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Relativistic model of a spherical star emitting neutrinos
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We present a simple but complete relativistic model of a spherical star emitting neutrinos, with its basis in

the coupled Einstein-Dirac equations. The interior of the star is assumed to be a perfect fluid —described by
its energy-matter density, pressure p, and baryon number density n —bounded in space. Matter is

considered transparent for neutrinos and the exterior region contains only neutrinos and the gravitational
field. The question of compatibility of neutrinos with spherically symmetric gravitational fields is discussed

and a redefinition proposed for the physical energy-momentum tensor of neutrinos, which enters the right-

hand side of Einstein equations. The analytical solutions are shown to correspond to a description of emission

of neutrinos with cooling and contraction of the configuration. The local conservation laws and the junction
and boundary conditions of the exterior and interior solutions in the surface of the fluid are studied and
allowed to characterize two classes of solutions. In one case the solution describes the stage of neutrino
emission with consequent contraction of the configuration of the star immediately before the fluid is totally
contained inside its Schwarzschild radius, when the emission of neutrinos ceases. The other possibility can
correspond to a quasistatic configuration emitting neutrinos; the relativistic equation of radiative equilibrium

\

for neutrinos is derived and permits us to define the equivalent of a "radiation pressure" for neutrinos, which

has an additive contribution to the gravitational pressure and is not a purely relativistic effect.

I. INTRODUCTION

In the study of the, interaction of neutrinos and
gravitational fields, we can consider the paper by
Drill and Wheeler as a basic reference. ' To the
theoretical motivations these two authors have
given for the importance of considering the physics
of neutrinos in a curved space-time', many sub-
stantial arguments have been added in the last
twenty years. In cosmology, neutrinos are be-
lieved to play an important role in the question of
the energy-density of the universe", also astro-
physical processes connected to the emission and
absorption- of neutrinos have been extensively dis-
cussed where, in certain cases (advanced stages
of stellar evolution, etc.),~ the general theory of
relativity becomes important.

In this vein, Misner' examined the gravitational
collapse of a spherically symmetric perfect fluid
with neutrino production, neutrinos being treated
phenomenologically as a null fluide and matter
transparent to neutrinos. His paper is limited to
the formulation of the basic equations, describing
"3, simple heat transfer process in which internal
energy is converted into an outward flux of neu-
trinos. " Also Vaidya, ' with an analogous model,
obtained some nonstatic solutions of Einstein
equations for fluid spheres radiating electromag-
netic energy. Although both authors use a null-
fluid description for radiation (neutrinos or pho-
tons), Vaidya was led to consider the partial ab-
sorption of the radiation on traversing the medium,
which is an effect of nongravitational origin and
demands further assumptions.

We present here a class of analytical solutions

corresponding to a model which has many simi-
larities with the above two models. We consider
a spherically symmetric bounded distribution of a
perfect fluid (for instance, a sphere of a degen-
erate neutral baryon gas under self-gravity) with
the following assumptions: (i) Neutrinos in inter-
action with gravitation are described by spinorial
fields in the curved'space-time; (ii) matter is
transparent to neutrinos; (iii) the model is to be
a solution of the coupled Einstein-Dirac equations.
The (luestion of compatibility of neutrinos (as
source) with a spherically symmetric gravitational
field is discussed in Appendix A and a redefinition
proposed for the physical energy-momentum ten-
sor of neutrinos. Einstein equations and the junc-
tion conditions of the exterior and interior solu-
tions in the surface of the star determine many
substantial properties of the model.

For a general review of spinors on a Rieman-
nian space-time, see Ref. 1. Here we use four-
component spinors from the point of view of the
tetrad formalism, together with the Cartan calcu-
lus of differential forms" which we use in the cal-
culations.

We choose a tetrad field e'A)(x) such that locally
the line element is reduced to'

ds2= g~~ 8 8

where 8"= t.'"'dx . The Lagrangian for neutrinos
3.S

iv g(Qy vA-g —VAfy p)

with the associated energy-momentum tensor

~AB(P) ~(7y(A+B )0 +(A7yB ) P)
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In the above formalism, y" are the constant Dira, c
matrices" and g= P~y', where yo is the constant
matrix. The spinor covariant differentiations are
given by

&~& = e(~&s.& —1~&

v„$=e(„&s„~+p 1"
(1.4)

'e . 0
yAB C (A)II tt eN ) (C) (1.6)

The coupled. Einstein-Dirac equations for. neu-
trinos are expressed"= as

R„s —~&l„s R = «[T„s(g)+ T-„s(matter)], (1.7a)

y V„/=0 (1.7b)

and constitute the basis for the study of the inter-
action of neutrinos and gravitational fields, a so-
lution of which —corresponding to a physical situ-
ation where this interaction should be dominant-
is the object of the present paper.

where the Fock-Ivanenko coefficients I'„have the
form

1'~ = -'ys c~y'y'. (1.5)

The Ricci rotation coefficients y» ~ are defined
by

fluid energy-momentum tensor, which is the usual
phenomenological description of neutrinos in gen-
eral relativity. "' Here A(u} is the arbitrary two-
component spinor appearing in solution (A7) of
Dirac's equation. The factor 2vi(A~A A—tA)/n'P'
can be interpreted' as the energy density of neu-
trinos, as measured locally by the observer with
four-velocity n '5,'.

