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We use a calculation based on the lowest order in the perturbation series for quantum
chromody~mics to obtain an estimate for the contribution of hard-scattering processes
involving vector gluons to the production of hadrons at large transverse momentum. Some
sinlple models for the distribution of gluons in a proton and for the distribution of hadrons
within a hard gluon jet are presented and used to calculate the process Pp 7) X. At
vs =53 GeV we find that the contribution of the subprocess qV qV is comparable to that of
qq qq. The resulting cross sections are rather close to the CERN ISR data in magnitude.
It is possible that small corrections arising, for example, from higher-order terms in the
perturbation expansion might lead to a detailed fit to these data. At higher energies, such
as those to be obtained in proposed new experimental facilities, our results indicate that
the mechanisms VV VV and qV qV may dominate over qq —qq in much of the access-
ible kinematic regime. We briefly consider some experimental consequences of possible
gluon dominance.

I. INTRODUCTION

Taking a liberal interpretation of the idea of
asymptotic freedom, me may hope that the usual
perturbation expansion can provide a guide to the
behavior of quantum chromodynamics (QCD) at
large momentum transfer. This speculation has
some interesting implications for the production
of hadrons at large p~, since the large transverse
momentum can arise from the hard interaction of
elementary constituents. Starting with the original
proposal of Berman, Bjorken, and Kogut, ' many
models have been constructed' ' in which the dom-
inant mechanism involves the scattering of quarks.
For example, in a previous paper we discuss how
the one-gluon-exchange approximation to qq - qq
could be normalized, and me estimated its contri-
bution to pp - ~'X at large p~. We found the con-
tribution of this mechanism to be slightly below
CERN ISR data at v s =53 GeV, p~ «6 GeV.

However, if QCD and perturbation theory are
indeed to be a guide to large-p~ production, it is
probably not sufficient to consider only a qq-qq
scattering mechanism. In addition to quarks,
hadrons are presumed to contain colored vector
gluons which can scatter off quarks or other gluons
in an approximately scale- invariant manner. The
presence of gluons explains why, in Ref. 6, we we
were careful to interpret the contribution of qq
-qq as a lower bound for the production of hadrons
at very large p~.

We would now like to be more thorough. We will
therefore systematically examine all the funda-
mental QCD processes which can contribute an
approximately scale- invar iant piece,

Ed'o f (Pr/Ms)
dp pp

to the invariant cross section. We calculate the
cross sections for the subprocesses qq - qq, qq -qq,
qq-qq, qV-qV, qV-qV, qq- VV, VV-qq, and
VV- VV (where V stands for vector gluon) to
lowest order in perturbation theory and use the
results in the hard-sca, ttering mod@. for pp- w'X.

This procedure should be. approximately correct
at very large momentum transfer where the ef-
fective quark-gluon coupling constant is small.

In order to calculate the contribution of gluonic
processes to the hard-scattering model for pp
-Ti'X, one must know the momentum distributions
of gluons and quarks within the proton and the
probability distribution for a. scattered gluon or
quark to produce a hadron. The necessary dis-
tributions for quarks can be measured in processes
involving leptons. For gluons we must resort
to indirect arguments and intuition based on sim-
ple theoretical models. Our results at ISR en-
ergies are somewhat sensitive to these distribu-
tions, and we therefore consider a range of pos-

sibilitiess.

Throughout this paper we mill be calculating to
lowest order in the QCD perturbation series. This
means that we will be ignoring a host of higher-
order correction terms which are not necessarily
small. We thus expect to find only an approximate
guide to the implications of QCD for high-p~ in-
clusive processes, and we do not expect, nor would
we believe, detailed fits to data resulting from
these lowest-order calculations. However, me
will find that this approach will yield cross sec-
tions which are close enough to the ISR data so
that one might hope that more detailed calculations
will provide an overall agreement with high-p~
data.

The plan of this paper is as follows: In Sec. II
we describe our estimates for the gluon distribu-
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tions. Section III considers the quark-gluon and

gluon-gluon scattering cross sections, and dis-
cusses some technical complications of gluon spin
sums and gauge invariance. In Sec. IV we pre-
sent our calculations using the hard-scattering
model for single-particle distr ibutions. This
section contains our main results. In Sec. V we
discuss some implication for future experiments
of gluon contributions to high-P~ production. For
the convenience of the reader, we include tmo

appendixes. The first contains the Feynman rules
for QCD and the calculation of the cross sections
we are considering. The second contains some
identities for SU(3) matrices useful in doing color
aver ag ing.

II. GLUONS IN THE PROTON

We w ish to calculate the contributions of pro-
cesses involving gluons to the hard-scattering
model for PP- nX, '
Ed'

(pp- sX)

1
~+a ~+b ~a /lb a b/P b

ab~cd

dz 60'
x -v D, &, (z) s —(ab —cd)

x 6(s+ t+ u), (2 l)

where the sum over partons (a, b, c, d) includes
gluons as well as quarks. The model will now
have ingredients which mere not discussed in Ref.
6. The cross sections dc/dt for processes in-
volving gluons will be presented in Sec. III and
Appendix A. Here we will discuss how to esti-
mate the probability, G«~(x), of finding a vector
gluon within a proton and the probability, D, &r(z),
for a gluon to decay into a pion.

Unlike the situation for the process qq-qq,
where the analogous distributions are reasonably
well known from measurements involving leptons,
we have to rely on models to obtain gluon distribu-
tions. We believe that the current theoretical
understanding of hadronic structure is not suf-
ficient to determine these distributions in detail
from first principles. So, following Aristotle's
precept that "a well schooled man is one who
searches for that degree of precision in each kind
of study which the nature of the subject at hand
admits, "we will examine several different models
for gluon distribution without worrying too much
about theoretical rigor.

