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Geometrical gauge theory of gravity and elementary particle forces
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The basic forces of nature, mediated by spin-one and spin-two particles, are unified within a geometrical
'gauge theory. Gravity, electromagnetism, and strong forces are described by two nonsymmetric fields g~,
and s„„.Field equations are derived from a variational principle. The field equations possess an exact (classical)t
nonsingular solution that. corresponds to a geometrical object called a gheon (gravitational-hadronic-
electromagnetic entity). Space inside a gheon is Euclidean four-dimensional and a gheon can have event
horizons. The gheons describe hadrons and at the classical level permanently confine quarks. The event
horizons trap normal hadrons and can also i'adiate them, producing a thermal hadronic spectrum. There
exists a limit in which the field-equations reduce to Einstein-Maxwell equations. In this limit, the gheons
shrink to point singularities. By matching the bound'ary conditions of the solutions of a scalar field equation
on the surface of a gheon, a discrete mass spectrum for a scalar particle is obtained. A ha'dronic mass
formula of the Gell-Mann-Okubo type is derived for an isolated black gheon. .

'. ' t

I, , INTRODUCTION

Even though gravity is the weakest force in na-
ture it satisfies the principle of equivalence which
distinguishes it from all other known, forces at the
macroscoyic level. This principle is contained in
the mathematical statement that gravity couples to
the ener gy-momentum tensor. The gravitational
forces acting oh matter are always positive and for
macroscopic regions they add up to dominate all
other forces. Another feature of gravity, shared
by the electromagnetic field, is that the field
quanta (gravitons) are massless; the forces are
of infinite range. Partof the strongforces thatacton
hadronic quark matter are mediated by massless
spin-2' quanta, which possess the universal pro-
perty that they couple to the energy-momentum
tensor. The spin-2' strong forces satisfy a prin-
ciple of equivalence which is weaker than that ap-
plicable to gravity in that it only applies to hadron-
ic matter. This principle could play an important-
role in. our search for a unified description of for-
ces.

The universal property of gravity is mathemat-
ically described bp a theory based on Riemanni;an
geometry The st.rength of gravity is measured by
the magnitude of the curvature at a given point in
space-time. In analogy to this one might suspect
that the spin-2' strong interactions will also be
described by a geometrical theory, founded on
Riemannian geometry; the strength of the strong
force woqld be determined by the magnitude of a
curvature tensor. An extended theory of gravita--
tion has been developed, using non-Riemannian
geometry, which combines gravity and electro-
magnetism in a Hermitian nonsymmetric tensor
field g„„.' ' The basic gauge invariance of the
Lagrangian density of the theory leads to the gauge

invariances of .gravity and electromagnetism. .'
We shall formulate in the following an extension

of the above theory to include strong interactions,
mediated by massless spin-2' and -I gauge
fieMs. The strong spin-2' fi.eMs couple to the en-
ergy-momentum tensor of hadronic matter,
directly affecting the metric of space-time at dis-
tances of the order of hadronic Compton wave-
lengths.

Why should we describe the electromagne'tie,
strong, and weak interactions by something as
complicated as a set of differential equations
based on non-Riemannian geometry? We recall
that to describe gravity successfully, Einstein
used ten field components (the Riemannian metric
tensor). In view of this, we cannot hope to obtain
a comprehensive description of the other forces
of nature in terms of a more economical structure.
After many years of search for the basic equa--
tions of strong interactions, we are still vari the
dark as to their precise nature. Only by using a
structurally complicated nonlinear theory, such
as that described in the following, can we hope to
attain a more profound microscopic. description of
matter.

A concentrated region of mass- can produce
gravitational fields so strong that neither light nor
anything else c'an escape. The matter can undergo
gravitational collapse and form a black hole. In
general relativity the matter shrinks to a point
singularity in finite proper time. In the general- .

ized theory, the presence of a static electric field
ensures that a geometricval singularity does' not
occur in physical four-dimensional space-time. 2

The singularity is not only hidden by possible
event horizons but also by a surface that forms a
natural boundary in space-time. The theory pro-
vides the ultimate "cosmic censorship, " for
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charged matter inside a sphere with a radius of
the Planck length LJ, = 1.6 x 10 "cm will repel all
test particles and no physical singula, rity can oc-
cur. The breakdown of physics at space-time
singularities in the beginning of the universe or in
the collapse of burnt-out stars can be- avoided.