For the energy-momentum tensor of the perfect
fluid we assume that an observer comoving with
ma, tter has four-velocity

yA gA (2.3)

where Z(u) = vi(AtA -AtA). The Einstein field
equations R~~ —2g»R = —zT„"~"' can be reduced
to the set of independent equations

Roo -2/c —-2--z —, Kp+ zR,Z(u)
a2p2 ' (2.5a)

and p and p, denote respectively the density of
mass energy and the pressure of the fluid, as
measured locally by the observer (2.3). The t'otal
energy-momentum tensor for the interior prob-
lem is then expressed as

AB( 0 ) = ( p+ p)5A5B pQAB +— 2 2 kAkB y (2.4)
2$(u)

II. THE INTERIOR PROBLEM: A CLASS OF SOLUTIONS Z(u)
Ro, —2g

Q P
(2.5b)

The interior region is constituted of a distribu-
tion of matter and„neutrinos flowing outwards. 'The

matter distribution is a perfect fluid characterized
by a total density p, pressure p, baryon number
density n, and radius x„and which emits neu-
trinos. Neutrinos are assumed to move radially
when emitted, i.e. , only radial neutrinos contri-
bute to the energy-momentum tensor. Emitted
neutrinos interact with gravitation only; they are
not scattered or absorbed by adjacent matter.
The above model is to be the solution of the Ein-
stein equations, joined to the exterior solution of
Sec. III on the surface of the fluid sphere.

. In the coordinate system of Appendix A, the line
element for the interior region is taken to be

ds'= n'd +u2 du dh —P'(d8'+ sin'8dy'), (2.1)

where n and P are functions of u and r. All neces-
sary calculations are given in Appendixes A and
8, and all quantities are expressed in the local
inertial frame determined by (A2).

The energy-momentum tensor used for (radial}
neutrinos is

1
R22= -aP —2R,

R„+Ro, -R,2= 0.
(2.5c)

(2.5d)

From (2.5) we can see that Roo+R»+ 2R»
= -«(p+P), which yields the important relation

p
pl

4 n'= —«( p+p) .
P

(2.6)

n =R,(h)r, (u), p.=R,(h)r, (u) .
Using (2.7) in field equation (2.5d) we have

(2.7)

For physically reasonable equations of state we
must then have P"/P & 0 in all points of the in-
terior region. Also the existence of matter in the
interior region described by (2.1) depends essen-
tially on P "/P being nonzero.

inspection of (2.5} and of the expressions in
Appendix B can convince us of the difficulty of
finding an explicit solution of the field equations.
For the present case of matter transparent to
neutrinos, we try a, solution by separation of
va.riables. We take

~
' ~

T~» = 2vj ., 2(A~A —AtA)k~k»
O. 2p2 (2.2) R R "+R"+ 'R Z

2
1 1 1 R 1 R y +R

2 2

as derived in Appendix A, where k„= (1,-1,0, 0);
It is conserved locally and has the form of a null-

+2 ' —'=0. (2.6)
R' 1'

R2 T2
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We make the choice T,/T, = )T, ', that implies
from (2.8}

T 'T '= 1/}I'

RftRR"+R'i 'R' —
i1 1 1 R 1

2 2

(2.9)

(2.10)

(2.12)

2

R,'= —(q+ 2', ')
1 2

(2.13}

where X is a separation constant. From (2.12) we
see that the functional Z(u) of the arbitrary spin-
orial field A(u) of the neutrmo can be described by
the metric function T, or vice versa. Also rela-
tion (2.12) will be useful in relating the sign of y
and of the total mass parameter derivative m(u),
for a class of junction conditions.

Substituting (2.13) in (2.11) we obtain

2 2 2 2 l ~ 4 2 2

(2.14)

(2.13) and (2.14) constitute a pair of coupled dif-
ferential equations for the two metric functions
R, and R,. Once we have a solution (R„R,), p+P
is determined by (2;6), and assuming an equation
of state p = Xp for the fluid, the total density is
determined as

(2.11)iR' R

where t and }7 are arbitrary separation constants.
We examine now equation (2.5b). Using (2.7),
(2.9), and (2.10), Eq. (2.5b) results in

1p= —3p ~

2 2 2 R2

(2.17)

(2.18)

2 +4 q2R -2 2 0 ~ (2.19)

The equation of state (2.18), though satisfying en-
ergy conditions, "implies the existence of nega. —

tive scalar pressures. In this case, the neutrinos
interact with matter only through gravitation; they
are otherwise completely decoupled, because for
(2.18) the energy-momentum tensors of neutrinos
(2.2) and of matter have independently null co-
va.riant divergence.

