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Calculating the electron mass in terms of measured quantities
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We construct a class of models in which the electron mass can be calculated in terms of the fine-structure
constant, the muon'mass, and the Weinberg angle. We obtain m, /m„= X(a/@sin 0~) where X is a pure
number of order 1 which depends on the specific model. (There are corrections to this formula which depend
on parameters of the model, but which can be made arbitrarily small by arranging certain exotic gauge
bosons to be heavy. ) We show that within this class of models it is possible to obtain agreement with neutral-

currerit data and the experimental value of m, /rn„.

I. INTRODUCTION

The electron mass is certainly one of the most
basic parameters in physics. The advent of re-
normalizable gauge theories of the weak and elec-
tromagnetic interactions has raised hopes of un-
derstanding the origin of the electron's mass arid

has provided a natural framework for discussing
the age-old electron-muon problem.

The smallness of m, compared to m„(and, in-
deed, compared to all other known fermion
masses) has led many to suspect that the electron
might, in fact, be massless in the tree order of
perturbation theory, becoming massive a,s a re-
sult of radiative corrections. The numerical fa,ct
m, /m„- O(b) lends further credence to this general
idea.

Georgi and Glashow, in a pioneering work, ' and
other authors have constructed models in which
the electron mass is calculable. The "trick" for
constructing such models is to impose on the
Lagrangian symmetries (discrete or continuous
or a combination of both) which rule out the ap-
pearance of an electron bare-mass term, and
which further prevent the electron from acqui-
ring mass through the Higgs mechanism in tree
order. This latter condition can be accomplished
in two ways. 'In the first possibility, symmetry
forbids any Higgs field from coupling the left-
handed components of the electron to the right-
handed components. The second possibility is
that the Higgs field coupling e~ to e„has vanishing
vacuum expectation value in tree order. It is ap-
parent tha. t in such models the electron mass will
be finite and calculable. This follows from the
fact that, in a renormalizable theory, ultraviolet"
divergences can always be canceled by counter-
terms which respect the symmetries of the
Lagrangian (if the theory can be regulated in an
invariant way). Thus no divergence can appear

in rn, to any order of perturbation theory.
One of the most disappointing features of all

models hitherto published in which yn, is calcul-
able is that the calculated value of the electron
mass ends up depending sensitively on several
parameters which, while measurable in principle,
a,re not accessible to experiments in the immedi-
ate future. (These are the masses and mixing
angles of superheavy gauge bosons, or heavy
leptons, or eouplings in interactions which do not
contribute measurably to known phenomenology. )

In this paper we present an example of a class
of models in which the leading contribution to the
calculated value of m, can be expressed in terms
of quantities already measured. Specifically, the
electron mass in these models has the simple form

~,= &V . ,'" —+ (corrections) .
77 sin 6)~

Here sin 9~ =—e/g (where g is the gauge coupling of
the weak interactions) and can be measured in
neutral-current interactions. N is a pure number
which varies from model to model depending upon
the dimensions of the lepton multiplets. and the
choice of gauge group. The corrections referred
to in Eq. (1) are dependent upon unknown para-
meters but are down iri magnitude by one power
of the logarithm of a large quantity (the ratio of
the mass of a heavy gauge boson to the mass of a
heavy lepton).

In this paper we adopt the reasonable assump-
tion that gauge bosons are much more massive
than all relevant leptons.

There is, of course, no fundamental reason why,
in the true theory, the electron mass should be
expressible in terms of the other physical con-
stants which are currently measurable by physi-
cists. On the other hand, it is obviously desir-
able to give first consideration to models which
make some- contact with experiment.
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In Sec. II we discuss briefly previously pub-
lished models, show where the parameter de-
pendence arises, and outline the basic idea for a
class of models which lead to a calculated value of
m, in the form given by Eq. (1). In Sec. III we

give a simple example of such a model, based on
the group SU(2) x SU(2) x U(1). In Sec. Ip we dis-
cuss how the value of the numerical factor N of
Eq. (1) depends upon the details of the model, and
for which models good agreement with experi-
ment is possible. Section V is a summary.