The origin of the confinement of quarks has been
the subject of much investigation in recent years.
The conventional picture of color confinement is
based on the assumption that the strong color
gauge group SU(3), represents an exact symmetry
of nature; the electrically neutral massless gluons
produce long-range forces, accompanied by infra-
red effects. These effects are presumed to be so
singular that infinitely rising long-range forces
build up, permanently confining quarks and gluons
inside color-singlet hadronic states. It has not
been proved that this conjecture leadsr to exact
(or partial) confinement within the context of non-
Abelian (Yang-Mills) theories. Perturbation cal-
culations reveal that the infrared behavior of the
non-Abelian gauge theories is not more singular
than that of the familiar Abelian gauge theory of
quantum electrodynamics. Thus perturbation
theory does not appear to lead to a mechanism of
confinement of quarks. Efforts have recently been
devoted to deriving confinement from nonpertur-
bative semiclassical methods. So far no conclus-
ive results have been obtained. '

In the unified theory formulated here two possible
schemes may be considered:

(I) We view the geometry of space-time as an
"arena. " The quarks are present in the geome-
trical theory to generate the spectroscopy of
particles. Quark confinement would have a geo-
metrical origin.

(H) The structure of particles and particle spec-
troscopy would originate from a purely geometri-
cal theory. of spacetime. The quarks would be re-
placed by a geomet ical explanation of particles.

In developing a unified theory we shall have both
of these possibilities in mind although we shall
concentrate, at present, on the less ambitious ap-
proach I.

Isham, Salam, and Strathdee' ' have introduced
the idea of a "strong-gravity" theory of massive
spin-2' particles. The event horizons of the
strong-gravity black holes trap the color quarks
and gluons; a particle that once gets inside the
event horizons cannot escape and is confined at
the classical level.

In the theory presented here, the spin 1 and
spin-2 particles are unified in a geometrical gauge
scheme, leading to (classical) rigorous solitonlike
solutions which describe particles as extended
objects, confining quarks and gluons exactly. The
origin in the spherically symmetric solution is en-

II. THE FIELD EQUATIONS

The field structure which describes the spin-1
and spin-2 particles is based on two Hermitian
(complex) nonsymmetric fields g» and s». We
w rate"

guv 8(uv) +R[uv]-~

su~ =s(u» +s&u
(2.1)

Associated with the gu„and su, tensors are two
(Hermitian) nonsymmetric affine connections

closed in a sphere 8 inside which space is Eucli-
dean with signature -4. The generalized curva-
ture tensor and its invari;ass are fi;nite on the sur-
face of S. The physical energy-momentum tensor
is finite. We call these objects gheons' (gravita-
tional-hadronic-electromagnetic entities) and they

, are the size of hadrons. At the classical level the
quarks residing inside the gheons are permanently
confined. Leptons can penetrate the gheons,
for they do not interact strongly with hadrons.

The gheons can possess black-hole event hori-
zons which also confine ordinary hadrons, pro-
vided certain physical conditions are met. These
event horizons may radiate' "' with a hadronic
temperature given by (4mk~T) ' =R, where 8 is the
radius of the event horizon and k~ is Boltzmann's
constant.

The unified theory also offers the possibility of
an explanation of the discreteness of hadronic mat-
ter. In conventional quantum field theories, form-
ulated in flat Minkowski space-time, the masses
of particles occur as arbitrary parameters; the
representations of the Lorentz group describe
continuous distributions of matter. In the unified
theory a matching of boundary conditions on the
surface of gheons leads to a discrete mass spec-
trum.

The results presented are mainly classical or
semiclassical and a quantum picture of gheons re-
mains to be formulated e.g. in terms of the Feyn-
man path-integral method. ' The possibility of
quantizing the theory in a flat space-time leads to
a more immediate way of performing calculations.
But many of the most important features of the
nonlinear theory would be lost. A purely geome-
trical theory with a curved space-time still seems
to be at odds with quantum theory, a problem of
concern for modern physics. Since the classical
solutions are nonsingular, it is hoped that the
quantized version of the theory is already finite
with a cutoff for gravity 1//G„~ 10" GeV, for
weak interactions 1/VGz -—10' GeV, and for strong
interactions 1jIG, = 1 GeV. The cutoffs would be
dynamical consequences of the theory, arising
from the geometrical structure of space-time.
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I' ~„(g) and r~„(s). The F„"„(g)and F„"„(s)can be
expressed in terms of the connections W„„(g)and