A possible configuration of the star; described
by (2.18), can occur for critical values of densi-
ties of matter (above 10"g/cm') where general
relativistic effects play an important role in the
equation of state. As discussed by Sakharov, "
for very high densities the exchange and correla-
tion gravitational interactions of baryons become
comparable in order of magnitude with the Fermi
energy, having a decisive contribution in the equa-
tion of state and allowing for an effective behavior
in which negative scalar pressures appear. For
less critical values of density we adhere to the
view that the existence of-negative scalar pres-
sures is not physically satisfactory. To circum-
vent this we later introduce in the total energy-
momentum tensor (or equivalently, in field equa
tions) a term which describes the cooling of the
fluid by emission of neutrinos. For both cases,
we shall have physically distinct junction and
boundary conditions.

From the local conservation law we obtain the
useful expression

p R 2 2 P 2

g(l+ A.)}I' ' R, (2.15) We discuss now the behavior of p with x. Writing
p(x, u) = p(r)T, ', where

However, we must verify that the solutions given
by (2.9), (2.10), (2.13), and (2.14) are compatible
with the remaining field equations (2.5a) and (2.5c).
To this end we initially remark that equation (2.5c)
can be obtained by a convenient linear combination
of (2.5a), (2.5b), (2.5d), and (2.7). Also Eq. (2.7)
does not impose further restrictions on the solu-
tions but only defines the additional variable p+ p.
Thus the only remaining condition to be satisfied
by the solutions is Eq. (2.5a), or equivalently (by
using anterior expressions)

p(~)=- R' R,',6

e R,
we have from (2.13) and (2.19)

and since p(x)) 0, the sign of dp/dy is given by
the sign of

——2(R,'.
R„=-}}(p —P) . (2.16)

Now (2.16) together with (2.6) determine uniquely
p, p, and the equation of state P =p( p). In fact,
from the expression for R„we have

The density p decreases or increases with x,
respectively, for the inequalities

——2)R ') 02 (2.20)
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3
~R,T,T ' (2.22)

Since Q.&0, the sign of 8 is determined by the
sign of $, i.e. , the fluid is contracting for $& 0
and expanding for $&0.

Reinterpretation of the equation of state

For the complete analytic solution discussed
above, the field equations imply the equation of
state p = —3 p, involving thus negative scalar pres-
sures. Although the fluid can present this behavior
for some critical configurations, this solution can
be considered to describe more regular configura-
tions in which the fluid is cooling by emission of
neutrinos. To this end we introduce in the energy-
momentum tensor a A tet.m, namely

RA~ ~ qA~ R = —KTA~(tot)+ A(x))IA~ . (2.23)

Using the form (2.4) for TA~(tot), the right-hand
side of (2.23) can be rewritten

A - A-K p ——+ p+ —5A5s —(p+ —'gAs
K K K

—KT~ (neutrino), (2.24)

where p and p are the actual energy density and

pressure of the fluid, as measured locally by the
comoving observer (2.23). (2.29) has the form
(2.4) for density p and pressure p defined by

which are verified for the following cases: (i)
x&0 &&0 IR.(~)l=(~/2~) ' (ii} g&0, )&0,
lR,(r) l

(x/2$'}"', (iii) x&0, $~«0, for any value
of R,(r) .If at some value ) =) „corresponding to
the interior of the star we have R,(r )=(X/2P)'~',
the density p has an extremum on the two spheres
with radius R,(x ). For the two regions 0&r&r
ands &v&r„where x, is the value of x corre-
sponding to the radius of the star, compatible
choices of (i)—(iii) can be made. Since the junction
of both choices must hold for any u, they must have

$ with tlie same sign, and hence for y& 0 the den-
sity p must be a monotonic function of x.

We now interpret the parameter $. The con-
gruence of observers comoving with the fluid is
defined by the velocity field [cf. (2.3)]

yV, +P Q-1gP (2.21)

For our choice of observers in the interior of the
future light cone we have the condition Q&0. For
the congruence determined by (2.21}the expan-
sion parameter" 8= V~,„ is calculated as

find that p and P correspond to the same metric
solution discussed above, for Einstein equations
(2.23), with the A term satisfying .

p+ g p= -gA/K . (2.26)

From (2.23) the Bianchi identities imply the con-
servation law

KT„"„„(tot)= A
~
„. (2.27)

The right-hand side of (2.27) permits us to de-
scribe the heat output (input) rate of the system, and
which is interpreted as the rate of cooling (heat-
ing) of the fluid due to emission (absorption) of
neutrinos. To see this let us write (2.27) in the

- local basis (A2),

K[( P+P) n RAo ( P+P)~OA0 (PIP—}nAo~o B
0

-Pe(A) ~ e(A)] e(A) A
I v . (2.28)

For A=O we have

n p
K P (p+P) —--2—

p
(2.29)

Denoting by n the baryon number density as mea-
sured locally by the comoving observer (2.23),
matter conservation is expressed as

n pn --n ——2 — = 0.
n p

(2.30)

Defining a specific internal energy e by p=z(p, , &+),

where p,. is the rest mass of the baryon, we ob-
tain, from (2.29),

-(t)' (2.31)

—A'/K, (2.32)

which substitutes the usual equation for static dis-
tributions p'+ ( p+p)n '/n = 0. Equation (2.32) is
the equation of hydrodynamic equilibrium for the
star configuration. Vfe now consider quasistatic
distributions. Since by (2.22) the expansion or con-
traction is determined by $, we define quasistatic
configurations for values of g such that

Equation (2.31) is the expression, in the rest
frame of the Quid, of the first law of thermody-
namics, where A/n is proportional to the heat
output (input) rate per baryon of the fluid.