II. GENERAL SCHEME

We propose to consider models in which the
electron mass arises principally from diagrams
of the type shown in Fig. 1. Simple power counting
indicates that such a diagram is logarithmically
divergent. Therefore, in any model of this type
where the electron mass is calculable, there will
be in general more than one diagram which con-
tributes to the electron mass, the divergent parts
of which cancel. This cancellation may occur be-
tween two (or more) diagrams involving bosons
of different repass, or the cancellation may occur
between two (or more) diagrams with fermions of
different mass on the internal line. We will con-
sider models of the latter variety. '

As an example, suppose that the electron and
muon are in the same representation multiplet of

some gauge group. Call the off-diagonal gauge
b'oson which couples the electron to the muon W„
and the gauge coupling constant g„. Further,
suppose the muon mixes with some heavy lepton
X . (This is the type of model considered by
Georgi and Glashow. ) The undiagonalized mass
matrix for p, and X will have the form

(0)
( X-}(0) l R

X„

There is to be allowed no direct coupling between
the multipleis containing e~ and e~, and therefore
none between li~ and p. ~ (remember e and p, are
in the same multiplet). This' explains the zero
entry in the mass matrix exhibited above. Diago-
nalizing this asymmetric mass matrix we find

cosA. sink

-sinA. cosA.

cosp sinp

-sinp cosp

gag„cosk cosp = -mx sinA. sinp.

Thus the two diagrams shown in Fig. 2 will con-
tribute to the electron mass. An evaluation of
these diagrams gives (in the Landau gauge)

m, =m„(g„cosA)(g„cosp) (2~)' (t'+M „')(I'+m ') '

The mass relation given in Eq. (3) indicates that
the two terms in Eq. (4) combine to give a finite
result:

eL

In a particular model g„may be related in a known
way to e. However, in general the para. meters

IL FR eR

FIG. 1. Prototypical diagram contributing to the
electron mass. The wavy line is a gauge boson.

eL h XL XR e„
FIG. 2. Two diagrams contributing to the electron, ,

mass in a model in which the muon mixes with a heavy
lepton X . 9& is a heavy "exotic" gauge boson.
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A. , p, mx, and M~„are not known. Thus a, formula
form, such as Eq. (5), which typifies the results
obtained so far in the literature, ' is not parti-
cularly exciting. As explained in the Introduction
we have assigned ourselves the task of doing
better.

We can see from the foregoing discussion that
most of the parameter dependence of the electron
mass is a result of the fact that the muon mixes
with another {heavy) lepton. Such mixing appea, rs
unavoidable if the electron mass arises from one-
loop diagrams with the divergences canceling
among diagrams with different leptons on the in-
ternal lines. We propose to eliminate much of
this parameter dependence by not mixing the
muon.

Suppose that in some models both the electron
gpgd the muon are massless at the tree level, that
the muon derives its mass at the one-loop level
from diagrams of the sort shown in Fig. 3(a), and
that the electron derives its mass at the two-loop
level from diagrams of the sort shown in Fig.
3(b). (In Fig. 3, W» and W'» are heavy gauge bosons
and X and Y are heavy leptons. ) The point is
that much of the unknown parameter dependence
may be expected to be common to the expressions
for m, and m„, and thus to cancel out in the ratio
m, /m„. That this indeed can be arranged shall be
demonstrated presently.

The expression for the muon ma. ss which re-
sults from the diagrams of Fig. 3(a) has the form
(ignoring numerical constants for now)

m„-,m»cosA cosp ln
F My Mgg

2~2 X Sl y'

Wp

XL

W/

XR ~hPR P &h YL YR Oh'

Wt,

each„&h % &heR each, . % &h „~heRL "L
XLXR R RL L YIYR R R

FIG. 3. Diagrams contributing to the muon and elec-
tron masses in the class of models proposed here.
X and 7 are heavy leptons. WI, and W& are heavy
"exotic" gauge bosons.

I&, „,&
will cancel out in the ratio m, /m„. If we

call (M~„/M», '„)' = R, for the sake of brevity, then

an evaluation of the two-loop momentum integral'
can be found to give an expression of the form
{again, assuming m», mr «M~„, M», '„)

IssssS 1nR l(ss )' (I,')*

Here A. , p are the mixing angles of the left- and
right-handed heavy leptons (X and Y' ). [Com-
pare to Eq. (4).] We have made the reasonable
assumption that m~, m~ «M~, ,M~„'. The electron
ma, ss will have the form

mgs» g» {m» cosA cosp)
I

X I ml. mX Mg ~
1(2 looy ) M g ~ IWa Wa S'h

where I&»„» is the result of evaluating the two-
loop momentum integrals in Fig. 3(b). The ex-
pression g„"m~ cosA. cosp is indeed common to
Eqs, (6) and (7). Moreover, it is no problem to
construct a model wherein g„ is related in a known

way to e (as we shall see). It remains, however,
to be seen whether the parameter dependence of

1
x 1+0

ln(M „/m, }'

Introducing an angle 0 defined by e=g„sine, this
may be rewritten as

m,
( t) lnR nm„R—1 csin 9

r

x [1+(logarithmic corrections)]. (10)

If g»=g (the coupling of ordinary weak interac-
tions) then 9= 9 (the usual Weinberg angle}.