The starting point for this exercise must cer-
tainly be the momentum sum rule. In a parton
model mith exact scaling me can define the total
fractional momentum carried by quarks and anti-
quarks in the proton to be be

1

( )„.„... = J d* ( ( ) &(*)~ s( )
0

+u (x)+ d(x)+ s(x)j, (2.2)

where u(x) = G„&~ (x), and we neglect tiny contribu-
tions from heavier quarks (c,f, b, ...). These
quark distributions can be measured in deep-
inelastic scattering, and in the Field-Feynman
analysis' of lepton data the terms in (2.2) are
summed to give

(x) „.„„,,„—= 0.5. (2.3)

The remainder of the proton's momentum must
be carried by neutral objects which do not couple
to the electromagnetic or weak currents. If we
identify these objects with vector gluons, we have
the constraint

f xG „)p (x ) dx = 0.5 .
0

(2.4)

Naive model for Gz/ (&)

For the first model, we follow the analysis of
Brodsky and Farrar' and of Blankenbecler and

In principle, scale-violating effects such as those
predicted' by QCD will give the normalization con-
dition (2.4) some logarithmic Q' dependence.
However, these corrections are related to higher-
order terms in the @CD perturbation series, and
thus may be sm311 if we confine our attention to
kinematic regimes where the quark-gluon coup-
ling constant, o.', (Q'), is small. Since we are
interested in getting a rough estimate of the rela-
tive size of gluon and quark contributions to large-
P~ production, we will, in the remainder of this
paper, neglect scaling violations in the distribution
functions of both quarks and gluons. We can there-
fore use (2.4) to normalize our models for the
gluon distribution function. We will keep an open
mind on the subject of scaling violations, how-
ever, as they may be important in getting detailed
fits to the data. ' '

The only problem remaining, therefore, is the
shape of the gluon distribution. Our initial as-
sumption is that the gluons are rapidly, perhaps
exponentially, damped in transverse momentum.
This approximately corresponds to having the
gluons coexist with the quarks within hadrons of
a finite size. We will not worry in any detail about
the nature of the transverse momentum cutoff. The
dependence on the x variable should, be believe,
follow the general rule that the gluon distribution
is softer than. a valence-quark distribution and
harder than a sea-antiquark distribution. Between
these extremes there is a great deal of leeway,
and we will demonstrate this by looking at specific
models.
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Brodsky' and describe the behavior of the con-
stituent distributions near x = 1 in terms of the

counting rules,

lim G, ( „(x)= c (1 x)'"e"' ', (2.6)
x~1

where n(aA) is the minimum number of elementary
constituents left behind in the aA system. For
quarks and gluons in the proton these assumptions

give

4 -(x &O.IS I
2

+ 3.28

G, i p (x) -c, (1 —x)' .

Gr(~(x}- cr(l —x)',

G;i~(x) - c, (1-x)'.
(2.6)

1.6(l-x} t 12.6x(l-x)7 5

Near x = 0, the behavior of distributions in the
parton model is often presumed to be related to
the Regge behavior of total cross sections. " If
0';„s ' then

lim G,g„(x)- cx (2.7)
x~0

Pomeron exchange, with at = 1, gives Feynman
scaling for inclusive cross sections and we assume
that

) (FIFLD-FEYNMAN)

I
I

0.2 0.4 0.6 0.8 I.O
X

FIG. 1. The three models for gluon distributions dis-
cussed in the text are displayed and compared with the
parametrization of Field and Feynman, Ref. 3, for a
valence-quark and a sea-antiquark distribution.

~vV
v p x (2.8)

carried by the three valence quarks, we can. write
an. "improved" form

In the absence of a more concrete model, we
can assume that there is a smooth interpolation
between (2.6) and (2.8) and write

G,")~(x) = 20x(l x)',

where the normalization is fixed by

(2.11)

Gv(~ (x) = —(1 x)',3
(2.9)

where we have used (2.4) to fix the normalization.
We compare this naive gluon distribution function
with the Field- Feynman parametrization for
G„&~ (x) and G-„&~(x) in Fig. 1.

G,",,', (x) = 6(x (2.10)

By putting in minimally connected gluon exchange
diagrams, as in Brodsky and Farrar, ' we modify
this distribution to a form which obeys the con-
stituent counting rules. If we still require at this
level of approximation that all the momentum is

Bremsstrahlung model for Gv(p(x)

We can also make a slightly more complicated
model. for the gluon distribution by utilizing some
of the concepts behind the constituent counting
rules. I et us suppress al.l flavor and spin degrees
of freedom and construct a simple picture of the
proton which illustrates the relation between val-
ence quarks, gluons, and the sea of quark-anti-
quark pairs.

In a zeroth-order picture a proton would consist
of three free quarks and the distribution for a
quark of color i would be

G,",)~ (x)dx = 1,

1

xG "' (x}dx= —'.
/p 3 ~

(2.12)

We can now take into account the probabil. ity that
one of the valence quarks can emit a virtual g)uon
through an internal "Bremsstrahlung" mechanism.
We again invoke the form of the constituent count-
ing rules to approximate the "irreducible" dis-
tribution of quarks and gluons as

l

x V~ /a;
(2.14)

1

G,',.'i'~(x} = nG,".i&(x)+ 2— dy g,',.'t, ,(x lv)G,"'~,( v) .
j x

(2.i5)

With the forms (2.12) and (2.13) the integrals can

g„ii, (x) =—P(1 x),

g "(, (x) = P (1 x),
where V&=ET',

& V, , with the T;, defined in Ap-
pendix B, is the gluon which changes color i to
color j. We can now write a second-level ap-
proximation where the proton contains both quarks
and gluons,
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be evaluated exa,ctly to give

G", ' (x) =P(1 x)',
G (2i~ (x) = 20)}«(1 x)'+ ' P(1 —x)'.

Conservation of momentum gives the constraint
)}—= 1 —8P/21. One of the limitations of this simple
approach is that if P is too large we will have g
& 0 and we will be able to find a range in which

G„)~(x)& 0.
%e do not yet have any antiquarks in the proton.

At the next level of approximation we can allow
a gluon to create a qq pair or to form another gluon

by bremsstrahlung. The constituent counting rules
allow us to write

lim O'„'~'„x 6',-'„'p x = 8, (2.27)

and the approximate form

G v(gp (x) = a(1 —x)'+ b
(3) , (1 —x)'

i' x
(2.28)

If we extract from the Field-Feynman parametri-
zation the condition

with momentum conservation giving the constraint
y=1 —~ P. Again, these expressions can only
be valid for small values of P. Two things we
might extract from (2.24) and (2.25) are the ratio
of the color-singlet distributions near x= 0,

g",', ( ( )«= g'," ( («)=&(I-x)

and

(2 17)
0.2

G-„ i ~ (x) — ', x - 0 (2.29}

~„„,()=(5,"5', )J3(I- ). (2.18)

where 5~& is the Kronecker 5. This gives still
another level of complexity to our proton distribu-
tion functions,

1(3) (1) (2)
G-, ~~, (x) ~Z dv g-, )~,((xly)G, (~, (y),

x
(2.19)

1

+ dy g,'(i,, («/y}G, ,i.(y» (2.20)

(3) (2) (1) (2)
G v(~~(«) = yG r((~ (x) + dyg v() r&(«/v)G r&g~(y)

X

Then (2.27) and (2.28) suggest the form

Gvg~ (x) =—12.6(1 —x)'+ 1.6 (1 —x)'
(2.30)

which is normalized using (2.4). This form is
also plotted in Fig. 1 and we will use it in our ca,l-
culations.