For A=1, (2.28) yields
0 ~ t

Q 1 1 - - 1 - - 2P QP'+(p+f ) n'+ —. , = , (p+f )+ —(p+—P)————,
Q Q Q Q pn n'

p= p-A/K,

P =P+A/K.

(2.25a)

(2.28 )

(2.33)

An immediate integration of (2.9) and (2.10) gives

If we take ( p,p) as given by (2.17) and (2.18), we T,'= 2)u+ $0, (2.34)
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1
q'(2@+ &,)

' , (2.35)

(2.36)

where $0 is a constant of integration. For (2.33)
and finite values of u, the functions (2.34) and

(2.35) have approximately the constant values
T,'= $0, T,'=1/g'$, . We remark also that all
u derivatives in (2.32) depend linearly on $ and

can thus be neglected for (2.33) and finite values
of u. Equation (2.32) reduces then to

(3.3)

and the Einstein equations imply

(3.4)

It has the form of the energy-momentum tensor
of a null fluid, which is the usual phenomenologi-
cal description for neutrinos in general relativ-
ity. 5" Here, A. (u) is the arbitrary two-component
spinor of the solution (A7) of Dirac's equation.

The Hicci tensor for (3.1) has the forin

4mB~= ~ 2k~k~
Q P

HI. THE EXTERIOR SOLUTION

The exterior region is supposed to contain only
neutrinos in interaction with the gravitational field.
Since the problem is nonstationary, spherically
symmetric, and the trace of T ~(P) is null, we
take for the.exterior region the Schwarzschild
radiating metric"'" which, in the coordinates of
Appendix A, assumes the form

ds'= &'du'+ 2du dr —r'(d8'+ sin'8dp'), (3.1)

where o.'= 1 —2m(u)r '. Light signals propagate
along null lines of constant u, such that du is the
proper time (or Newtonian time") of an ob
server at rest at infinity. For neutrinos propa-
gating radially along the light cones of (3.1) we
use the energy-momentum tensor

T» = 2wi 2 (X A. —X X)k~ke,A+ (3.2)

as derived in Appendix A, where k„=(1,-1,0, 0).

which is the equation of neutrino radiative equili-
brium for a spherically quasistatic configuration.
The quantity -A/e can be interpreted as a pres-
sure associated with the neutrino radiation, which
we denote" as

(2.37)

In fact we can think of the equation p' -p„'
+ (p+ p)n'/+=0 as the relativistic analog fog
neutrinos of the Chandrasekhar equation" of
radiative equilibrium for photons, of a star in
Newtonian approximation. The terminology "neu-
trino radiation pressure" is by formal analogy
with the photon radiation pressure in Chandrasek-
har's equation. The basic difference is that the
gradient of the neutrino radiation pressure (2.37)
contributes negatively in the equation of radiative
equilibrium (2.36). This was expected since neu-
trinos have no interaction with the fluid and their
effect is to cool the configuration, this cooling
corresponding to a pressure gradient in the in-
verse direction, additive to the gravitational
compression.

The geometric properties of the Schwarzschild
radiating space-time have been extensively studied
by I.indquist, Schwarz, and Misner, "but we have
some comments here. If we examine the curva-
ture tensor R»cv of the metric (3.1) for x suf-
ficiently large, we see that the leading term (cor-
responding to the lowest power of x ') has the ex-
pression R»cD -m/r'. The radiated part of the
space-time thus comes from ma 0 which by (3.4)
is due only to the radiated neutrinos, and no gravi-
tational radiation emission is present, a fact that
was expected because of the spherical symmetry
of the space-time. The total radiated power
(which is associated to neutrinos only, denoted
"neutrino luminosity") can then be calculated
from the energy-momentum tensor (3.2). Writing
v" = o' '60 (corresponding to a: local inertial ob-
server), the neutrino luminosity as measured by
an asymptotic observer at rest is then given by

L„,= lim 4vr'T„„(neutrino)v'v"

= Sv'i(di —i'X),
which can be expressed through (3.4) as L„,
= —(16m/v)re, a result obtained in Ref. 19 by a
different approach.

We here neglect the region r &2m(u) (m& 0) by
assuming that the fluid has a boundary x,(u) & 2m(u),
such that the emission of neutrinos takes place be-
fore the fluid is inside its Schwarzschild [the static
limit corresponds to the Schwarzschild configura-
tion for x& 2m = const (cf. Sec.. IV)]. We exclude
the case of the whole mass of the object being
emitted as neutrinos before the fluid reaches its
Schwarzschild radius (i.e. , i,& m); the conditions
which eliminate this possibility for our solutions
are examined later [cf. Eq. (4.19)].

