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A new radiation gauge for general relativity is presented. In analogy to the radiation (or Coulomb) gauge
for electrodynamics, it leads to spatially covariant elliptic equations for the four gauge variables g °* of the
spacetime metric. The radiation gauge conditions include as special cases maximal or hyperboloid time slicing
and minimal distortion shift vectors. For the linearized theory, our gauge conditions reduce to those of
Arnowitt, Deser, and Misner and of Dirac; however, our gauge is equally useful for strong time-dependent
gravitational fields. An extensive discussion of appropriate asymptotic boundary conditions is given. Finally,
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our gauge is compared to and contrasted with the de Donder or harmonic gauge.

I. INTRODUCTION

In any dynamical theory possessing a gauge in-
variance, such as classical electrodynamics or
general relativity, there are nondynamical vari-
ables present; the field equations naturally divide
into constraint equations and evolution equations.
The constraint equations can be used to remove
certain longitudinal variables from an initial set.
However, it is still necessary to impose gauge
conditions on the remaining variables to specify the
evolution uniquely. It is with the latter problem
that this paper is concernéd.

For electrodyanmics these issues were settled
long ago. There are two preferred gauge choices:
the radiation or Coulomb gauge and the Lorentz
gauge. We shall review these gauges in Sec. II.
In general relativity, the proper gauge conditions
and their relation to the constraint equations were
matters of intense interest in the late 1950’s and
early 1960’s. Many investigators! were trying to
unravel the canonical formalism of general rela-
tivity so they could use it to quantize the theory.
They were primarily interested in obtaining the
“true” Hamiltonian and identifying the dynamical
variables in the theory. This required the intro-
duction of a radiation gauge. Various attempts? at
formulating this gauge were made, but none of
them was completely satisfactory.

A new approach, presented here, received its
impetus from an entirely different direction.
During the last decade, the program?® to construct
numerically solutions to Einstein’s field equations
has made enormous progress. In this program, it
is crucial to use gauge conditions which are
adapted to strong fields and time-dependent situa-
tions. From this point of view, we returned to
the questions of the 1960’s, but with a fresh per-
spective.? The result of our investigation is a set
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of gauge conditions which are covariant under
three-dimensional coordinate transformations,
which possess simple geometric and physical in-
terpretation, and which stand in almost exact
parallel with the traditional radiation gauge of
electrodynamics.

The gauge is presented in Sec, ITI. It is explicitly
worked out in Sec, IV for the linearized theory of
gravity, so that it can be compared with the earlier
gauge conditions of Dirac and of Arnowitt, Deser,
and Misner (ADM). Since our approach yields a
set of four elliptic equations on a spacelike hyper-
surface, boundary conditions are of essential im-
portance. We treat these in Sec. V. Having settled
the radiation gauge, we briefly review the de Don-
der or harmonic gauge condition in Sec, VI. This
gauge is to general relativity what the Lorentz
gauge is to electrodynamics., Our discussion of
gauge conditions is summarized in Sec. VII. Two
appendices contain some mathematical details.

II. RADIATION GAUGE IN ELECTRODYNAMICS

As a model for our discussion of gauge condi-
tions, we briefly review the situation for electro-
dynamics in Minkowski spacetime. The decom-
position into space plus time is automatically per-
formed by the standard time slices. We allow.ar-
bitrary spatial coordinates on these slices. The
4-vector potential splits® into a scalar potential
@ and a 3-vector potential A;:-

Au=(-0,A)). ' @.1)

In addition, we introduce as an independent vari-
able the electric field E;. Because of the gauge in-
variance of electrodynamics, not all components
of E; are freely specifiable. In particular, the lon-
gitudinal values of E; are constrained by -

D'E, =4mp . (2.2)
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where D' is the spatial covariant derivative. The
charge density p and the charge current j; are
components of the 4 current

Jy =(—P,ji). (2.3)

The initial-value problem of electrodynamics is to
give (A4, E;,p,J;) at time £ =0, subject to the con-
straint (2.2).
The evolution problem is to solve for these vari-
ables at ¢ =dt, . The evolution equations are
%A;=-E;-D;o,

8% E;=R;-j,;,

(2.4)
(2.5)

where the R; contains the second spatial deriva-
tives of A;:

R,=D'D,A, - DDA, (2.6)

These are supplemented by the matter evolution
equations, .

VHJ, =8,p +D%j; =0, @.7

Note that j; does not possess an independent evolu-
tion equatibn.

To use the evolution equations (2.4) and (2.5),
we must specify the gauge variable ¢ at time ¢ =0,
Although’it can be specified in a variety of ways,
a natural way is to use ¢ to remove the longitudi-
nal components of 4;, i.e., to require

D'A;=0. (2.8)

The transversality condition given at £=0 is not
enough to specify ¢. However, if we demand that
(2.8) is maintained in time,

8 (D'A;)=Di(3A;) =0, (2.9)
then using (2.4) we find
D'D,p =-D'E;, (2.10)

Substituting from the constraint equation (2.2), this
becomes .

Ag=—4p, @2.11)

where A is the spatial covariant Laplacian. This
is the radiation gauge.

The evolution equations in this gauge are the hy-
perbolic equations (2.4), (2.5), and (2.7), together
with the spatially covariant elliptic gauge equation
(2.11). By iterating the above procedure we have
an algorithm for (numerically) solving electrody-
namics.