A virtue of this exercise is that, in addition to
providing another concrete model for our cal-
culations, it roughly demonstrates the relation
between the shape of the valence-quark distribu-
tion. , the gluon distribution, and the sea-anti-
quark distribution in a model with interactions
between gluons and quarks.

1

+ "Ygaie x&oetI

Inserting (2.17) and (2.16) into (2.19) yields

(s) 8, (1 —x}'
G -)y), (x) = —46

'
q IP 3 6

(2.21)

Bag-bremsstrahlung model for Gp (&
(&)

Another poss ible gluon distribution, suggested
by Politzer', "' has two components. One compo-
nent corresponds to bremsstrahlung of gluons
from valence quarks. In this model, if a valence-
quark distribution is approximated by

)( [I —x,F,(6, 1;7; 1 —x) ] . (2.22) «G, (~ (x) = a(1 x)', (2.31)

However, in the spirit of the approximations being
considered here we replace the hypergeometric
function by an asymptotic form

then the resulting gluons would have a distribution

- ~s«G(„'()~(«) =- —' a(1 x)'

«,F,(6, 1:7; 1 - x) =—1 —— + ~ ~ ~ (2.23)
1 (x- 1)
7 x = 0.15 a(1- x)'. (2.32)

(2.24)

This gives

8 P' (1-x)'
G,)q~ (x) —= ——

3 42
(3)

G r,(g, (x) = (~P+ ff n) (1 —x) '

16, 8, 1 (1 —x)'
+ —P'+ —ff' —,(2.25)3 3 42 x

(3)
G,, g (x) =—20)}'x(I «)'+ ' )ip(I «)

8 82 P~ (1 x)7
LS 3 l42 x

The other (muc'h larger) component comes from
the "bag" which we assume is made out of gluons.
If the bag diameter is -1.4 fm then the momen-
tum-space distribution will have width nP/P
= 0.15, where we have assumed that there is no
structure in the bag (i.e. , that it is as smooth as
possible). Thus motivated, we parametrize the
gluon distribution a,s

2

«Gvi~ (x) = 0.4(1 —x)'+ 3.2e " '"' (2.33)

where the normalization of the Gaussian is de-
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termined by the momentum integral condition

(2.4). This gluon distribution is also shown in Fig.
1. In this picture, the sea quarks would also have

a two-component distribution, but the power-law
tail in this case would be very tiny indeed.

One virtue of this model for the gluonic content
of the proton is that, in a sense, it represents an

extreme; the gluons have been made as soft as
possible. In the context of a hard-scattering
model, then, (2.33) may be though of as yielding
a minimal gluonic contribution to the hadronic pro-
cess which is being calculated.

In general, we wish to avoid being dogmatic
about how gluons are distributed in the proton.
We believe that the distributions we will use in

our calculation with the hard-scattering model. ,
(2.8), (2.29), and (2.33), represent a reasonable
variation in shape for this function. We are aware
that the arguments we have presented here involve

a good deal of guesswork. An attrictive alterna-
tive is that gluon distributions might be inferred
from data on the process pp- (g+ y)X. As dis-
cussed by Einhorn and Ellis," this would be
possible if the dominant production mechanism
were VV- y ()( =even-C, cc state) followed by the

decay y- Py. A specific calculation in the frame-
work of @CD which attempts to understand the
shape of the gluon distribution has been discussed
by Novikov et al."

Gluon decay distributions

The final piece of guesswork we must do con-
cerns the function D,o&«(z), which represents
the probability that a gluon jet gives a fraction
z of its momentum to a pion. We would not need
to know D,o«(z) if we were content to calculate
and compare with data for jet cross sections.
However, the best data from the CERN ISR at this
time are for single-particIe inclusive cross sec-
tions, and this will probably continue to be true
in the future. The extra "uncertainty*' in our cal-
culation attributable to including this function is
probably small compared to the experimental dif-
ficulties in measuring an appropriate jet cross
section.

We proceed as follows: We estimate that, as
with quark jets, approximately 5 of the momentum
of the gluon will eventually be carried by pions.
Because the gluon is a flavor isosinglet, this
momentum should be equally distributed among
m, n', and m, at least as z-1. The remaining
5 of the momentum will be allocated to K's and
baryon-antibaryon pairs in a way which need not
concern us here. A simple ansatz suggested by
the constituent-counting rules is

(2.34)

In order to test the calculation for sensitivity to
the form of the gluon decay function, we have also
calculated w'ith the distribution

(1 —z)'
D,og «(z) = (2.38)

The results we will present in Sec. IV are quite
insensitive to which of these forms we use, and

we will only present calculations using (2.34).
It is interesting to note here that gluon decay

functions may be experimentally accessible. If
current interpretations of the Okubo-Zweig-
Iizuka-rule-violating decays of the even-C charm-
onium states y are correct, the decays y- hadrons
can be viewed as proceeding through an inter-
mediate two-gluon mode. The distribution of
hadrons in the variable z„=2E„*/m„could therefore
give an indication of the shape of D,«(z).

Quark-gluon scattering

I et us see what this implies for the process
q(P, ) V(q, )-q(P, )V(q, ), where we temporarily sup-
press color degress of freedom. The amplitude
given in Eqs. (A10)-(A12') is of the form

~= Trav (3 1)
where cy and e, are the polarization vectors of
the gluons. One can easily verify the gauge in-
variance of the amplitude by checking that

(3.2)

III. SPIN SUMS AND GAUGE INVARIANCE FOR GLUON

CROSS SECTIONS

In order to deal with processes involving the
scattering of colored vector gluons within the
framework of the parton model, we need to known
the qua, rk-gluon and gluon-gluon scattering cross
sections. The lowest- order amplitudes for these
processes are easily obtained from the Feynman
rules of the gauge theory, ' and are given in Ap-
pendix A. We encounter, however, a technical
difficulty when we attempt to square the ampli-
tudes and perform the spin sums using standard
trace techniques. The origin of this problem in-
volves how we choose to deal with the longitudinal
polarizations of the gluons in the proton.