IV. JUNCTION (AND BOUNDARY) CONDITIONS

FOR THE INTERIOR AND EXTERIOR SOLUTIONS

Here we denote the coordinate systems of the
interior solution (2.1) and the exterior solution
(3.1}, respectively, byx, =(U, R, 8, p} and x„
= (u, y, 8, y). For the exterior solution the co-
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which is a consequence of T,& 0 and T, finite in
the admissible domain of U. In the following
analysis we are considering only the region of
the space-time for the solutions covered by the
above coordinates.

Let us consider the three-dimensional hyper-
surface Z of the junction of the two soly. tions and
D a finite neighborhood of Z. D and Z are chosen
such that x, and x» are simultaneously admissible
im. D. Following I.ichnerowicz" we assume rea-
sonable conditions on the continuity' of the metric
and its partial derivatives on D, such that we have
the continuity of the metric through Z and the
junction conditions' '"

G "Q)„=continuous through Z, (4.1)

where the equation of Z is given by &f&=0. For
the present admissible coordinate systems, we
also assume that on D the transformations func-
tions x, =x„have continuous first. -order partial
derivatives and piecewise continuous second-
order derivatives (that is, the second-order par-
tial derivatives may have different limits on each
side of Z), such that the junction conditions (4.1)
are preserved under the transformations. From
the Einstein equations and (4.1) we have the
Israel-O' Brien-Synge juncti. on conditions"'"

ordinates x» are admissible in the region of the
space-time restricted by t&2'm(u). For the in-
terior solution we see by (2.13), (2.14), and (2.19)
that the coordinate R is admissible in all its do-
main, excluding the points such that R,(x)=0 (we
remark that R, ' is proportional to the curvature
of U, R=const spheres, and always assumed to be
finite). The coordinate U must be restricted [cf.
(2.34)1,

50'
U& — )&0 7

calculated,

(ds')c= 1 —- + S', du' —r,'dQ'2m(u)

8

and

(4.5)

P'(R„U)=x,'(u),

a'(R„V)dU'= (I — + 2), du'.2m u)
~,(u)

(4.7)

(4.8)

This equality of the first fundamental forms of
Z guarantees the continuity of the metric through
Z. Equation (4.8) relates the proper time interval
dn of an observer at rest at. infinity and the inter-
val dU of an observer on the surface Z. We re-
mark that if', = 0 from Eq. (4.8) we could take
U =—u and extend the exterior coordinates naturally.
to the interior region R&x„corresponding to the
complete solution of the Schwarzschild problem
for a static fluid sphere. Defining coordinate
transformations u = E(U, R), r = G(U, R), differen-
tiating and calculating in R =R „we have from
(4.8) that E'(R„U)= 0. The continuity of the metric
through Z can then be expressed as

G'(R„U) =R2'(R,)T2(U),

(EG')„=1, (4.9)

([1—2m(E)G ']E'+ 2EG f„s =R, '(R,)T,'(U) .

Equations (4.12) define a class of coordinate trans-
formations in a finite neighborhood of Z which are
compatible with the junction conditions discussed
above.

By using (4.7), (4.8), (2.9), and (2.10) we can
calculate

(ds'), = ~'(R„U)dU2- P2(R„U)du'. (4.8)

'The first junction condition can be expressed by
the equality of (4.5) and (4.6), which results in

T "Q)„=continuous through Z, (4 2)
d~,(u) R,(R,) 1

2m(u) .
(

du . R,(R,) x,(u)
which express the continuity of the flux of four-
momentum through Z.

We take as junction hypersurface a sphere with
u-dependent radius, described in exterior co-
ordinates by

Z: ~=~,(u). (4.3)

R =R = const. (4.4)

Parametrizing the extrinsic coordinates of points
on Z as x„=(u, r,(u), 8, p) and x,"= (U,R,
= const, 8, y), the metrics induced on Z by the ex-
terior and interior metrics can be respectively

In interior coordinates x, , we note that R is a
comoving coordinate (e«»BR/ex', = 0) and Z is de-
scribed by

(4.10)

where the variable u is related to U by u =E(R„U).
Equation (4.10) determines the evolution of the
surface Z. We remark that whenever the square
root is taken in obtaining the above expressions,
it is geometrically reasonable to consider the
positive root only. Since from (4.8) (1 —2m/r,
+f',)'~' is always positive, we see that the sign
of P, is given by $. Hence f, is greater than or
less than zero if the Quid is expanding or con-
tracting, corresponding respectively to an in-
creasing or decreasing of the area of Z.

We examine now the 'junction conditions (4.2) in
the junction surface (4.3), described in exterior
'coordinates. Since the metric is continuous
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through Z the junction conditions (4.2) can be ex-
pressed in the tetrad basis as

II(A) IIV lI(& )Tg Z
) p

continuous through Z

which implies

l

n, '(Z) n„'(Z) (4.17)

or

T„Z~~= continuous through Z,

(4.11) or
n„'(Z) = 2i, . (4.18)

where

[2) 22(2) ) [11 ( 2I 81 II ( 2+ II }»
(4.12a)

are the tetrad components of the normal to the
surface Z. Here n„'=1 —2m(u)r ', since the
normal is expressed in terms of the exterior so-
lution. From (4.11) we have

(AT~ )Zw =0, ' (4.12b)

2 ( 2 l
2 + 2k n 2(Z) n 2(Z) II ( (4.13)

2 Z l-4P[4+4O*(2)]=—, „2,—,; )) . (4.14)

Since p and p must satisfy p= -3p, this implies
their discontinuity through Z must satisfy

1
Qp ~ ~ 3 Qp (4.15)

which determines that the actual solution (p,p, A}
must be discontinuous through Z. Also, since it
is physically reasonable to have &P= 0, we have
from (2.25)

A p= A p —AA/K,

AP = AA/K .
(4.16)

On examining the junction conditions (4.13}and

(4.14) we can distinguish two relevant situations:

(a) Ap, Ap~O.