III. RADIATION GAUGE IN GENERAL RELATIVITY .

We now present our version of the radiation gauge
in general relativity, The metric of spacetime is
decomposed® on some set of spacelike hypersur-
faces, called time slices and labeled by ¢= constant: -
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-a? mﬁn e B i ‘
gu,=< il ’>. (3.1)

By Yij

The spatial metric ¥; corresponds toA;, while the
set (a, B8,) contains the gauge variables correspond-
ing to ¢. For the field corresponding to E;, weuse
K,;;, the extrinsic curvature tensor of the time
slice. Finally, the 4-current J,, which serves as
source for electrodynamics, is replaced by the
energy-momentum tensor Ty, containing the mat-
ter density p, the matter current j;, and the spatial
stress S;; (Ref. 7): ,

P =0Ty~ 2B + Ty BBy ™),
Ji==a Ty = TRy ™), S;=Ti;.

Because gravity is spin 2, its field variables
carry two indices. As a result, we have trace
terms or determinant terms in Einstein’s equa-
tions which do not occur in a vector theory. Also
since the gauge group of diffeomorphisms is more
complicated than the gauge group of electrodynam-
ics, there are four gauge variables and four con-
straints in general relativity instead of the one in
electrodynamics, The constraints split® into a 3-
vector piece, o

Di(Kim - 'yng) =jm ’
corresponding to (2.2) and into a new scalar piece,

R 4+K? K, K" =2p, (3.4)

(3.2)

. (393)

where R is the scalar curvature of %; and
K =v;;K", As explained in an earlier paper,® these
can be used to eliminate the longitudinal compo-
nents W' of K;; and the determinant ¥ or the con-
formal factor ¥ of %,. This is the initial-value
problem of general relativity.

The evolution problem is to solve for (v;, K;;, p,
Js, Si;) at a time df to the future of the initial slice.
The Einstein evolution equations are!® '

(8.5)
%Ky =a®;; - a8, — oXy; — D;Djo + 85K, (3.6)

Y =—20K; + &g,

where
®;;=R;; - 3Ry, : 3.7
8,;=5,;-25%;, (3.8)
Kyj=2K K7 —KK 5 +5 (K2 K, K™y, (3.9)
£g%;=D;B; +D;B;, (3.10)
84K ;; =B "Dy Ky +K D" +K piDi " (3.11)

Note that (3.5) and the first two terms on the
right-hand side of (3.6) are formally analogous to
the evolution equations of electrodynamics (2.4)
and (2.5). Here R;; is the Ricci tensor formed
from first and second spatial derivatives of v;;, D;
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is the spatial covariant derivative formed from v,
and £3 is the Lie derivative along B*. The last
three terms in (3.6) appear in general relativity, -
but nothing analogous occurs in electrodynamics.
The first, X,;;, is a nonlinear term, while the last
two are extra gauge terms,

The evolution equations (3.5) and (3.6) must be
supplemented by the matter evolution equations
(V¥ =spacetime covariant derivative):

VHT,, =0, " (3.12)

Again, we note that the matter terms appearing in
the constraints (3.3) and (3.4) are the ones which
are evolved by (3.12), while the matter terms ap-
pearing in the evolution equations (3.6) are found
from constitutive relations.

As in electrodynamics, the gauge variables (a, 8')
must be specified in order to perform an evolution,
Mimicking (2.8) and (2.9), we can attempt to impose
‘the transversality condition on ¥/ multiplied by
some power of the determinant 7:

D;(»"v*)=0 (3.13)

since we have already solved for v using (3.4).°
Unfortunately, this expression vanishes identically.

The method used by Dirac? and others was to
change D; to the ordinary derivative

8, (") =0 ‘ S (3.14)

and to require that this condition be preserved in
time,

8,9, "v*¥)=0. (3.15)

IfN=%, then (3.14) states that the spatial coordi-
nates in the initial slice are three-harmonic., Di-
rac considered this possibility, but chose instead
N =3, to which we return in Sec, IV, In any case,
it is true that (3.15) leads to three elliptic equa-
tions on B'. In particular, for N =z, it has been
shown!! that (3.15) implies

oD +D'Bt - ¥ D) - 2K - YKt =0,

(3.16)

The problem with using (3.14) and (3.15) is that
the gauge condition is not covariant under three-
dimensional coordinate transformations as is the
electrodynamic radiation gauge (2.9). In fact,
(3.14) is used to define the spatial coordinates in
the initial slice. Equation (3.16) then guarantees
that the spatial coordinates in each successive .
slice are, for instance, three-harmonic [satisfy
(3.15) for N =3]. Our viewpoint is very different.
We believe one should be able to use any spatial
coordinates to label points in the initial spacelike
hypersurface. The B! should be used solely to de-
termine how these coordinates propagate? off the

surface.
Therefore, we propose to replace (3.15) by

D3, (¥yt) =0, (3.17)

which, using (3.5), leads to the following equation
for ', analogous to (2.10):

Djwiﬁj +DJB‘ - ZN'}/”D"@,, - za(Ku _N.',UK)] =0,
' (3.18)

The advantages of this prescription are that (1) it
is three-covariant and can be used with any initial
choice of spatial coordinates, (2) it is closer in
form to the electrodynamics radiation gauge condi-
tion (2.9) now that D' is used instead of &, and (3)
for certain values of N it has a simple physical and
geometric interpretation. Just as in electrodynam-
ics, the constraint equation (3.3) can be used to
cast (3.18) into a form parallel to (2.11);

AB +(1 = 2N)DH(D- ) +R!B"
=2aj! +2(K" = Ny¥'K)D,a +2a(1 -N)D'K ,
(3.19)

Before continuing our discussion of (3.19), in
particular with respect to a natural choice of N,
we briefly turn to the other gauge variable a. Re-
call that the constraint (3.4) was used to eliminate
the “scalar” part () of %, while g* fixed its longi-
tudinal piece; on the other hand, the constraint
(3.3) fixed alongitudinal piece® (W?) of Ky;, so we
expect « to fix a scalar piece-of K;;, We may
choose that scalar to be the trace K=y K", As
with B¢, it is the specification of the time deriva-
tive of K that sets the gauge.!'? For any given
choice of 3K, symbolized by taking

8K =u(x’ t),

the trace of equation (3.6) yields an elliptic equa-
tion on a,

Ao -[K ;K9 +3(p +8)]a - 9, K =-u (', ),
(3.21)

where we have used the constraint (3.4). Alter-
natively, we may write this as

Sa-[R +K? - 3(p-3S)la- FOK =@, 1),

(3.22)
Thus, again we are led to an elliptic equation for
the gauge variable, .