We interpret the hard-scattering parton model
as being valid when the internal scattering pro-
cess is treated as if it involves on-mass-shell
particles. " We therefore calculate our cross sec-
tions for massless gluons and massless quarks.
Specifically, this means that our gluons are as-
sumed to have only transverse polarizations.
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However, when we square the amplitude and sum
(average} over final (initial) spine,

&)OR[ )= g Q T~T~ „.6 ~t~
spins

(3.3)

we must not make the "Feynman gauge" replace-
ment

evaluated to yield

& ~OR)'&„.„...„=(-')(i)(-2) ~ »(f},d, f}.4,)

1 us
2 t

so that

(3.8)

gssggsss ~ g
fsfs

spins
(3 4)

as is commonly done in QED calculations. This
replacement introduces unwaated longitudinal com-
ponents into the polarization vector and, unlike
the case of QED, these components do not vanish
unless there is only one external-gluon. One way
to obtain the correct, guage-invariant, cross sec-
tion is to use the appropriate projection operators
for the transverse polarization states in the scat-
ter ing process, "

&IORI'& =
& IORI'&. + & IORI'&.... -,. (3 8)

which is equivalent to (3.7). We should empha-
size that this is only a formal technique to evalu-
ate (3.3} for on-shell quark-gluon scattering. We
are not introducing a ghost component into the
proton wave function.

Gluon-gluon scattering

We can now look at the same problem in the
process VV- VV, which has an amplitude of the
form

Q gsgkll — g All + (Pklqlk + PP' qll) (3 5)
spins s

K= T~ ty E~ 62 63K (3.10)

~~.~,* =-8 + —(p2q. +p. q. }
spins s (3.6)

as given in Eqs. (A24)-(A27) in Appendix A. One
can again show that the amplitude is gauge in-
variant, so that

[Actually, because of (3.2) we need only use (3.5)
or (3.6) for one of the spin sums and may use (3.4)
for the other. ]

The result is

&~OR~ &=I
4 u 4 u ~2us

9s 9s P

=&iORi'&„. —, ",', (3 7)

where &~OR~'&» is the (incorrect) result obtained
using (3.4).

Another way to obtain the correct result is to
introduce the Fadeev Popov ghost in the following
way. As indicated in Fig. 2 the modulus squared
of the t-channel amplitude can be identified through
unitarity with a cylinder. The replacement (3.4)
correspoads to evaluating all gluon lines in the
cylinder in the Feynman gauge. The Feynman
rules of the theory" then tell us that we can re-
move the unwanted longitudinal polarization by
introducing ghost loops into the calculation as
shown schematwally im Fig. 2.

The two cylinders containing ghosts are easily

T)t~ Q'~E Q E =O. (3.11)

The spin-averaged gauge-invariant squared amp-
litude

spins

(3.12)

can again be evaluated using the projection oper-
ators analogous to (3.5) and (3.6) for (at least three
of) the spin sums. This procedure, however
involves evaluating a great many terms (228420,
to be precise). This is an inconveniently large
task even for the algebraic-manipulation program'
ASHMEDAI (which we use to evaluate some of the
spin sums in the "Feynman gauge"). In this case
the ghost-cylinder algorithm indicated schema-
tically in Fig. 3 is much more efficient. Figure
3 displays the eight distinct cylinders for the
modulus squared of the t-channel graph. Each
ghost loop can have two directions, so cylinder
(d), for example, represents four separate
graphs. The result is

SP INS

(im, i*) =', (" 4"')
9 1 9 us
8 8 4f' (3.13)

FIG. 2. Schematic indication of how unwanted longi-
tudinal polarization of physical gluons which appear in
certain gauges can be removed by introducing ghost
loops.

where &~Rt, ~'&~ represents the answer found cal-
cula. ting the gluon cylinder in the Feynman gauge.
The interference terms between gluon exchange in
different channels are typified bye, BR„*. Using
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(a}

I

I
I

(e}

(c)

I I

I I

l

(g)

I
I

I I

Igill
/

(h)

closely to the original. formulation of the hard-
scattering parton model, it is the simplest and
least ambiguous calculation we can make. More-
over, these alternative approaches will presumably
differ from our result by an amount comparable
to (IORI )- (IORI'&s, which is a small correction
to the results we present.

The problem of the spin degrees of freedom of
vector partons has been discussed in another con-
text by Elias et al. '

FIG. 3. The eight distinct unitarity cylinders for
~
OR tt

~
in VV —VV. Each ghost loop can have two dir-

ections.

unitarity, this can be represented by a tetra-
hedron, and Fig. 4 shows the eight distinct tetra-
hedral diagrams which can be drawn. As each
ghost loop has two possible directions, these
diagrams represent 15 distinct terms. The re-
sult is

9
(2OR OR*) = —15——

16 tu

9 1s'
= (2OR OR* & 16 4 tu

(3.14)

(a)

(e) (f)

(c)

I x r I

I

Ir yi

(g)
FIG. 4. The eight distinct unitarity tetrahedra for

23R&9R „ in VV VV. Each ghost loop can have two
directions.

The complete answer for gluon-gluon scattering
is then given in Eqs. (A28)-(A35) in Appendix A.

We note here that other methods for dealing with
the spin of the gluons are possible. We might, for
example, give the gluons some effective mass, p, ',
and calculate as if they were massive particles
with three spin projections. As discussed by
Dombey and Vayonakis, "this method does not
limit smoothly to the zero-mass case as p.'-0.
Alternatively, we could make separate models for
the transverse and longitudinal distributions of
virtual gluons in the proton and compute separate
cross sections. Both of these methods would add
considerable complexity to the calculations and
introduce additional freedom into the answer.
Aside from the fact that our method adheres most

IV. GLUONS AND QUARKS

IN THE HARD-SCATTERING MODEL

The calculation

p, -p, +&I p, I&,

& I pr I
&= 0.3 GeV.