We now proceed to implement this general ap-
proach in specific models. To summarize, we

'o((ss') (ss*) (

(8)

so that, up to a numerical constant,

me lnR gp' -(const} x
Plp R —1 2m
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seek models in which the diagrams shown in Fig.
3 can arise, Il is fixed, sin 8=- e/g„ is measur-
able, and m~, m~«M~, M~ . Actually, in the
simplest type of models we consider, W„and W'„

turn out to be one and the same gauge boson so
that the factor in'/(A —1) can be replaced by
unity. In this case Eq. (10) becomes

Pl g--' - (const) x CV

rn g sin'6)

x [1 + (logarithmic corrections)].

III. AN EXAMPLE

By way of 'illustration we present here a simple
example based on the gauge group SU(2)„x[SU(2)
xU(1)]„~~„. The coupling constants are g„, g,
and g', respectively. The charge is given by Q
=I~+ Y/2, where I, is the third component of weak
isospin and Y is the generator of the U(1) hyper-
charge group. Denoting the multiplets by
(I„,I; Y), the left-handed leptons belong to a
(1, —,'; -1), a (1,0; 0), and a (0, —,'; -1) as follows:

the Lagrangian. This ensures that at tree level
m, =m„= 0 "naturally. " Diagonalizing the lepton
mass matrix one finds

1
(0)

L cosA. sink

-sinA. cosA.

V+ V„) ~ IN, NI, N„'~
x )& .$&,sic p. x i

r

N„j,

I

Ny)~ o o + ~'Ny

kY / IY
L R

FEG. 4. Schematic representation of the Yukawa
couplings in the Lagrangian in illustrative inodel.
ft52 and fI|3 are Higgs multiplets which couple left-handed
leptons to right-handed leptons.

(o)
R cosp sinp

—sin p cosp

(m&
R

(12)

The horizontal direction is the I» direction and
the vertical is I, . The right-handed components
are in a (1, —,', -1) and a (0, —,'; -1):

where the superscript (0) means "undiagonalized"
and (m) means "mass eigenstate. " From the

pattern of the Higgs vacuum expectation values it
is clear that the SU(2)„gauge bosons are not mixed
with the SU(2) xU(1) gauge bosons. The gauge
boson masses are given by

N~ N
0

e p, X

[As is evident, this example is a generalization
of the Cheng-Li. ' vectorlike models. lt is possible
to generalize the Weinberg-Salam model in the
same way by eliminating the heavy neutrinos
N„N„,Nx and putting the right-handed leptons in

(1,0; -2) and (0, —,'; —.1) multiplets. ] The Higgs
multiplets are P, : (1,0;0), P, : (1,0;0), and P,
= (0, —, , —1), with vacuum expectation values'
(VEVs)

(y, ) =(00a),

(y, ) =(0 0f),

a, b»e.
The Tukawa couplings are schematically sum-
marized in Fig. 4. No bare mass or Higgs
coupling of L, to R, is permitted by symmetry in

SU(2) xU(1): (M~+) = —,'g'c' (ordinary weak

intermediate

vector boson)

(M, }'=, (M .)'cos'8
(M„)' =0 (photon),

SU(2)„: (M, )'=g„'(a'+ 5')

(M&„)' = 2g, '(a'+ &'),

with tang~ =g'/g. The SU(2)xU(1) subgroup we

identify with the gauge group of the observed weak
and electromagnetic interactions. With a and 5
very large, SU(2) „becomes irrelevant for low-
energy phenomenology.

There are three diagrams that contribute at
the one-loop level to the muon mass in this model.
These are shown in Fig. 5. The unphysical Higgs
boson (the would-be Goldstone boson associated
with I,„) is represented by S and the physical
Higgs boson (with mass m„) by go. It is straight-
forward to compute that
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3gI
m =—,(rn xcosXcosp)16&2

x 1+0
rY

It is perhaps surprising that the physical Higgs-
boson contribution increases as m~ increases.
The origin of this effect is simply that the Higgs-
boson-lepton couplings depend on the lepton
masses. This means that in the sum of the two
diagrams shown in Fig. 5(b) the divergences do
not cancel. Rather the divergence from the dia-
grams with unphysical Higgs bosons must be can-
celed by the divergence from the diagrams with
physical Higgs bosons [Fig. 5(c)]. This means that
instead of assuming mH very large, - in order to
render the effect of the Higgs boson negligible one
must assume that ppH is sufficiently small.

This does not cause any phenomenological prob-
lems, however, since the required bound on AH
is not very restrictive (mz may still be -100 GeV
without spoiling the expression for m, /m„). Fur-
thermore, the physical Higgs field g' always
couples to a heavy lepton X, or 7', is neutral,
and thus is difficult to detect.

