
similarly. Also, we assume that the functional
derivatives, appearing in the SD equation are of
first order in c.' At the end of the calculation &

may be set equal to, unity. Collecting terms, we
find to zeroth order

( [)) (xh(0)(x))J]sv ()v ()v (xh(0) (x)}cTsv}G(0)(x y)

= —6 (x -y), (3.2)

while to first order in &,

( [)) ()(h(0)(x))z]()v()v ()v(&h(0)(x))J'()v], Go)(x

x G")(k —q}, (3.6b)

and we have defined the lowest-order "graviton
propagator" D(~)~„„(x,y) by

D~(0)~„„(x,y) =-
6

—„, , [ig,7'(o~)(x) + J ~(x)]EnBnv s 6 v( y)
0 nB

(3.7)

Up to constants, Z"'(k) is identical in structure
to the (lowest order in n) gravitational radiative
corrections to the scalar propagator; the scalar-
graviton vertices, which will be defined formally
in the following, are identical to those obtained in
QGR. The momentum-space version of Z"'(k). is
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k - k q k

FIG. 2. Lowest-order perturbative correction to the
scalar propagator. (a) (c)

shown graphically in Fig. 2.
A formal solution for the graviton propagator

may now be obtained. As before, we use the SD
equation to evaluate the functional derivative ap-
pearing in (3.I), and find

D~.)&)„„(q)= .' ()I —„&I,„+)I.„n,„)I,)-I„„)

(3.8a)

II"""(q)—= 2ig G"'(k)G"'(k —q)(2v)4

x k (k —q)~[k'(k —q)"

——,')I'"k (k —q)].
(3.8b)

II"z)1"(q) is, to this order, the graviton self-
energy. It has the QGR structure of a scalar loop
with a graviton vertex at one end and a vertex for
a "barred" graviton at the other.

In an earlier work discussing the possibility of
describing the graviton as a Goldstone boson,
Phillips" assumes (3.8a) as a starting point"; we
have shown how it may arise as a consequence of
a particular self-interaction, as well as deriving
a specific form for the graviton self-energy.

Differentiating the constraint condition (3.5) with
respect to &"" results in

FIG. 3. Lowest-order graviton self-energy diagrams
in QGH, : (a) scalar loop, (b) seagull, (c) tadpole.

I'„'„'(k,p, q) = «(2«)'5'(k+ P + q)

x (2))„„k p —k„p„), (3.13)

which is identical to the corresponding vertex
found in QGR. The ))&1 vertices arise only when

(a) (0)
rp. v (k.P.q)

photon vacuum polarization tensor. No such con-'
dition qu'il„~(q) = 0 holds in QGR; rather, gravita-
tional gauge invariance merely provides a relation
between the three lowest-order graviton self-en-
ergy graphs,

'
the scalar loop, seagull, and tad-

pole, "shown in Fig. 3.
The vertices of the theory are defined in the

usual manner. The 2-scalar-n-graviton vertex
is given formally by

(e) (h)"
/Ilgwu ~ ol&)( 0 3 0 ll 2P ! ll)

5(k„„(,)&' "5(k ( .)&'

For n= 1 the expression is trivially evaluated. To
lowest order, the momentum-space version,
shown in Fig. 4(a), is given by

11(1)x)(0) (5x 5) + 5) 5x) .

thus

L)(')g„„(0)=-,'()I „)I&)„+)I„)I8, n&))I,.)-

(3.9)

(3.10)

(b)

g -00

and D~("~„„(q)possesses a pole at q = 0.
In Ref. 10 the conditions under which an expres-

sion of the form (3.8) may be inverted are dis-
cussed. All those conditions are not met by the
graviton self-energy derived here. However,
there is no reason to believe that the "gauge con-
dition" required by Phillips, i.e. ,

Xy~ e8

~going

go-o

qu [Il &1)ns(q) 11(1)e&)(0)] 0 (3.11)

must be obeyed. This was chosen to correspond
to the condition derived by Bjorken, ' q" [II'„'„'(q)
-II„"„'(0)]=0,which in his model is analogous to
the QED condition q"II„„(q)= 0, where II„„(q) is the

FIG. 4. (a) Lowest-order scalar-graviton vertex.
All momenta are incoming. (b) The first two polygon
diagrams which are identified with the &-graviton ver-
tices.
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the interaction term in the Lagrangian is iterated,
as discussed in Sec. II.

The n-graviton vertices are defined similarly.
We have

h)~ ~g vv xy v5(+s 1 t ~1& ~2y ' ' ' s ~n 2)

&" Di slav(&&y)

&(h~y(z, )) &(h„(z,))~ ~„„,' (3.14)

The three-graviton vertex is easily calculated;
we find a three-scalar triangle diagram. A3l

n~ 3 vertices are given by "polygon" dia-
grams, the first two of which are shown in

Fig. 4(b). A)l are guartically divergent, and con-
tain one factor of go. As discussed previously,
the coupling constant can be thought of as "ab-
sorbing" the quartic divergence as g, -0, result-
ing in finite n-graviton vertices.

IV. DISCUSSION AND SUMMARY

We have shown that a self-coupled scalar theory,
when solved subject to a self-consistent constraint,
generates the structure present in the coupled
gravity-matter system Ten.sor bound states
emerge, which couple to the scalars in the usual
gravitational manner, and to themselves. These
bound states produce radiative corrections to the
scalar propagator having the same form as gravi-
tational radiative corrections, while the formal
expression obtained for the bound-state graviton
propagator exhibits a q= 0 pole, and possesses the
same tensor structure as the QGR propagator
written in the harmonic gauge.

The self-consistency condition quarantees that
the leading quartic divergence in the graviton self-

energy is absorbed, thus leaving at worst only
quadratic divergences, as assumed in Ref. 10.
However, the form of the self-energy generated
here differs from that which was assumed by
Phillips.

Owing to the presence of two methods of expan-
sion in the pairing model, the iteration of the in-
teraction, and the "E expansion" employed in
solving the theory, the expression for the lowest-
order graviton self-energy obtained here differs
from that in QGR. Only the scalar loop is present;
the seagull and tadpole terms do not arise to low-
est order in each expansion. Whether this formal
simplification results in any headway being made
on the problem of renormalization is left for a
later work.

As in the Bjorken model, we have assumed here
that vacuum Lorentz invariance is broken. How-
ever, as in that model, the symmetry-breaking
condition may be considered as a gauge condition
on the bound-state "gauge" field; the lack of
Lorentz invariance is only a matter of interpreta-
tion, and is not observable in any physical pro-
cess.
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