(4.2)

This corresponds to a minimal P~smearing. The
same comparison is made for G„&~ given by [(2.33)
[(2.33)—bag] in Fig. 6 with the quark distributions
held the same. The remaining model for G«~,

We are now prepared to calculate the inclusive
cross section Edo/d'p(pp- v X) at large pr in the
framework of the hard-scattt ring model defined by
Eq. (2.1). We take an incoherent sum over the
internal processes qq-qq, qq-qq, qq-qq, q V

-qV, qV-qV, qq- VV, VV-qq, and VV- VV

which can contribute an approximately scale-
invariant piece to the cross section. The color-
averaged, spin-averaged cross section is calcula, —

ted to leading order in perturbation theory as de-
scribed in Sec. III and Appendix A. In these cross-
section formulas we use a renormalization-group-
improved form for the quark-gluon coupling a,
=g, '/4 wand we take a range for this coupling,

0.50
1+0.36 in(Q'/4)

(4.1)
o."(Q') = a ~, '*(Q'),

where Q' is the "exchange" momentum transfer.
The motivation for choosing this range is discussed
in Ref. 6.

For those processes involving quarks we use the
Field- Feynman' parametrlzation of the G, &~ (x)
and D, &, (s). For the gluons we consider a. choice
of [(2.8)—naive], [(2.29)—brems], or [(2.33)—
bag] for G„&~(x) and use (2.34) for D,«(z).

Figure 5 shows the calculated inclusive cross
section for pp-p X at Ms=53 GeV, 8=90', which
results when G«~ is given by [(2.29)—brems) .
Also shown are the ISR data"" at this energy and
the Field-Feynman fit to these data. To approxi-
mately account for the effect of p~-smearing within
the G's we have shifted our curves by
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FIG. 5. Inclusive cross section for pion production,
Edcr/d p(pp-7rX), versus p &at& s=53 GeV, 0=90 .
The data are pp —~ +X from Ref. 20 (triangles) and

Hef. 21 (squares) and pp- {m' +& )/2+X from Ref. 21

(crosses). The solid curve is calculated from the
model of Field and Feynman (Ref. 3). The dashed curves
are the results of our QCD calculation using the range
of 0., (Q2) parameterized in Eq. (4.1). Both models use
the Field-Feynman quark distributions, and the QCD
curves use gluon distribution given by [(2.29)—brems].

[(2.8) naive], is intermediate between these pr
distributions.

Two things are notable about these comparisons:
(1) The normaiizations of the calculations are

not arbitrary. The running coupling constant de-
fined by (4.1) is small over the Important range
of momentum transfer. The fact that we agree
approximately with the normalization of the data
is therefore significant. We have started out with

the hypothesis that a perturbative calculation in

QCD could provide a rough guide to large-mo-
mentum-transfer data. If we were drastically
below (or above) the data, it would indicate the
need for large corrections and it would be unlikely
that a perturbation theory approach would be valid.
Recall. that efforts to ascribe these large-p~ data
to a single mechanism such as qq-qq (Refs. 2-5)
or qM-qM (Ref. 22) involve fitting to the data with
a funct, ion of undetermined normalization. If we
were to characterize these models by effective
couplings, then the coupling constants would, in

general, be large and have no discrenable re-
lationship to the QCD coupling inferred from other
r eactions.

(2) There is a rather gentle crossover between,
the curves in our calculation and the Field-Feyn-
man model. %e do not necessarily expect at this
energy an obvious p ~

' component to the cross sec-

P7 (GeV)

FIG. 6. Inclusive cross section for pion production,
Edo. /d p(pp-7t X), versus p 2 atWs=53 GeV, 8=90 .
The data are the same as in Fig. 5. The solid curve
is caIculated using the Field and Feynman parametriza-
tion of do/dt . The dashed curves are the results of
our QCD calculation using the range of G., (g2) para-
metrized in Eq. (4.1), Both models use the Field-
Feynman quark distributions, and the QCD curves use
gluon distributions given by [(2.33)—bag].

tion for higher va. lues of p~ If we allow for sealing
violations in the G's and D's, ' it may even be pos-
sible to remove completely this crossover. How-

ever, it may also be possible to attribute an ex-
cess of events over the extrapolation of the Field-
Feynman, curve as some evidence for this type of
scale-invariant scattering mechanism. The reso-
luation of this issue awaits more intricate cal-
culations and data at higher p~.

It is interesting to see what the relative strengths
are of the various internal mechanisms (qq-qq,
qV-qV, etc.). We show in Fig. 7 the fraction of
the inclusive cross section resulting from each
process as a function of p~. These quantitites are
fairly sensitive to how we choose G«~ and we
show the results of all three models. In all cases,
if p~ is small enough then the process qV-q con-
tributes significantly to the cross section. (The
notation indicates that the internal mechanism is
q V-qV and that the scattered quark fragments
to produce the observed w. ) Because we have as
sumed that gluons give less momentum to a m

when they fragment, the contribution from qV- V

at a given p~ is less than that of q V- q. The pro-
portion of particles attributable to qq-q grows
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0 = qV~q
q

= qV~V'
~ = VV~V

Brews A)

v's=53 GeV
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e 0-
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Brems
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Bag
C)

150 5 10

pT (GeV)
FIG. 8. Inclusive cross section for pion production,

Edo/d p(pp —7rX), versus p @ at& g =800 GeV, 8=90'.
The solid curve is calculated using the Field and Feyn-
man parametrization of do /df. The dashed curves are
the results of our QCD calculation using the range of
n~ (Q2) parametrized in Eq. (4.1). Both models use the
Field-Feynman quark distributions, and the QCD curves
use gluon distributions given by [(2.29)—brems].

0 8—

0 4—

10

p, ((ev)
15

FIG. '7. Contribution of various subprocesses to the
inclusive cross section Eda/d p(pp —vX). The nota-
tion qp-q refers to the internal process qV-qV
where the observed hadron comes from the quark. No
distinction is made here between quarks and anti-
quarks. The gluon distributions used are (A) [(2.39—
brems], (8) [(2.8)—naive], (C) f(2.33)—bag].

steadily with p~ in our calculation.
If we go to higher energies so that we can achieve

high P~ while staying at comparatively low values
of xr=2pr/V s, the effect of adding gluon scat-
tering mechanisms into the hard-scattering mockl
can be quite dramatic. As shows ie Fig. 8, the
expectatioa from our @CD perturbatiee theory
calculatioa at v s = 800 GeV is more than bvo
orders of magnitude greater at P~= 15 GeV than an
extrapolation based on the Field- Feynman model.
This curve is completely normalized and can be

used, for example, to compare with data inferred
from cosmic-ray experiments, where it is
claimed" that there is evidence for a p~' cross
section. At these high values of Ws the calculation
is quite insensitive to the exact form used for
G«~. We use [(2.29)—bremsj to make these
curves. In Fig. 9 we show the relative strengths
of the internal processes at P ~= 10 GeV for two
choices of G«~, the bag and the bremsstrahlung
distributions. The contribution from qq —qq is
quite small at these low values of x~. In Fig. 10
we show jet cross sections at V s = 800 GeV ob-
tained by making the substitution D, &,(z) = 5(1 —z)
in (2.1).