W„"„(s)by means of the projective transforma-
tions'-

r „"„(g)=w„'„(g) +-,'6„'w„(g),
Fk ( ) Wx ( ) 26)(w ( )

(2.2)

where W„(g}and W„(s) are purely imaginary vec-
tors defined by

w, (g) = —.[w.'.(g) —w'.„(g)],
w, (s) =-,'[w,.(s)-w'.„(s)].

It follows from (2.2) that

r„(g)-=rg, ] (g) =0,
I'„(s)—= r&p ](s)=0.

(2.8)

(2.4)

The contravariant tensors g"" and s"" are re-
lated to the covariant tensors g„, and s„„by

g""s..=g'"g..= &".

s""s = s""s = 5"av vo a ~

(2.5)

The contracted curvature tensors formed from the
(non-Hermitian) connections W„„(g)and W„"„(s)
are given by

z„„(g)=s,w„'. (g) —8„ws~(g)

Here GN is the Newtonian gravitational constant
GN =6.6 ~10 "Gev ', and G, is the strong coupling
constant for the spin-2' gluons interacting with
quarks where G, = 1 GeV '. The purely imaginary
constants k~ and k, are denoted by k~ =in~ and

k, =i«, where «s =Gs/e and «, = G, /g; the con-
stants e and g are the electric charge and the
gluon coupling constant, respectively.

We have not taken the weak interactions ex-
plicitly into account in the Lagrangi. an density.
The formalism for doing this will be presented
elsewhere. " The fundamental length associated
with the weak interactions is MG = L~ = 6 x 10 "
cm. For gravity it is the Planck length VG„=Lp
=1.6~10 "cm, while for strong spin-2' forces
it is uG, =L,=2xlo '4 cm.

The Lagrangian densities (2.9) and (2.10) will
yield free-field equations. They can readily be
extended to include the energy-momentum tensors
T „„(hadrons) and T„,(leptons).

The field equations obtained from the independent
variations of g„„, s„„W„"„(g),and W„„(s)are'

,(v'- ")+l- "r.„( )+~ r",.(g)

-4-gg"'r&„.)(g) =0, (2.11)

8),(v'-ss"") +0'-ss" I'",„(s)+4-ss" 'I q, (s)

-V'-ssp" r& )(s) =O, (2.12)
—W~, (g)wp &)(g) +W~&((g)w"„„(g),

Z„,(s) =8&)wps„(s) —8,W88(s)

—W~„(s)W ps(s) +W~ &)(s)w p„(s) .

(2.6)

The field equations are derived from the La-
grangian density

There are also contracted curvature tensors com-
posed of the connections I'„"„(g) and r„'„(s):

R„„(g)=8 r„„(g)-s„r(„)(g)
—r„„(g)r„(g)+r( )(g)r„„(g),

(2.7)

R „„(s)= 8,r„'„(s)—8„r&'p N(s)

—r8, (s)r"„&((s)+ r«)) (s)r"„„(s).

*R„„(g)=R„,(g)+—k," I„,(g),

and

4wG,*R„„(s)=R„„(s}+,' I„„(s),
S

8„(S-gg&P"])= o,
8„(4:ss&p"])=0,

P„„(g)=0,
Pp„(s) =0 .
The Hermitian tensor P„, is given by

P~ = *R
p„+3 (8 p

W„-8 ~ Wp ),
where

(2.13)

(2.14}

(2.16)

(2.16)

(2.i7)

(2.18)

(2.i9)

Z =2~+2, ,

where

(2.8)

1 4~GN [pv]&p ((((+, g gi.„])W C

(2.9)

Ipv(g) = —(gpog gpv+2 g((vggpg +g&pu]} i
[fIP ] [ap]

(2.2o)

Ip (( (S)= (S((~S Sp((+ ps py S ps + S&pp])
[fy p] [ap]

The fie]d equations (2.11) and (2.12) can be re-
duced to the alternative forms

1
p v 4WGg ' [pv]Z. =((( ~s s K„„(s)+ ~, s sf„„i)I'Q

S

(2.io)

8 yg((( gg( Fp x(g} gpoI x~ (g) = 0,

8 qs„,—s,„I'„„(s)—s„r),„(s)= 0 .