Substituting (4.13) and (4.14) in (4.15), we obtain

n 22(Z) n „'(Z) 3
'j;

where &T„denotes the discontinuity in T„on
crossing Z, explicitly AT„= T,„(Z)—T„„(Z).
In (4.12) n»2 is calculated on Z, n„'(Z)
= 1 —2m(u) 2; ', where u =E(R„U). We follow
an analogous notation in all cases.

Noting that the quantities in (4.12) are expressed
in a tetrad basis, and are then invariant under
coordinate transformations, we can use directly
the components (2.4) and (3.2) of the interior and
exterior energy-momentum tensors in the
calculation of AT„s. With the notation l(u)
= 2vi(X2X —VX) and using (4.7) and (4.12), the
junction conditions (4.12) yield

The case (4.17) will be examined later. From
Eq. (4.18), together with (4.10), we have the ex-
pression for m(u):

m(u) = 1 —8$')l' R2(R) 2. (4.19)

R,(R,)m p 2
(4.20)

From the above discussions, the choice (4.18) is
not satisfactory for quasistatic distributions in
radiative equilibrium [cf. (2.36)]. For this we
consider the following:

(b) Distributions (p,p, A) vanishing smoothly on
Z, without discontinuity: AI5, Ap, AA=O. From
(4.13) and (4.14) we have

l
n, '(Z) n„'(Z) (4.17)

which is the first case of (a). Using (2.10), (2.12),
(3.4), and n, '(Z) =R,'(R,)T,'(U), we obtain from
(4.17) the differential equation for m(u):

q'X
1

2m(u)
R, '(R,) 2;(u)

(4.21)

%e now know that for neutrino emission m & 0
and for neutrino absorption m& 0. Since 1 —2m/2;
is always positive, we have

(b.l) X& 0 emission,

(b.2) X & 0 absorption

independently of the sign of g. 22 So in this case
we can eventually have emission with expansion,

Because the present coordinate system is admis-
sible only for 2" & 2m(u}, the parameters shall be/. .

restricted by

.'( .}& ," R '(R.)
Equation (4.19), which basically results from the
choice (4.18), contains the important information
that, in the static limit $-0, the surface Z coin-
cides with the Schwarzschild surface of the star,
that is, for g-0 —when the emission of neutrinos
ceases —the fluid is entirely contained inside its
Schwarzschild radius. Using (2.34) and (4.7) in
(4.19), the Schwarzschild mass for the static limit
of a star emitting neutrinos, immediately before
passing its Schwarzschild radius, can be evalu-
ated:
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though these situations seem. physically improb-
able.

Finally we determine the. function A(R, U) and
the actual density p, for the case of the junction
condition (4.18). Since our solution has a natural
static limit defined by $-0, we define the total
mass-energy of the fluid, in a way analogous to
the static case"'"

m(R „U)= 4p f 'p(R, U) 8 (R, U') 8'(R, U)dR,

(4.22)

correctly including not only the rest, the internal,
and the baryon interaction energies but also the
energy of gravitational interaction. Because no
gravitational radiation is emitted simultaneously
with neutrinos, the yroblem of localization of the
energy of gravitational waves is not present here,
and the total energy (4.22) is localized since other
fluxes of energy (neutrinos, for instance} are al-
ways locally measurable [cf. (2.31) and (2.32)].

Using that p(R, U) = p(R)T, ~(U)+ (&/k)(R, U) and

P =R,(R)T,(U), the equality of (4.22) to (4.1S) re-
sults in

y'T, R,'R + ' =47tpR R 'R R'R TR 0

S

+ —A(R, U)R,'(R) R,'(R)T2'

up to a function of (R, U) whose integral in R be-
tween 0 and R, is identically zero; here y'
= —,'[1 —8$'q'R '(R,)/R, '(R,)]. We then have for
this case the expressions

p(R, U)= —1' '(U) 14. , )), (4.43)' 2 R 2

s 2

(4.24)

where p(R, U) is given by (2.17). In the present
case where &T„~(Z)0 0, the value R, correspond-
ing to the radius of the star can be determined by
the condition &p =P(R,) =0 subject to the condition
R2'/R, & 0 for R&R, [cf. (2.6)].