Comments

We want to emphasize again that this calculation
is not intended to be a fit to currently avialable
large-p~data. Rather, it is an attempt to calculate
in a straightforward manner what should be ex-
pected for large-p~ hadronic production if the
lowest order of perturbation theory is a guide to
@CD at large momentum transfer. Although there
is some guesswork involved in picking the gluon
structure functions nevertheless there are no
free parameters. However, we are quite aware
that there are higher-order corrections which we
are not calculating, and which could be quite sig-
nificant, particularly at ISR energies or below.
Bearing this in mind, we consider the excellent
agreement between the upper curve in Fig. 6 and
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Bag Brems
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8=90' p =IOGeV . Js =800GeV
T

Fig. 9. Contribution of various subprocesses to the inclusive cross section Edo/d p {pp &X). In the notation used,

q& q refers to a process where qV qV and the observed hadron comes from the quark. No distinction is made here
between quarks and antiquarks. The gluon distributions used are (A) [(2.33)—bag], (8) [(2.29)—brems] .
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FIG. iLO. Inclusive cross section for jet producti. on,

Edo/d p(pp-jet +X), versus pz ate s=53 GeV, &=90 .
The solid curve is calculated using the Field and Feyn-
man parametrization of der/dt . The dashed curves are
the results of our QCD calculation using the range of
a~@2) parametrized in Eq. (4.1). Both models use the
Field-Feynman quark distributions, and the QCD curves
use gluon distributions given by [(2.8)—naive].

the data to be somewhat accidental. We certainly
do not think that we have achieved an overall fit
to the ISR data, for were we to make this claim,
we would swiftly discover that our s dependence is
wron. g.

Let us speculate on the elements which might

be necessary to attempt a complete fit to the data.
We cannot at the present time answer the question
of why the data look more like p ~

' than p ~ ', but
we can say the following:

(l) Recent data may indicate that the use of the

hard-scattering model is justifiable only when

the elementary "partons" are treated as if they

have a large mean transverse momentum. ' This
means that we might calculate with G(x, kr) and/

or D(x, kr), where

(lkr I) ~0.S GeV.

A discussion of how this can change the shape of
the p~ distribution can. be found in the analysis of
Feynman, Field, and Fox." There are also
hints ' ' that this k ~ smearing could have a Q
dependence.

(2) We know that violations of naive Bjorken
scaling occur in deep- inelastic processes. For
processes involving leptons these can be empir-
ically described'" by letting the quark distribu-
tions to Q' dependent,

G, / (x, Q') = G, / (» Qo')

Q2
x exp (0.2 —0.9x) ln

p

with Qp =3 GeV . There may be comparable Q
dependence in G«~ (x, Q'), and conceivably also
in the decay distributions D, /, (z, Q') and D, «(z, Q').

(2) At some level one must find quasicoherent
processes, such as qM-qM [which appears in the
constituent-interchange model (CIM)22). The ability
to calculate these processes is probably outside
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the l.imits of our perturbative approach, but there
should be small-P ' corrections to our cgrves
attributabl. e to them.

Putting together all the freedom inherent in

(1)-(3), it would seem possible to work out a fit to
some subset of large-P ~ data based roughly on
the calculation reported above. However, we
do not feel that it would be very instructive to do
this without further theoretical input. There are
certainly higher-order graphs in the perturbation
expansion of @CD, and these graphs may contribute
significant corrections to our lowest-order cal-
culation. Recent theoretical analyses"" indicate
that these effects can result in scaling violations
of the sort described above in (2), as well as a Q'-
dependent kr smearing in (1). This approach could
conceivably lead to an overall understanding of
high-P ~ processes in the context of the @CD per-
turbation expansion. We have only taken the first.
step in that direction.

V. SIMPLE EXPERIMENTAI. CONSEQUENCES AND

CONCLUSION

The fact that gluons are flavor singlets enables
us to predict, in kinematic regimes where the dom-
inant process is VV- VV, that one should find ap-
proximately equal production of ~', rr, and m' .
We can also note that the flavor content of the
process qV-q (where we specify that it is the
scattered quark which is producing the observed
hadron) is to a first approximation the same as
that of qq-q. Combining these observations with
our results in Sec. IV, we predict at ISR energies
and below that particle ratios are roughly the same
as those in the Field-Feynman (or any other) qq
-qq model. At ISABELLE or Fermilab doubler-
collider energies we should see approximate iso-
spin independence over much of the available kine-
matic regime.

Beyond these simple qualitative observations
we have little to say at this time. The details
of particle ratios and quantum-number correla-
tions depend on questions not adequately treated
here. Since our calculation seems to indicate
that gluon jets are produced copiously opposite a
detected large-p~ hadron, we might speculate
that these jets are different in some important
way from the jets produced in e'e -fs, pp- phX,
or vN- ~. However, to enumerate just how
they might be different is somewhat problematical.
We have assumed, for example, that they are
sof ter. There may indeed be some indications in
Fermilab data,"thai away-side jets have a softer
distribution of hardons than toward- side jets.

Many predictions of this type, however, involve
assumptions which are beyond the scope of this
work. Higher-order corrections to @CD or hypo-

thetical nonperturbative effects may certainly
change our results. Any calculation using per-
turbation theory must be suspect in that it does
not explain the confinement of quarks and gluons
which is presumably a feature of the complete
theory. The possibility that infrared effects
could modify substantially the Born approxima-
tion to large-p~ production has been discussed
by many people. " A simple empirical model
which does this has been discussed by Duke. "

Since calculations using the qq-qq mechanism
alone would seem to indicate that a simple per-
turbation approach is inadequate in the regime
where data. are currently availa. ble, several people
have constructed special models' """ to account
for the data. From our point of view some of these
model shave been rather poorly motivated in that
they have not adequately dealt with the question
of what suppresses the scattering of gluons. Sirlee,
as can be seen in Appendix A, the spin-averaged,
color-averaged cross sections for VV- VV and
Vq- Vq are large compared with qq-qq when cal-
culated in perturbation theory, the assumption
that qq -qq dominates must involve some sort
of selective suppression of these gluon processes
in nonperturbative calculations. At present we
have no clue why there might be such a suppres-
sion.