The class of radiation gauges (3.19) and (3.22)
are as far as our formal analogy with the radiation
gauge in electrodynamics will take us. We will
now consider a few specialized subclasses. Let
us start with . From (3.20), it is clear that the
spatial dependence of K (x‘) must be specified as
part of the initial data. The simplest choice is to

(3.20)
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take*
K (x*)=K =constant (3.23)

and maintain the spatial homogeneity by setting

oK =u(t). (3.24)
The elliptic equation for a then becomes
Aa-[K,; K 15(p+S)]a=-u(t). (3.25)

This subset of gauges has been very useful in a
wide range of problems in general relativity.
These include the maximal® (K,=0=«) and hyper-
boloid'*** (K +0, u =0) slicings of black holes!®
and star collapse, '%!" as well as the slicings? # 0)
of closed cosmologies, Furthermore, with the
choice of (3.23), the elliptic equation for a (3.22)
decouples from the elliptic equation for ¥ (3.19).
This is very useful for numerical work since (3.22)
can be solved first and the resulting a(x‘) can then
be considered as a given source term in solving
(3.19) for 8. Since the properties of the & gauges
have been extensively reviewed recently,'® we will
not pursue the consequences of (3.25) in this paper,

Turning to the 8¢ equation (3.19), we present a
very useful choice of N, Our motivation is that
since we are choosing a radiation gauge, we
should try to use the 8! freedom to separate!2*!?
“coordinate waves” from “pure” gravitational
waves. As discussed in earlier papers,**® the con-
formal three-geometry, represented by

(3.26)

can be viewed as the carrier of the dynamical de-
grees of freedom of 7;;. This suggests a choice
of N=% in (3.17). For this choice, together with
the gauge restriction (3.23) and (3.24), we arrive
at the elliptic equation,'?:1”

AB +3D (D B) +RiB! =20 +2(K* -

7-/11 =Y-1/3%i s

%K'Y“)Dxa
(3.27)

One way to interpret the action of this 8* on Yis
is to note that (3.27) can be derived from a varia-
tional principle!” (see Appendix A):

05 =0 [ (%07, )50 )y N @ =0,

(3.28)
Since the metric %; and determinant y are speci-
fied on the spacelike hypersurface of integration
7, we see that the choice of g in (3.27) causes a
global minimization of the time rate of change of
the conformal thrvee-geometry. That is, the ra-
diation gauge for which g* satisfies (3.27) puts
into the gauge variables as much of the coordinate
waves as possible for a given slicing (i.e., @
gauge), This “moding” out of longitudinal com-
ponents of %; is made precise in Appendix A, For

reasons more clearly spelled out in another pa-
per,'® we refer to the gauge (3.27) as the “minimal-
distortion” gauge.

There is one other choice of N that'we believe i3
worth considering, Instead of using the confor-
mal metric (corresponding to N =%), we may use
the full three-metric by setting N =0, This condi-
tion is then D;¥* =0 or, equivalently (3.19) with
N =0. This result may be derived by varying the
shift in

f @Yy @na !V dx

T 3
Therefore, in this case there is a g.iobaL minimiza-
tion of the time rate of change of the full three-
geometry. However, the principle (3.28) leads to
results more closely related to radiation gauge
conditions, as demonstrated in the next section.

(3.29)

IV. LINEARIZED GRAVITY

To justify the name radiation gauge, we now con-
sider the linearized vacuum theory of gravity, Be-
sides providing an example of our gauge with grav-
ity waves present, the weak-field limit allows us
to compare our gauge to the gauge conditions? of
Dirac and of Arnowitt, Deser, and Misner (ADM).
We separate the spacetime metric into a flat back-
ground and a.perturbation:

S =fpv+h;u/ . (4.1)
We use the standard time variable of Minkowski
spacetime,

foo=—1, foi =atfii =O) . (4-2)

but we allow the use of any type of curvilinear spa-
tial coordinates. We introduce D;, the covariant
derivative with respect to f;;, & =D;D* for the co-
variant Laplacian, and traces are computed using
fij. The three-metric perturbation will be decom-
posed into a trace and tracefree part:

iy =5hfi; +¥5, ¥i=0, B=fn,. (4.3)

In terms of these parts, the conformal three-geom-
etry is represented by

-l/a(fu +¥y3), f=det(fy;). 4.4)

The linearized version of our radiation gauge
reads

3‘1_(-:0, I?=f‘lKij P’ : (4-5)
D"aﬁ/” = 3tﬁj"7’ij =f“/38,5’lp”"=0 . ‘ 4.8)

'3’;'1 =f

That is, we do not specify K or D’y;; at t =0, but
rather we demand that their time derivatives van-
ish. Thus, we preserve whatever value these quan-
tities had orlgmally.