(2.21)

(2.22)
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III. THE LIMIT k = k, = 0 AND THE GEOMETRICAL

INTERPRETATION OF STRONG INTERACTIONS

We shall adopt the physical identifications

g.
l p p ] k QFp p (3.1)

and .

s{„„)=k,f„„ (3.2)

where F„'„and f„, characterize the electromag-
netic and gluon spin-1" gauge fields, re-
spectively. The tensors g&„„,and s,„„&describe
the gravitational and strong spin-2 fields,
respectively.

In the limit ko = 0, we get from (2.13}, (2.15),
and (2.21) the set of Einstein-Maxwell equations"

I

fa&
@ 'Ag(p, p) g(ap) 4 pXIg g(pa) 4 Xprg (3.3)

s, (f-g F"')=0,

G„,(g) = SwG„T„„(F),
81 (yFpp] 0

(3.4)

(3 6)

(3.6)

Here
(Xa) g

pvrs 2 g '{Sv@»a) +S» g{va) Sog(pv) ) (3.7)

(3.6)

Moreover, T„„(F)is the Maxwell stress-energy-
momentum tensor

(3 9}To (F} -Fo»Fo„+sg(—». ):Fo{)F,
In the limit k, =0, the equations (2.14), (2.16), and

(2.22). become

When half-integer-spin fields are present in the
Lagrangian density, we must rewrite the equa-
tions using a (complex) vierbein formalism. "

The Lagrangian density is invariant under
groups of local gauge transformations. When g is
reformulated in terms of vie&bein fields, it can
be shown to be invariant under the group of unitary
(local) g'auge transformations of U(3, 1}, which
contains U(1) 8O(3,1)." The Lagrangian density
2 will be invariant under the transformations of
U(3, 1)~8U(3, 1)s s The theory can be extended to
an SU(ri) scheme"' 's and the Lagrangian density
made invariant under U(l)8SU(2) or U(1)8SU(2)
80(3, 1) non-Abelian gauge transformations. This
opens the door to including weak interactions,
mediated by the W' and the Z' partner of the pho-
ton which would acquire masses through a Higgs-
type spontaneous-symmetry-breaking term in the
Lagrangian.

Sxs(»v) S(ov) II »k)s S(»o) ( x~v}s 0 i

e„(4-sf"")=0,

G„„(s)=8({G,T„„(f),

6 [ofpv)

(3,10)

(3.11)

(3.12)

(3.13)

The definitions of {&„), and G„,(s) follow from re-
placing g(„„) in (3.7) by s(„„) and („„)s in (3.8) by

(„,j, , respectively. Moreover, T„„(f}is now the
Maxwell stress tensor with F» replaced by f„,.
In terms of the identifications'

)
12){G»

(3.14)

8

Eqs. (3;6) and (3.13) correspond to the equations

Fqp =. BpAp -8 p A. p,

tv= a»Bv Bv Bp ~

(3.16)

ds = sp dx 4x ~ (3.16)

When the weak interactions are explicitly in-
cluded, it would be advantageous to introduce
Higgs-type spontaneous-symmetry-breaking
terms, This would allow us to preserve the geo-
metrical interpretation of the theory for nonzero
massive quanta.

The physical content of our geometrical reali-
zation of the theory is this: Gravity couples uni. -
versally to all matter with the coupling strength
t"„, while the massless spin-2' strong gluon for-
ces couple universally to all hadronic matter with
the coupling strength G, . Hadrons do not couple
to leptons via strong forces, but the leptons do
experience. gravitational and electromagnetic inter-
actions. The forces manifest themselves through '

the curvature of space-time. The gravitational
influence on geometry is universal: All matter is
affected by the gravitational metric tenso'r g(„,).
Lepton test particles are not affected by the "had-
ronic" metric tensor s(„„). This kind of "geo-
metrical selectivity" will be a consequence of cer-
tain symmetries satisfied by the geometrical
structure of space-time. The distortion of flat
space-time due to gravity will be dominant at
macroscopic distances and contribute significantly
at microscopic distances of the order of the
Planck length L,~=1.6x10 "cm. At distances of
the order of hadronic Compton wavelengths I,
=10 ' cm, g(&„)

-—g&„where g&„ is the Minkowski
metric tensor )7o „=diag (-1,-1,-1,1). In this do-
main, the metric of space-time is given by
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IV. EXACT CLASSICAL SOLUTIONS AND THE STRUCTURE

OF GHEONS

F„=e/r' . (4.5)

We shall now consider the rigorous solutions
that can be obtained from the field equations. The
exact spherically symmetric solution of the field
equations has been studied in detai. l.'