Our goals have been more modest. We do not
Anode that perturbation theory is right. It is merely
too simple a possibility to overlook.

Note added in proof. It has come to our attention
that the calculation of Combridge, Kripfganz, and
Ranff32 for ~II'(VV —VV)

~
differs from ours by a

small term (9)(2). They use explicit polarization
vectors instead of the ghost-subtraction procedure
described in Sec. III. We suspect their calculation
is correct, but we have not been able to find any
error in ours. We thank B. Combridge for com-
municating their results to us prior to publication.
None of our numerical results are sensitive to this.
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APPENDIX A: EVALUATION OF QCD GRAPHS

We include here expressions for the @CD pro-
cesses we are considering, calculated to lowest
order in the perturbation expansion. The Feynman
rules we use are those given for massless quarks
in Politzer's review" and are shown in Fig. 11.
The color sums are evaluated using techniques
discussed in Appendix 8, and the spin sums are
discussed in Sec. III. The "Feynman gauge" is
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used throughout.
The process qq-qq.

b, v

0 w--&--i b
k

. ab k~kv 2
(gpgp p jjk + ak k /k

'& "/»'

jg" 4/k

Q, A

) P3

{t channel ) {0 channel j

i,j,b, l =1-3 (quark color),

a, b =1-8 (gluon color),

z, P = u, d, . . . (quark flavor),.=(p, +p.)', t=(p, -p.)', a=(p, -p.)'.
The t-channel and u-channel invariant amplitudes

can be written

b, p,

b, p,

C, t

abc t-
'{t q~v

gpss
+ {q rI), g +( l'-Pl g

. 2 abc cde

/4&»e ps )
. 2 ace bde

-IQ t t (g g -g g )

. 2 ade cbe

jilt »p gg y )

(Al)

x c7'8(p, }y"a' (p, ), (A2}

3g,(q~', -q'~t', ) = (T;, T—;,%',(p,)y„u', (p, )

xa', (p,)r%',(p, ),

3g„(q'.q', -q'.q', ) =-'—&.,(T'„T'„)rc'.(p, )y„u~(p, }

b, p,

gP
c 'a

Q, p

g pf
abc p,

where the 6 ~ indicates that the u-channel graph
is present only when the flavors are identical.
The color matrices T;& =-,'X;& are discussed in
Appendix B. Averaging over initial states of
spin and color and summing over final states gives

-igy 7. .

FIG. 11. Feynman rules for QCD, from ref. 14.

(~s)f(q~ -q,q ) ('}=, g —,
' P ~%, +3g„~'

co1or ap11

, 2 (s2' u+'} 2(t'+s') 1 4s'

The factors which are the result of color averages
are enclosed in angular brackets. The spin- and
color-averaged quark-quark cross section is then
given by

do'

dt (q,q~-q q,) = 18, (~3g(q q, -q„q,) ~').

The process qq qq. Utilizing time-reversal
invariance, Eq. (A4) can be applied directly to

qQg
The process qq -qq.

i,j,k, l =1-3 (quark color),

a, b =1-8 (gluon color),

u, 8, &, y =a, d, . . . (quark flavor),

=(p, +p, )', t=(p, -p, )', u=(p, —p, )'.

The t-channel and s-channel amplitudes are

3)fq(q qs qqq„} =
t s s„T' T,gas(p }y u (p )

x v,(p.)r v'„(p, ) (A6)

{t channel ) {s channel )

x v~s(p, )y"u', (p, ).

The spin and color average yields
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(i%(qg qq)i)=g — 5 5 +5 5
' +5 5 (A8)

When calculating contributions to the hard-scat-
tering model from qq qq, one must remember
to sum over final-state flavors (e.g. , uu u-(7,

uu-dd, etc.).
The Process of qV-qV.

(~)4„(4V-4V)(*)=4'
4 (-4—),

(~%,(qv-qv) ~') =q' — -2—

. Q
(2%(%„*(qV - q V)) =

4
4i-

(A14)

(A 15)

(A18)

. S
(2%,%.*(qv-qv)) = (A17)

(2%Pl,*(qv-qv)) = 0.
The two interference terms can be combined,

(A18)

(t channel ) (u chonnel)

q, E, q&6z

(s channel)

(2%,(%„'+%,*))=

and so the cross section for qV-qV is

(A19)

i,j,k, l =1-3 (quark color),

a, b, c =1-8 (gluon color),

p, , v, X = Lorentz indices,

s=(p, +q, )', t=(P, P, )', u=(-P, -q, )'

Defining a Lorentz tensor which occurs in the
three-gluon vertex,

'""(q„q2 q3) =-((q, -q2)"g""+ (q2-q3) g

der g' us 4 s u(qV-qV)= —,2 1 —,———+-
dt 16ms' t' 9 u s

(A20)

The process q V- q V. 'Time-reversal invariance
implies that (A13)—(A20) also describe the process
qV-qV.

The process VV -qq.

+ (q. -q()"g ""1 (A9)

we suppress the flavor indices and write the in-
variant amplitudes for the three graphs shown
above:

2

%((q(V(4 q(v()) = f T(&e) e2C) 4 v(q) —q2 -q( q2)

&& u, (p, )y "u, (p, ), (A10) ~a

( t channel ) (u channel ) (s channel )

The spin and color sums yield

(K, (4V-VV)~')=4'(—)4 1 —,},

(A12)

(A11)
2

%,(q(v. -q, V, ) = —— T((T'„u, (p, ) (p((, +q, )(t,u((p, ).

i, j, k =1-3 (quark color),

a, b, c= 1 —8 (gluon color),

p, v, A. = Lorentz indices,

s= (q, +q, )', t=(p, -q, )', u= (p, —q, )'.
The graphs for this process can be obtained from

the q V-q V graphs by crossing, and so we adopt
a more condensed notation. 'The invariant ampli-
tude for VV-qq is

il V
~ ayc c+ gf T]~ C„„„(q„—q2, q)+q, ) V-((p().s (A21)
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Summing over spin and color yields

()~m(vv;, ))~)=, (' {"",),(' ("",)

The Process VV- VV.

4, E

41 —~+ 4

(A22)

4,E'

Comparing (A22) with the expression for qV-qV
[(A20)], one sees that the different number of initi-
al states averaged over has changed the normali-
zation of each term by a factor of —,', and that some
terms have changed sign.