Let us now investigate the ADM gauge. They ori-
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ginally? used Cartesian coordinates in flat space.
We will rewrite this in three-covariant form, In
place of K,;;, ADM used the canonical momentum
tensor density:

ez ='y‘/2(y”K -K#), : @.7

In these terms the ADM isotropic gauge reads ERef
2, Egs. (7-4.22c), (7-4.22d)]

T=0, (4.8)
ED’h;y - 3D, D’D*hy, - sD AR) =0 (4.9)

Their time coordinate is chosen by demanding that
each time slice be maximal (4.8) to linear order.
Thus, it is a special case of our condition (4.5),
where K =0 is taken as the initial value. We can
simplify the ADM spatial coordinate condition (4.9)
by inserting the decomposition (4 3). This reduces
(4.9) to the form

(GfA - ?Diﬁh)(Djlpjk) =0, (4.10)

Since (3%A ~3D,D") is a flat-space linear second-
order elliptic operator, the required vanishing of
the vector (D’y,,) at infinity and (4.10) imply that

the third-order condition (4.9) is equivalent to the

simple first-order requirement:

D'y =0. @4.11)

Again, we see that this is a special case of our
radiation gauge (4.6) where D*{;, =0 is chosen as
an initial restriction of the spatial coordinates
and is maintained on each slice.

Given that the ADM gauge is a radiation gauge,
we should be able to usé our equivalent elliptic
equations for (a, B!) to solve for A% and A%, From
(3.25) we see that the equation for & reads (as-

suming no matter present)
Aa=0, @4.12)

which, with the boundary condition a—~1 as ¥ ~,
implies o =1 or

r® =0, (4.13)
Using this result, (3.27) reads
3 +3D*(D+ B) =0, (4.14)

which, when we demand the boundary condition 8*
-0 as -, implies g* =0 or
r% =0, (4.15)

Thus, we have specified the form of the metric
perturbation by use of the ADM gauge:

hok ;0

. (4.16)
—‘_f”ﬁ +h£! ’

@.17)

where we have written ¥;; as Aj} to emphasize its
spatially transverse-traceless character., For

pure gravitational waves the trace term % can be
set to zero by use of the constraint equation (3.4)'°;
this puts us in the full standard “TT gauge” as de-
scribed, for instance, by Misner, Thorne, and
Wheeler (MTW).® If matter is present then this
trace is not zero because of p in (3.4), #° is non-
zero because of the p and S in (3.22), and &, is
nonzero because of the j, in (3.27). The analogs
of (4.16) and (4.17) are then given on page 950 of
MTW.®

Dirac’s gauge conditions are quite similar to
those above. He proposed the full maximal slicing
condition (4.5), which differs from the ADM con- -
dition by terms of order 49,2 and thus is equivalent
to the latter in the linearized formalism. »

Dirac’s 3-coordinate gauge was stated in a form
quite different from ADM’s (4.9). As remarked in
the last section, he chose (3.14) with N =5, This
is a very awkward condition in practice, as it
would, for example, forbid the use of spherical
polar coordinates even if 7;; were flat, However,
by thinking of (3.14) in terms of Cartesian coor-
dinates, we can easily transcribe Dirac’s condi-
tion into a covariant statement relative to a back-
ground metric f;;. In the linearized theory, this
gives

D‘ﬁ,l{ =f-1/sﬁjzpi:l=0’ (4.18)

which is identical to ADM (4.11). Again Dirac’s
gauge condition imposed on each slice is a special
case of the maximal-slicing—~minimal-distortion
gauge,

Therefore, our radiation gauge in the linearized
theory of gravity subsumes the well-known gauges
of ADM and Dirac, We see explicitly that the con-
formal metric %, is directly related to the gravi-
tational wave variables At (4.4) and (4.17) in this
gauge. However, the gauge holds in strong fields
as well, since R;; appears in the elliptic equa-~
tion for B (3.27). Therefore, one would expect
that gravitational waves would manifest themselves
in the time dependence of %;, even in strong fields,
if the maximal-slicing~minimal-distortion gauge
is used,

For example, when the three-metrlc is confor-
mally flat at £ =0, then initially %, =f~Y%;;=f;,.
Later, one has

B;,%)=%,(,%) - F;®)#0, (4.19)
where X at £ =0 and X at {#0 are identified using
our choice of 8, This provides a well-motivated
definition of a generalized wave amplitude at a
position defined by X on ¢ =constant, Far from the
strong-field region one has

84y, D) =1 VB ¢, B = k8 + O), (4.20)
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in agreement with the definition of wave amplitudes
in the linearized theory.

V. BOUNDARY CONDITIONS

In order to discuss boundary conditions2° at spa-
tial infinity in asymptotically flat spacetimes, we
return to the perturbation form of %, given in (4.1).
We define an “asymptotic translational Killing
vector” k' as a solution of

£.f15=Dik; +Djk, =0, (6.1)
k,=f,;&', E'k, =constant. (.2)

There are three linearly independent solutions
k};); we denote Lie derivatives along these direc- .
tions by eg(j), J =1, 2, 3.

As asymptotic conditions, we assume that the
time slices are such that for ¥ —~« we have

hyy=0(rT1), (6.3)
L4y =0("%), (5.4)
Ky =0(r"?), (5.5)

where 7 is a “radial distance” defined by fj;; for
example, 7 = (2 +)2 4+z2)V2 if f;; =9;; (Cartesian co-
ordinates).