V. CONCLUSIONS

We have presented a complete relativistic model
of a spherically symmetric star, with its basis in
the coupled Einstein-Dirac equations. 'The interior
of the star is assumed to be a perfect fluid —de-
scribed by its total density p, pressure p, and
baryon number density n —and bounded by a
spherical surface of radius r,. The matter of the
star is assumed transparent to neutrinos. The
energy-momentum tensor used for neutrinos has

the form of the energy-momentum tensor of a
null Quid, which is the usual phenomenological
description of neutrinos in general relativity. It
has been derived in Appendix A, starting from
the classical spinorial field (j), the solution of
Dirac's equation for neutrinos in the metric of
the spherically symmetric space-time, corre-
sponding to a radial current j = gZ (x}P along the
local light cones. In the coordinate system used,
the Dirae equation is completely integrable for
the radial neutrinos considered, and all observ-
able quantities constructed with these solutions
correspond to an isotropic emission. This makes
the average proposed for the energy-momentum
tensor, leading to the null-fluid description, legiti-
mate. 'The interior solution is obtained by separa-
tion of variables, the fieM equations implying the
equation of state p= -3p. Although negative scalar
pressures can occur for very high values of the
density, "for less critical configurations negative
scal@r pressures are not physically satisfactory.
To circumvent this we introduce a A term in the
total energy-momentum tensor (equivalently, in
the field equations). To the above solution cor-
responds a solution for actual energy density,
and pressure p= p+A/e, P =P —A/e, respectively,
with P+ p/3=-,'.A/((. From the conservation equa-
tions which follow from the Bianchi identities, we
have that A. is proportional to the rate of cooling
of the fluid. Also for quasistatie distributions
(this limit being w'ell defined for our solution}
these equations provide us with the relativistic
analog for neutrinos of the radiative equilibrium
equation of Chandrasekhar, where (-A/K) ap-
pears as the equivalent of a radiation pressure for
neutrinos (perhaps a better designation would be
"gravitational pressure due to neutrinos'*). Con-
trary to the photon radiation pressure in Chandra-
sekhar's equation, the gradient of (—A/e) has a
negative sign —in fact the effect of neutrinos is to
cool the configuration (they do not interact with
the matter of the star), this cooling being equiva-
lent to a pressure in the inverse direction of pho-
ton pressure, additive to the gravitational com-
pression. The exterior metric is the Schwarzs-
child radiating metric and we have used Israel-i Brien-Synge junction conditions of the exterior
and interior solutions. Two physically distinct
situations arise. In one case the solution de-
scribes a stage of emission of neutrinos, with
consequent contraction of the configuration im-
mediately before the fluid is entirely inside its
Schwarzschild radius, when the emission of neu-
trinos ceases ($-0}. The A function is explicitly
determined for this case. The other possibility
can, for instance, correspond to a quasistatic
configuration, where (-A/z) has the interpreta-
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tion of a radiation pressure for neutrinos.
Our detailed geometrical treatment of the prob-

lem has nevertheless been unilateral because of
our description of neutrinos as classical spinorial
fields. An improvement of it would be the quanti-
zation of the neutrino field on the classical curved
space-time. However, the only Killing vectors of
the present model are the generators of the spatial
rotation group. These are not sufficient to con-
struct a basis for an invariant decomposition into
excitation modes of the field, and an invariant
definition of particle and antiparticle states and
vacuum states. " Alternatively, since the ex-
terior solution is asymptotically flat we could
assay an asymptotic quantization of the neutrino
field, choosing the asymptotic basis functions as
the usual basis functions in flat space";. for the
junction condition (4.17) the form (2.12) would be
an additional guide in the choice of the basis to
express I(u). From the clasSical form of I(u) and

following the usual scheme of quantization it would
in principle be possible to characterize the pa-
rameter X as function of the generalized momenta
corresponding to the basis chosen. At present
we do riot know if a complete quantization of the
radiated neutrino field in the background metric
would provide a drastic change in the problem of
these particles contributing to the curvature of
the background and if our solution as a first ap-
proximation would be significant at all.

such that (Al) assumes the form (1.1). Ricci co-
eff icients y» c are calculated from (A2) and have the
non-null components

yoga= n'+ n/n ~ yea =- P/Pn+P'n/P,

yore = n/n ~ yzss = P/Pn+P'n/P ~

y,» = p/pn, y», = cot8/p,

y03s= p/p n~

(A3)

where a dot and a prime denote, respectively, de-
rivatives with respect to I and r.

The Fock-Ivanenko coefficients (1;5}are then
calculated":

I', = --,'(n '+ n/n') y'y',

r, =-. —.yy,n 0 i

1P, 1P'nPr. = ———y'y' —— ——y'y',
2Pn 2 P Pn

(A4)

(A5)

o 1 P'n PyOy3 yl y3
2Pn 2 P Pn

cot8
2

Since only radial neutrinos are considered, we are
restricted to spinorial fields of the form
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APPENDIX A

For both the exterior and interior problem, our
choice of coordinates is x = (u, r, 8, y), —~ & u & ~,
0(r&~, with the following properties: (i) the
hypersurfaces u = const are null hypersurfaces
tangent in each point to the local light cone; (ii)
r is an affine parameter along the congruence of
null geodesics with tangent k =g ~n~z, and can be
interpreted as a luminosity distance in the usual
sense. '" In this coordinate system, a spherically
symmetric line element can always be expressed
as

ds' = n'du'+ 2 du dr —p'(d8'+ sin'8 dy'), (Al)

where n and P are functions of u and r. We choose
a tetrad basis (e '"') with non-null components

where y is a two-spinor and o' is the constant
Pauli matrix, corresponding to a four-current