The process qq —VV. Except for the number of
initial states averaged over, this process is the
time reversal. of VV-qq,

&[%(qq —VV) (') = —",&)%(vv-qq) (')

16 2tu 16 2tu

4)

with

{t channel)

) E~ 4~,
E'

{u channel)

{s channel)

(4 point)

4 ut 241 ——, + —4
3 s- 3

(A23)
I

s = (q, +q, )'= (q, +q, )',

u = (q, —q, )'= (q, —q, )',

t= (q, —q, ) —(q, —q,),

C'""(q„q., q. ) = [&q, q. )"g-""+(q, —q, )"g'"

+ &q. —q, }"g""].

The Lorentz tensors which can be contracted with i"a"e"e' to form invariant amplitudes for the gluon-
exchange diagrams are

%,(v",V —
(

V",V„'}= -g 'f„,f„C'"(—q„q, —q„q, )(g„,/t)C""(q, —q„-q„q,),
%.(v".V~ —V".VP = g'f...f.n~C"-"& q, q, q„ q-. )&g„/u—}C"".(q, —q„ -q„ q, ),
%,(VI(V() —V,"VP= g fa)) f„)FC '( q„-q„q, +q-, )(g„,/s)C"" ( q, q„q„q,).

For the four-point amplitude it is
(V VV VVVP) g 2[f f (g )Ivg PV g)IPg FFV} +f f (g )IPg VP XV PV) f f (

)IV PIF )III IFV}]

(A24)

(A25)

(A28)

(A27)

The spin and color sums yield

()III,(vv VV)) *) = —4 '(' 4 ",'),
()PI„(vv-VV))*)= 4'{I —I-.

&i%,(vv- vv)i'&= g' —— 4—", ,

&~w,,(vv-VV) ~') = g '(27),

2

&23K,N„*(VV VV)) = g
' 15 ——

16 tu

(A28)

(A28)

(Aso)

(As i)

(A32)

&2(%, +3R„+%,)%,*(VV- VV)) = 3(—', )g '( ——", ) .

(As5)

Cross sections at 90'in the c.m. It is useful to
compare the sizes of cross sections at 90' in the
c.m. , where t=u=-s/2. Defining n, = (g'/4w) in
the usual way, we find

da 7T@
(q q() q q8)

~

o =
2 [2.22+ 1.045~ ], (A38)

s

Qg Pter
&q q8 q()qv) lqav =

2 [2 225~()5(F vs

&2%4%,*(VV—VV)) = 9 4
u'

16& "- (Ass)
+ (0.22+ 0.155~5)5~()56v] I

(A37)

&23R„%,*(vv - vv)) = 9 4
t'—g' 15-—, (A34)16 us (qV qV) /, o = — ' [6.11]. (A38)
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In (A38) the dominant part of the cross section
comes from the t-channel gluon-exchange diagram.
Naive generalizations of @ED wher only s- and u-
channel quark exchanges are kept can be mislead-
ing:

The Jacobi identities are

fabef ecd +fcoef aed +fdbef ace = 0

fabedecd +fcbedaed +fdbedace

or, equivalently,

(812)

(813)

2

(VV- VV) =; [31.23],
90O S

(VV-qq) =; [0.15],
90

90 90

2

[1.04] .

APPENDIX 8: COLOR SUMS

(A39)

(A40)

(A41)

1s

~ iI'm~klm ~ik~j l ~i i~gk

2fabcf cde
=

N (5ac5bd 5ad5bc)

+ (dacedbde dbcedade}

[F„F] = if„,F, ,

[F„obJ
= of.b~c ~

A generalization of the SU(2) relation

(812a)

{Bisa)

(814)

(815)

We list here some identities, "generalized to
SU(l)I) where appropriate, which are useful in per-
forming the sums over initial and final color
states. The summation convention is assumed
throughout this discussion.

The qq V vertex involves a factoz of T„
1T, =- 2Aa (Bl}

{T„Tbj=~ 5,bI(N)+4d„, T, , (83)

where the SU(3) matrices, A.„are those introduced
by Gell-Mann. '~ The commutation relations for the
T, are given by the structure constants of the
group,

[T„T,]=if„,T, ,

fabb =0, TrEa=0,

y„,=0, Tro, =0,

facdf bcd +5ab1

facddbcd = o

TrE,Eb =
Nabab

FaFa = &1(2x-i)

Trpb = 0,
FP, =0,

(816)

(Bl 'L)

(818}

(819)

N'-4 N'-4
~acd~bcd N ~ab x Daob N ~ab

(820)
DQ, = I(

Some further identities, written in both notations,
are

where I~» is the N-dimensional unit matrix. The
f,b, are antisymmetric and the d„, are symmetric
under the interchange of any two indices. In SU(2),
the quantities analogous to (T„f„„d„,) are
(o„e;»,0). Some useful identities involving the
matrices T, are

Specializing to the matrix notation, one has

TrF F E, =i -f„,. N

N
TrD, F|),E, — d, b

(821)

(822)

TaTb =—a, 5abi(„)+ (dobe+ bfabc}Tc (84)
. N'-4

T»PbFc=' face ~ (823)

Ta T, ' =
2 5i, 5)k —

N 5i,.5k)
ij ki (85)

N'-12
Tra@ D' 2N

(824)

TrT, =O,

Tr Ta Tb 2 ~ah

Tr T.T,T, = ,'(d.„+if.„), —

(86)

(BV)

(88)

TrT TbT T
4 'abca b a c 4~ bc (s9)

It is sometimes profitable to define the (2N-1)-
dimensional matrices F, and D„

(810)

(811)

The above relations can be used to show

N
TrFaFbFaFc = ~bc (825)

We now illustrate the use of these relations. by
calculating some color sums representative of
those required in Appendix Aa

Consider the )M, )' term for qq -qq. Summing
over final color states and averaging over initial
states yields

(F.),.= -zf.„,
(D,)„=d.„. Tr T,TbTr T,Tb =

9 (2 ~ab) 93x3 (B26)
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The interference term 2M, M„* for qq -qq has the

color sum

1 Tr Ta~y~a~y = s X
3X3

(B2V) f,«f„,f„,,f„,b=,,Tr—F,F,,TrFFa, c8X8

The interference term 2M, M,* for q V-q V has
color factors

9
8 r

and interference terms such as 2M, M„*,

(B29)

1 Z

SX8 fabcTrTaTcTb= 4
(B28) 1faedf cebf ae'cf de'5 g4 r+a t, a8X8

The process VV- VV has diagonal terms such as 16 ' (B20)
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