These coordinates are appropriate for our ellip-
tic operators (see Appendix B) and guarantee that
the total energy and linear momentum of the space-
time are well defined by the standard two-surface
integrals.®® Observe that (5.3)-(5.5) would not be
appropriate for hyperboloid type slicings with K
=constant# 0, where a different set of conditions,
which we shall not describe here, must be used.
Also notice that (5.3)-(5.5) exclude sources of
gravitational radiation that have been active since
the infinitely remote past. This would lead to in-
finite total energy and to some of the hj’s and K¥’s
being O(r™'), with O(r"!) derivatives, for arbi-

. trarily large 7,

The simplest reasonable asymptotic conditions
on the lapse and shift that ensure the preservation
of (5.3)-(5.5) in the time evolution are

a-1=00"1), £,)a=00"2), (6.6)

Buiy =Bk (4); =0(r™), £;)B;y=00"2). (6.7)

The postulated fall off of the lapse and shift are
achieved automatlcally by simply demanding?? that
a-1and (B km) —~0 as 7~ in elliptic equations
such as those arising from maximal slicing and
minimal distortion. This is described in Appendix
B.

We have emphasized that appropriate gauge con-
ditions are found not by postulating initial coordi-
nate conditions but rather velocity conditions such
as

Do, =8K =0. (5.8)

However, we may ask whether there exist initial
restrictions on the Cauchy data that simplify their
form and which are automatically preserved in the
time development when gauge condition (5. 8) is
satisfied.

There are such conditions and they require that
(5.3)-(5.5) hold together with the following four
additional “asymptotic coordinate gauge condi-
tions™:

fYV3kly D', =00r79), (5.9)
K =0(r"?), (5.10)

In Cartesian coordinates we have f;; =9,;;, and
(5.9) is simply 9%;=0("%). The right-hand sides
of (5.9) and (5.10) would be O(*"2) without this ad-
ditional restriction on the initial gauge, as one
can see by noting that (5.9) would give

k4D, (h] - 361R)] =0(r~2) (5.11)

if we only impose (5.3)-(5.5). From (5.8), it is
not difficult to show that (5.9) and (5.10) are con-
served in the evolution. One can say that Cauchy
data satisfying (5.9) and (5.10) are asymptotically
conformally simple.

The effect of (5.9) is to put the O(*"!) part of the
metric into “isotropic” form as nearly as possible,
which facilitates interpretation of the metric func-
tions by allowing a direct comparison with
Schwarzschild Cauchy data in its familiar isotropic
form,

As an example, let us consider data on a slice
boosted relative to the standard Schwarzschild
slices.®® We find that (5.3)-(5.5) are satisfied and
that one can choose a particular three-coordinate
transformatwn on the boosted slice, so that (5.9)
is satisfied to any desired order in V The O(r™1)
parts of the metric on the boosted slice acquire
the simple form (87G =c =1)

%y =ful0f(1 +E /417) +45]

=f;;(1 +E /477) +3,;, (5.12)
where
Vi =h = 505m; =0(r™), (5.13)
Ly =00"?), (5.14)
and (5 .9)\ holds:
kinDi=0(r2). (5.15)

Here the total energy E = (M? +P2)1/2, M =Schwarz-
schild mass parameter = rest mass, and P is the
magnitude of the linear momentum?! vector P?,
Notice that E appears in the O(*"!) part of the con-
formal factor just as it does in the standard iso-
tropic rest-frame coordinates. Moreover, the
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O("!) part of ¥} vanishes if and only if P* =0, It
seems likely that similar results may hold for
any Cauchy data satisfying (5.3)-(5.5) under physi-
cally reasonable hypotheses; but this has not been
rigorously demonstrated.

Condition (5.10) may be said to state that the
slice is asymptotically maximal since it requires
K =0(r"%) instead of O(r"2), In the example of
boosted Schwarzschild data cited above, (5.10) is
achieved to any order in V by “wiggling” the
boosted slice in such a way as to preserve E and
P!, One finds that the O("2) part of K} comes out
in the simple form

i =3PF i_gi i
K;= W(erl +ne' - 0j6 +e’eq), (5.16)
where €' is the unit normal of the standard 2-
sphere defined by f;;, for example, in Cartesian
coordinates e* =x* /7,

Let us now consider the question of inner bound-
ary conditions on @ and #* which arises if there is
a throat or horizon® or 4 vacuum-matter interface.
We shall illustrate the boundary conditions that it
would be natural to impose by recalling the bound-
ary integrals in the variational principles (see Ap-
pendix A) which gave the maximal-slicing and min-
imal-distortion equations. In the latter case we
had (up to a constant multiplier), for the boundary
term (A16),

f Z,,06'a%s’ =3 f[(L#)” +200;,10p'd%s? ,(5.17)
B B

where B is the inner boundary., We can obtain
boundary conditions by requiring the integrand of
(5.17) to vanish on B. This happens if 68 =0 on B,
meaning that 8° is fixed on the boundary (Dirichlet
condition). Alternatively, we can require that

z,e'=0on B, (5.18)

where ¢’ is the unit normal of B, Using (A10) then
yields three (Neumann) boundary conditions on the
“normal derivative” of #, i.e., on £.8.

It should be mentioned that in at least some cases
it will be possible to solve for the minimal-distor-
tion shift vector with either Dirichlet or Neumann
conditions at B, In general, these solutions will
differ and give different results for the actual mi-
nimum value of F. Therefore the minimizing of '

- total tirme rate of change of the conformal three-
geometry will only yield a unique result for fixed
asymptotic boundary conditions if B =0.

For the lapse function, the situation is quite
similar, We have for the boundary term

f (D;a)dad?s?t,
B

(5.19)

Hence we obtain either a Dirichlet condition fixing
@ on B or 'a Neumann condition with the normal
derivative e*D;a =0 on B.