Let us first treat the limiting case G„=O and

e = 0 when g~„,~
—-g„, and g&&„j——0. Then the solu-

tion of the field equations (2.14), (2.16), and (2.22)
gives

2 2 2

ds'= 1
2G, m

+ 4mG, e., 1 a, e,
r r'

2G, m 4&G, e,'

(4.1)
where e, is the total strong gluon charge and

dO' =d8'+sin'MQ' . (4.2)

The only nonvanishing components of f„„are

For r & L~ the quantity —(ds') & 0 and inside a
small sphere S~ with radius r = L& space is Eucli-
dean four-dimensional. These tiny "space holes"
correspond to fractionally charged quarks and they
repel all leptonic test particles (gravitational re-
pulsion). The quarks owe their existence to the
geometrical structure of the exact solution.

We call the complete geometrical object a gheon. '
They are nonsingular solutions of the field equa-
tions. When the constants A~ and k, tend to zero,
the gheons shrink to point singularities. Two
gheons can collide and coalesce, representing
e.g. vN or NN scattering.

The exact solution for a gheon also possesses
black-hole event horizons. The hadronic solution
falls into three classes:

(1) 4wG, e,'& G,'m'. The event horizons occur at

R, = G, m& (G,'m2 —4wG, e,')'i2 . (4.6)

1e
14 r2 (4.8)

(2) 4wG, e,'=G, 'm'. There is only one event
horizon occurring at

As expected, the Abelian solution is of long-range
form. We anticipate that even in the nonclassical
limit, vghen quantum effects are taken into ac-
count, the basic features of the solution will be
pr eserved.

The metric (4.1) corresponds to a spinless par-
ticle. Solutions of the Kerr-Newman type for
spinning particles could be obtained from the field
equations and attempts in this direction have al-
ready been made. "

When L, & x the quantity -(ds') & 0. Inside a
sphere S~ of radius r = L, space is Euclidean four-
dimensional. This idealized spherical entity des-
cribes a hadron. Quarks axe Permanently confined
inside S„. The group of local coordinate trans-
formations within S„ is O(4) isomorphic to SU(2)
IS SU(2). Only spacelike (classical) orbits occur
inside SH.

A lepton is a test particle that can penetrate the
surface of SH, because it does not "see" this
hadronic surface (parton model). If we ignore at
very small distances of order L~ =1.6 @10 "cm
the hadronic forces and set s~„,~ —-q„, and st.„,~
= 0, then from the field equations (2.13), (2.15),
and (2.21) we get the metric' '

d — 1
2G"M 4mG„e'

1 — dt 'ds~= 1 — —+r r2 r4

Gsm . (4 7)

2wkwT =4w(R —G, m)A, ',
where

A, =4w[G m+(G 'm' —G e ')' ']'

(4.8)

(4.9)

is the area of the black gheon. Case (2) has a zero
temperature and there is no thermal radiation of
hadrons. Case (3) describes a "naked" gheon,
while case (1) can describe a fireball or cluster
of hadrons, produced in w-N or N-N collisions,
which radiates normal hadrons with a thermal
spectrum. '

It can be shown that

Q 2

4mk T= ' 1— (4.10)

(3) 4wG, e,'&G, 'm. ' . In this case there are no
event horizons.

The maximal analytic extension of the solution
to Kruskal-type coordinates has been found. "
Nonsingular physical space-time is represented
by two submanifolds which p.re time-reversed
images of one another, joined together by a
branch point at r = L,. There is a natural boundary
at r = L, which forms a surface of confinement for
the quarks.

In solution (1) above the temperature is given by'

Moreover,

1 —2G,v M +4wGxe' dr~ —~dQr r'

(4 4)

When r =VG~ the hadronic temperature T =0,
leading to a stable hadron such as the proton.