1' = e (~))y P = 2n g p6~ (A6)

along the radial light cones of (Al). Noting that
F, depends explicity on 8, we are then led to take
p= y(u, r, 8). In the present representation of the
y", the Dirac equation (1.7b) reduces to

n' npp'+ —+ —
cp = 0,

2 r

—+ —eot8 can=088 7

which can be immediately integrated to give

y(u, r, 8}=
(

. ,(, A(u),
1

(A7)

where A(u) is an arbitrary two-spinor. " (A7) cor-
responds to the most general solution (A5) of the
Dirac equation in the metric (Al). In the four-
current (A6) the solution (A7) yields

e (0) = a e (0) = a-1
0 & 1 (A2)

j = . , A (u) A(u) 6P .
sin8 (A8)

e"'= n ', e"'=P, e,"'=P sin8„ The non-null components of the energy-mom. entum
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tensor (1.3) of the neutrino field (A5), (Av) are

00» ol sin8 nm 2 (A9a)

2 cot8T03-- Tis -3sin8 p 0.
(A9b)

Expressions (A8) and (A9) show clearly why it has
been widely stated in the literature" that neutrinos
cannot generate a curvature compatible with
spherical symmetry. The angle dependence of
(A9b) is not so drastic because we could consider
neutrino fields satisf ying

Atc'A(u) = 0 (A10)

which are not eigenstates of y'. Actually these
components (A9b) should vanish by the Einstein
equations for (A1).

Since, in principle, there is no reason why a
spherically symmetric star (in some stage of its
evolution) cannot emit neutrinos in interaction with
and contributing to the gravitational field, the con-
trary possibility being physically intuitive, we
must modify or reinterpret result (A9). Fortunate-
ly the 8 dependence of (AS) and (A9a) is suggestive
because it is exactly the factor 1/sin8 which cor-
rects areas in measurements in a spherical co-
ordinate system.

Indeed if we consider the measurement of a ra-
dial flux of neutrinos, we can easily see that the
number of particles, by unit of time and area,
measured in the direction 8, for r fixed, is pro-
portional to

Too = f'» =- To, = 2n'i, , (A~A - A~A) . (A12)

In the coordinate basis, T z=e' 'ez 'T,„~ can be
expressed as

27Tf
T = —(AtA —AtA)ui upsRB CM

which shows property (ii).
We finally remark that, in the same context,

Griffiths" proposed an anlogous average for the
energy-momentum tensor of neutrinos, based on
the following considerations. The results of the
theorems (30) are physically irrelevant since they
are in the realm of.. one-particle theory, and for
describing neutrinos radiated from a star we must
do a "statistical" approach. . Starting from the
one-particle theory with a radially propagating
neutrino field, a first approximation to the many-
neutrino energy-momentum tensor is constructed
by summing all the individual one-neutrino tensors
over neutrinos propagating in random directions.

APPENDIX B

neutrinos of only one type, P&, &
=+&'g&, &.

Redefinition (A11) has two important properties:
(i) T s is still conserved locally in the metric (Al),

s~~s=0; (ii) T z has the form of the energy-mo-
mentum tensor of a null fluid' which is the usual
phenomenological description of neutrinos in gen-
eral relativity. "'.

Substituting (A9) in (All) we obtain the non-null
components

~ij (8),

T = — dy d8 sin8T
4m' gLV

0 '0
(A11}

as the physical energy-momentum tensor for neu-
trinos, which shall enter the right-hand side of the
Einstein equations, in a spherically symmetric
space-time. Condition (A10) can be discarded as
artificial because in (A11}we can take the 8 in-
tegral as the principal value, which implies T„

Ty3 0, and we can eventually have emission of

where j"=2A~A(u)/P' sin8 and ~g=P' sin8 tcf.
(A8) ]. Hence the observed flux is independent of
the direction of measurement, whether observed
locally or globally. Analogously we can interpret
T," as a current density of energy-momentum,
which depends on 8 as 1/sin8 and so corresponds
to an isotropic (or spherically symmetric) flux of
energy. Since all observable quantities constructed
with (A5), (AV) are independent of the direction of
measurement, it is legitimate to redefine

The non-null components of the Ricci tensor R»
for the metric (Al) in the tetrad basis (A2) are

R„=-2nn"- 2n" + 4p /pn'+ 4pn'/pn

—4nn'p'/p —4np'/np,

R» = —4p/pn'+4p'/p- 4 pn'/pn

+4 p'n%pn,

R» = 2nn" + 2n" +4p /pn —Qp'/p

—4p'n/pn+ 4pn'/p n

+ 4p 0(p/p + 4 n n lp I/p

R» =R» =- 4p'/p+2p "n~/p+4nn'p'/p

2/P' 4PP /P—'-
+2p n'/p'
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