If spatial infinity is regarded as a boundary, as
it necessarily is in numerical calculations, then
situations that called for mixed conditions can
occur, For example, in the maximal slicing of
Schwarzschild spacetimes of Estabrook ef al. and
Reinhart,'® one has e‘D;a =0 at the inner boundary
(throat) and @ =1 at the outer boundary (spatial in-
finity). A similar situation arises for the Boyer-
Lindquist 8¢ of the Kerr spacetimes,'® which is
readily shown to be a minimal-distortion shift
vector. Here, f'—0 at infinity and (5.18) holds on
the horizon ¥ =7, '

VI. LORENTZ AND DE DONDER GAUGES

The above concludes our discussion of the radia-
tion gauge. We now briefly review the other major
gauge choice: the Lorentz gauge in electrodynam-
ics,

VHA =0, \ 6.1)

-and the de Donder?s or four-harmonic?® gauge in
general relativity,

& Vo, (g42gM) =g T = T =0, ©6.2)

These are, formally, four-dimensional divergence
conditions paralleling the three-dimensional radia-
tion gauge conditions (2.8) and (3.14), respectively.
However, their consequences are in general quite
different because of the indefinite signature of the
spacetime metric.
Let us rewrite (6.1) and (6.2) in terms of our

gauge variables, The Lorentz condition becomes

8 +D'A; =0, 6.3)
while the de Donder gauge becomes four coupled
equations:

ro=0: (3 -p9)a=-0K, (6.4)

I =0: (8 - p'9,)8 == 0?h*’s; Ina +¥*T3,0)],

where i,j,k,...=1,2,3 refers to a basis of spatial
coordinates. To use these conditions in solving the
evolution problem we evidently need to regard the
gauge variables as possessing initial values; these
are then updated by hyperbolic equations, in con-
trast to resolving the elliptic equations which re-
sult from the radiation gauge.

There are two sets-of equations which can be
used in solving the evolution problem in this gauge.
The first set consists of simply adding the gauge
evolution equations (6.3) or (6.4) to the spatial
field evolution equations (2.4) and (2.5) or (3.5) and
(3.6). The second equivalent set uses the gauge
equations to simplify the form of the spacetime
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evolution equations. For instance, the flat space-
time electrodynamics equations take the form

V”Fu,, =V”V“Ay— Vy(VFA,) =-41d, 6.5)

before any gauge condition is imposed. By using
the Lorentz gauge (6.1), these simplify to

VYA, =-41d, 6.6)

This form of the equations is termed the »educed
form 2" Splitting (6.6) into space and time compo-
nents yields

_(p —p.
=-4 ©.7)
D(A;) ”(n >

and we see that bo#% the gauge and dynamic vari-
ables satisfy wave equations. A similar result ob-
tains for the Einstein equations.?”

This decoupling of second-derivative terms is
useful for the mathematical proofs of existence
and uniqueness of solutions of Einstein’s equa-
tions.?”. A remarkable fact about the second set
of equations is that if the gauge conditions (6.2)
are imposed on the initial-time slice, then the
evolution by use of the reduced equations pre-
serves these gauge conditions, Thus, for many
applications, particularly in weak-field situations
for gravity, the use of the simpler reduced equa-
tions is very helpful.

In order to compare the de Donder gauge to the
radiation gauge, let us return to the linearized
vacuum theory of gravity?® with the notation of
Sec, IV, It is more natural for the de Donder
gauge to first introduce a spacetime perturbation
of the full metric:

8y =fpu +hpu . (6.8)

Again using covariant derivatives V* with respect'
to f, w the de Donder condition can be written in
background form:

v (hpu - %fpvhg) =0, hg =fpvhpu o (609)

We first write (6.9) in 3 +1 form as

qo=-K, K=fK,;, 6.10)

8,8 == D' +D,(H* — LTV}, ) (6.11)
Now assume that the initial data (y;, K;;) satisfy

K=0, D,n"-3%)=0, (6.12)

i.e., the data are maximal and spatially harmonic
(in the background form) to linear order. Choosing
the initial values a =1, g =0, we see from (6.10)
and (6.11) that these values remain fixed. Thus,
we again force #°%=0. From (6.12) and the lineari-
zation of the vacuum Hamiltonian constraint (3.4)
(p=0), we have AR =0, s0%=0. We have from
(6.12) ;; =h;} (vanishing spatial trace and diver-

gence). Therefore we again find the full TT gauge
in the linearized vacuum theory.

We see that special cases of the radiation gauge
and of the harmonic gauge can be made to agree
in the linearized vacuum theory, which is not sur-
prising because of the naturalness of the T'T con-
ditions in this case. However, the coincidence of
these two approaches to gauge conditions mani-
festly does not occur in the linearized nonvacuum
theory or the full nonlinear theory. Indeed, the
harmonic conditions have at least two drawbacks:
(1) They cannot be imposed in a covariant way (in
either the spatial or spacetime sense) without the
introduction “by hand” of a background metric. The
radiation gauge, in contrast, requires no back-
ground. (2) They cannot be obtained as minima of
natural non-negative functionals, again in contrast
to the radiation gauge (Appendix A), Furthermore,
we speculate that the harmonic conditions may not
be well suited to strong-field situations, e.g., inthe
presence of a black hole. Reasons for this specu-
lation are that the harmonic conditions are hyper-
bolic, rather than elliptic, and they do not expli-
citly account for the presence of sources, [Com-
pare (6.4) and (3.22), (3.27).] On the other hand,
there is no doubt about the technical utility of the
harmonic conditions in the mathematical analysis
of Einstein’s equations.

We think it worth noting that the “geometrizing
algorithm” of Sec. III can also be applied to the
harmonic conditions. When they are imposed, one
has T#=0, 3" =0, We write the latter as a “ve-
locity condition, ”

89, (V-2 &) =8,8,/-g ") =0. (6.13)
Replacing 9, by V, and & by the Lie derivative ‘alo‘ng
some timelike vector field t*, we have

v, 8, (V-gg")=0, - (6.14)
or .