An important difference between the solitonlike
gheons described here and the solutions occurring
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in pure strong-gravity theories' is that light
quarks cannot be radiated by event horizons, for
they are perman'ently trapped (in the classical
theory} inside the gheon spheres S„. This is a
difference in principle between the two possible
theories. If quarks are @«&p, then they will not
in any case appear in the hadronic thermal spec-
trum of pure strong-gravity theories.

V. SOLUTIONS DESCRIBING DISCRETE HADRONIC

MATTER

( '+v')0=o,
where

(5.1)

8=——V2= 2
r)t 2 (5.2)

This equation is locally valid in the gheon solution
for r&L,. For r &L, we have

The gheon as a geometrical stable particle could
yield an understanding of the nature of the dis-
creteness of hadronic matter and the hadronic
mass spectrum. To illustrate this, let us for sim-
plicity restrict ourselves to a calculation in a loc-
ally flat space. The problem reduces to matching
boundary conditions on the surface of S~.

The Klein-Gordon equation for a scalar field P
with rest mass p, in Minkowski space (with signa-
ture. -2) is given by

covariant equations for a gheon could lead to an
experimentally meaningful answer.

We can consider' the problem of the hadronic
mass spectrum from a different point of view by
studying further the black gheons. The total area
of the gheon can be related to its irreducible
(bare) mass m, by the equation

m =(A, /161r)' (5.8)

where A, is given by Eq. (4.9). m, is the mass
obtained after all the spin-I gluon strong charge
(and in general angular momentum} has been ex-
tracted from the black gheon. The physical mass
m of the black gheon is found by combining (4.9)
and (5.8) to give"

1

m =m, (l +-,'e,'), (5.9)
where we have set v'G, =1/m, . We now make the
identification of the total gluon charge, assuming
an SU(3} octet of 1 gluons,

(5.10)

in which I and Y are the SU(3) isospin and hyper
charge quantum numbers, respectively, and g' is
the square of the spin-I Yang-Mills gluon coupling
constant. Then using (5.10) in (5.9) we get a Gell-
Mann-Okubo type" meson mass formula for black
gh cons:

( '+u')~=0, (5.3) m =m, +-,'g'm, [I(I+1)--,'Y']. (5.11)

where

2
2

=—+V~
Bt2 (5.4)

The static spherically symmetric solutions of
(5.1) and (5.3) are

ne ""+pe"'

@sing,r+6 cosy.r
r

(5.5)

tang, I, = -I .
The solutions of (5.6} give

Ls g "ri+pg7T
q

3

(5.6}

(5.7}

where n=o, I, 2, . . . and they lead to a discrete
mass spectrum. "

These results cannot of course be expected to
generate an empirical mass spectrum, but it is
hoped that a matching of the solutions of the fully

where n, P, y, and 5 are arbitrary constants. We
set P =6 =0 to exclude the singularities at x=0 and

By matching the boundary conditions at r
= L, for Q and 4 and dQ/Ch, d4/Ch we find

For a rotating black gheon there would be an addi-
tional term in (5.11)depending on the total angular
momentum J. The mass formula can also be ex-
tended to SU(4), SU(5), etc. by using a more gen-
eral Casimir operator formula applicable to these
highe r internal-symmetry groups. "

VI. CONCLUSIONS

By adopting a Hermitian nonsymmetric two-ten-
sor field structure, we have succeeded in develop-
ing a theory that combines spin-1 and spin-2
gauge fields within a comprehensive mathematical
framework. The exact solitonlike solutions of the
field equations for the massless gauge fields are
nonsingular solutions (gheons) characterized by
two fundamental lengths L, -10 '4 cm and L~
-10 "cm. This brings the original generalized
theory of gravitation' into the realm of experi-
mental particle physics. The problem of quark
confinement is elegantly solved by using the struc-
ture of the gheons, determined by the field equa-
tions in the classical limit.

The laws governing the collapse of a massive
star and the structure of a hadron are described
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in the geometrical gauge theory by the same field
equations. The unified theory attempts to relate
macroscopic catastrophic phenomena such as the
collapse of "cold" stars with the microscopic
structure. of.matter and space-time, It is hoped
that with this kind of theory we can ultimately
achieve a purely geometrical description of the

small-scale as well as the large-scale structure
of the universe.
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