Ot* 4RV =0, (6.15)

where 0= g“BVuVB. These equations are similar to
the charge-free Maxwell equations in the Lorentz
gauge

OA*-REA’=0, _ (6.16)

Hence, the new equations are identical to the Max-
well equations in vacuum (RY =0), but would have,
for example, different boundary conditions. Wheth-
er (6.15) is useful in practice remains to be seen.

VII. CONCLUSIONS |

We have shown how our class of radiation
gauges (3.18) and (3.21) stand in analogy to the
Coulomb or transverse gauge of electrodynamics.



To demonstrate how they gauge away unwanted
coordinate-wave freedom, we showed that they re-
duce to the ADM and Dirac radiation gauges for
the linearized theory of gravity. However, being
spatially covariant, our gauge is adapted also to
strong time-dependent gravitational fields. The
details of the strong-field behavior are left to a
companion paper,'8

The radiation gauge leads to a set of four spa-
tially covariant elliptic equations for the metric
gauge variables g°%, These include the well-known
maximal-time-slicing equation and our minimal-
distortion shift vector equation. An extensive dis-
cussion of boundary conditions shows that our
gauge is natural for asymptotically flat space-
times. The elliptic equations can be derived from
variational principles which shed further light on
the physical interpretation of the radiation gauge.

Finally, we noted that the other preferred gauge
choice, the de Donder gauge or harmonic gauge,
can be restricted so that it agrees with the radia-
tion gauge in linearized vacuum theory. However,
the de Donder gauge leads to hyperbolic equations
for the gauge variables in contrast to the elliptic

equations resulting from the radiation gauge. This,

together with the lack of spatial covariance for the
de Donder gauge, suggests a limited usefulness of
the de Donder gauge in strong-field problems,
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APPENDIX A

We consider here the rigorous sense in which
the minimal-distortion gauge on gt separates co-
ordinate or longitudinal modes from dynamical
wave modes. For reasons discussed in Sec. IV we
focus on the time rate of change of conformal ge-
ometry represented by %,. For simplicity we
choose to work in terms of

22;,= 7”/33:”7’11 =8%; =3% (V™ 8¥mn) , (A1)
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I, =0, (A2)

instead of 8¥;. We decompose Z;; in a 3-covariant
fashion®;

Ty =255+ (LX), (a3)
where
(LX);;=DX; +D;X; = 5% ,D™Xo
=758, (a4)
"~ and ‘ ‘
Dz =0, : (A5)

The following discussion assumes the slice is to-
pologically R?3,

The vector X! is then the solution of the elhptlc
equations

D/(LX);; =D'Zy; (A6)
where
DY(LX);;= (8 X); =A X, +3D;(D*%,) +R;, X7, (A7)

~ The two parts Z}} and (LX),; are globally orthogo-

nal tensors. Thus we see that

277 V3T~ (a3, . (A8)

represents precisely the part of the time develop-
ment of the conformal metric that is unaffected by
any change of the spatial coordinates from one
slice to the next since this effect is given by the
term (A4).

If we wish the coordinate effects represented by
the longitudinal term (LX);; to vanish, then, as a
result of (A6)

D'z, =0, (a9)
To see how to turn this into an equation for 8, we
use (3.5) to evaluate Z;;:

2Z;;=2a0;; +(LB);;, (A10)

where 0;; is the negative of the tracefree part of
K,;: k

0iy ==Ky —sKvy). (A11)
The demand (A9) then becomes
D’(LB)U = (A.B); ==D! (Zacij) . (A12)

To state this result in words, we note in (A12)
that the term (LB);; always represents the effect of
a diffeomorphism of the slice to itself, whereas

.the first term 2a0,; will in general generate a

true change of the conformal geometry plus another
three-dimensional diffeomorphism, The shift vec-
tor is therefore chosen in (A12) so as to nullify

the latter. In this case

%% = @7, . ‘ (A13)



1954 LARRY SMARR AND JAMES W. YORK, JR. 17

To obtain (A12) from a variational principle,'”
we note that Z;; is a functional of ‘. We can at-
tempt to minimize in a global or “average” sense
the coordinate effects measured by Z;,(8*) in a
given slice. To do this, we define on a slice T
the functional

(8] = f Z;(8)ZH (B dv (A14)
T

where dv =yY2d%, Moreover, we will now drop
the topological restriction of R® previously as-
sumed. The value of F is a non-negative measure
of the total magnitude of the time-changing con-
formal geometry.” We shall minimize this quantity
with respect to the choice of gf,

From (5.1) we have

‘ff[ﬁ]:%f [4020,,0% +400,(LB)Y
T

+(LB);; (LY av . (A15)

Note that the first term in the integral is indepen-
dent of B*. Taking the first variation and assuming
that the boundary terms vanish shows that the
Euler-Lagrange equations of this variational prob-
lem are the shift equations (A12). Taking the sec-
ond variation readily shows that (A12) minimizes
. Hence, the condition (A12) produces the mini-
mal-distortion shift vector relative to given %;,
05, and @.

For slices that are compact, the variational
principle is complete as there are no boundary
terms. For asymptotically flat slices, it is neces-
sary to examine the boundary terms in the first
variation. Apart from an overall constant multi-
plying factor, the integral over the boundary 87
of the slice 7 is given by

%f [(Lﬁ)ir*ZUlcij]éﬁ‘szj =f Zijéﬁidzsje
o7 T
(A16)

We assume that 97 is the union of a two-sphere at
spatial infinity and an interior boundary or bound-
aries B enclosing compact regions. For example,
in a black-hole metric, B could be the intersection
of a t =const slice with the horizon. Both of these
types of boundary conditions were discussed in
Sec. V.

Finally we note that one can write down a varia-
tional principle for the o gauge condition (3.25).
The functional Alo] reads

A[a]:f [(;0)Dia) +a? K ;K +30 +3S)]dv .
T

(Aa17)

The surface integral resulting from the integration

by parts in the variation of (A17) is

f(D,a)GadQS‘ ,
T
as we used in Sec, V.

APPENDIX B

Elliptic operators on Riemannian spaces have
proven to be very useful in analyzing the gravita-
tional constraints and in other problems. In this
paper, we have used primarily two such operators
in connection with elliptic gauge conditions. This
appendix briefly sketches some recent results
that can be used to justify rigorously the proper-
ties of these operatdrs that we assumed in the text.

The two operators in question are the standard
covariant scalar Laplacian Ac =¥*D,;D;c0 and a
vector Laplacian (A,8) =Ap! +3D*(D,8) +Rig,
These operators are already well understood on
compact slices3® (without boundary). Here we shall
deal with asymptotically flat Riemannian spaces
of Euclidean topology. The principal tool is an
isomorphism theorem proved by Cantor.3! Here
we shall specialize Cantor’s results to second-
order operators on three-dimensional spaces.

For more details and other applications, see
Cantor, 3

Consider linear equations of the form A¢ =p
where ¢ and p are a p:iir of vectors or a pair of
scalars on R3, A is a linear operator of the form

A =AY AL +A) - (B1)
A is assumed to be elliptic in the sense that
det(Ath)E:6,)#0

for all x€R3 and for all §+#0 in R®, In analogy to
the standard flat-space Poisson equation A(°)<p =p,
we need fall-off conditions on p that guarantee a
reasonable potential ¢=O(¥"!) at large distances
from the origin. We also need to be sure that our
operator A approaches a flat-space elliptic oper-
ator such as A at large distances, i.e., the cur-
vature effects vanish towards infinity. For these

. purposes, following Nirenberg and Walker,? Can-

tor®® introduced appropriate weighted norms with
built-in fall-off conditions.

Introduce o(x)=(1 +[)*2, where W[? =6, x'x*
(Cartesian coordinates are used to simplify the
analysis). Note that o—[x|=7 for large [v|. Let
| |, be the standard L* norm on scalars R3~R or
vectors R®~R3, Thenfor 1spse O0ER, and
s a non-negative integer, define

Ilfll,,s.a=lf0"l,+ZI:I(3J)0“‘|»

* 4; @8, f)0®*2|p 4222, (B2)
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where the function f and all of its derivatives up
to and including order s are included. The
weighted Sobolev space M3, 5 of Cantor?® is defined
as the completion of the space of all C* functions
with compact support (from R® toR or to R?®) with
respect to the norm | ||,,s,s.

As an example, suppose we have the flat-space
Poisson equation A®¢ =p, Then we expect that if
p falls off faster than 773, there is a finite amount
of mass and ¢ should go like "', Moreover, in
integrating for ¢ in the second-order equation, we
expect the two integrations to smooth the falloff
of ¢ so that not only ¢=0(r"!), but also 8;¢=0(r"2)
and 8;9;0=0(r"3). The M2 ; spaces are designed
precisely to capture these properties. Actually
they include slightly slower fall off than 7! (e.g.,
¥~ 11n7), but this point will be ignored in the fol-
lowing. Thus, for the Poisson equation, we expect
to get one and only one solution ¢ for a suitable p
(i.e. A1) is an isomorphism) if p& M? , and

e for p>3, say p =3 +€, €>0, That is,

240

lells,o.. =100% gue, (B3)

“‘p“).z.o =!‘Pl3+s "‘Z; ‘cai(»ols-fe

+ f_‘, [0%8,8,¢| 4 . : (B4)
1=

Having illustrated the reasonable properties of
the M% ;s spaces and norms, we can now state and
briefly comment upon Cantor’s isomorphism theo-
rem® in the special case of interest here. We re-
peat that this version is neither thé most general
nor the strongest fornmt' of his theorem,

Let A =A{}3;9, be an elliptic homogeneous opera-~
tor with constant coefficients A}},, LetA be an
elliptic operator as in (B2). Assume that A} (x),

Atyy(x), and A (x) are continuous and that

hm supl (Al x)-A&H)|=0, (B5)

lim sup|A},,(x)ol<e,
o= (B6)
€>0 and sufficiently small

lim sup|A (x)o?| <€, B7)
o=®

where sup stands for supremum., Moreover, sup-
pose that for all A& [0,1], Ay =& +7 (A -A) is one-
to-one, Then the operator A is an isomorphism
from M%  to M} for p>3,

In our applications involving A, the coefficients
are determined by the metric ¥%; and its first de-
rivatives, The usual assumptions that these are
smooth and that y; =0;; +0 (r™1), T%,(y)=0 (r"2)
satisfy the hypotheses of the theorem. In the case
of the vector operator 4;, we need also to require
that [(&,T%,)7?] is sufficiently small as ¥ =, This
is because, as we have noted, A, has curvature
terms. This further requirement is assured by
the usual hypothesis that R;;(¥)=0 (*"3), We see
that the asymptotic requirements on the lapse and

-shift stated in Sec. V are suitable, The fact that

the relevant operator in the maximal equations is
one-to-one was proved in a previous paper on
maximal slices.® Similarly, in the shift equation,
the one-to-one nature of the operator 4; follows
from the fact that there are no conformal Killing

" vectors that are asymptotic to zero.* Hence, in

view of Cantor’s results, our elliptic gauge equa-
tions can be discussed correctly by relying on
knowledge of flat-space equations of the Poisson
type.
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