Some thought shows that making m~ small is
equivalent to making those terms in the Higgs
potential, U„. . . which couple Q, to P, small.

There are also diagrams involving physical
Higgs fields which contribute to the electron mass
in both one- and two-loop order. Again, by
making the terms in U„;«, which couple (t), to ((),

small we can render such contributions negligible.
This is obvious since (I)), couples to e~ and not e„,
whereas (t), couples to e„and not e~. Thus to
compute m, one need only consider the diagrams
of Fig. 6. Notice that the graph in Fig. 5(c) is not
of the form indicated in Fig. 1. Thus Fig. 3 is
actually incomplete.

Evaluating these diagrams in the generalized
R& gauge'one finds that

Xor Y

I- L-Ir

(b)

0

L

Xor Y

r L-IE

FIG. 5. Diagrams contributing to m in illustrative
model.

I
s

g„(~r' mx') «(12l'+ (l' k - l) x (t-dependent expression))
(2w)' Mjr 2

' [(k —l)'+ X][(k—l)'+ 1;]~k'(k'+ 1)l'(l'+ 1)

where X=-mx'/M)(rh2 «1, 1'—=Mr'/M((r 2 «1. The dominant contribution comes only from the first term in the

curly brackets. (This is apparent as the second term becomes relatively small when l,=k~, which is pre-
cisely the region of momentum space where the denominator becomes small. ) Therefore one finds that

ss,'= —,"- (I sosSspsp)(12)
( )

ls
( )+ (

*
) ls( ") +0( ( ), (

. *)
and hence
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be a (—,', 1, -1) sufficiently massive so as not to be
relevant for phenomenology. The discrete sym-
metry is to be broken by the vacuum. This makes
the model perhaps a bit ungainly, but let us choose
to overlook this sort of consideration at present.

Using this additional constraint we obtain

eL r L,
-IV Xor 7 r R-I L. eR

@le N
. , -+ (corrections) .

fpgp 77 Sin 6'

This has the expected form. To agree with the
experimental value of m, /m„one needs sin'g~
—= 0.48. In this vectorlike model the usual' neu-
tral-current couplings, g~ and g„, that para-
metrize v„e elastic scattering have the values
g„=-1+2 sin'8~ —= -0.04 and g„=0. These do not
give a very satisfactory fit. to the neutral-cur-
rent data.

org
IV. FURTHER CONSIDERATIONS

eL XorY R eR

(b)

L r-L eR

FIG. 6. Diagrams contributing to m, in illustrative
model.

ga'
m„4w*. In(M~„/m, )')

It remains to relate g„ to e. This can be done by

imposing upon the model the discrete symmetry of
interchanging the two SU(2) groups thus forcing
g=g„.' This can be done at the cost of introducing
additional lepton and Higgs multiplets. For ex-
ample, corresponding to L,: (1, —,, -1) there must

The question naturally arises whether a model
of the type described can give a value of m, /rn&

in accord with experiment with a value of sin8~
consistent with neutral-current phenomenology.
This leads us to consider what the overall con-
stant factor N of Eq. (1) will be in a. general mod-
el.

Let us consider models where the overall gauge
group of leptonic interactions is G =SU(N)z x V(1)„
xQ'. Vfe assume there is a superstrong breaking
of 6 down to SU(2), x U(1)r which is the gauge group
of the observed weak and electromagnetic inter-
actions, and that this symmetry is further broken
down to the exact U(1) of electromagnetism by a
single, Higgs-field vacuum expectation value which
is responsible for the masses of the 5'~ and Z
bosons, the mediators of charged- and neutral-
current weak interactions. Here SU(2)~& SU(N)~.
U(1)r is the hypercharge group. We assume that
G contains a subgroup SU(2) „ to which there cor-
responds an off-diagonal gauge boson W„coupling
the electron to the muon, and further that G con-
tains a subgroup SU(2)'„with a corresponding off-
diagonal gauge boson W „' coupling the muon to the
heavy leptons X and Y . It may be that SU(2)„

. and SU(2)'„are one and the same group, in which
case W„and 5"„are the same boson. This is true
of the illustrative model described in Sec. III. It
is equally possible, however, to construct models
where SU(2)„and SU(2)„' are separate groups. For
example, one may construct a model with t"
= SU(2)„xSU(2) „' x SU(2) ~ x U(1)„in which the largest
lepton multiplets are a left-handed (—,', —,', —,'; I"=-1):
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e
/

Vg vx

f
and a right-handed (a, 2, 0; F = —2):

f'
As in the models previously discussed, one ar-
ranges through the Yukawa couplings that X
mixes with another heavy lepton 7 .

Inthe general case, the groups SU(2)~and SU(2)„'

may be subgroups of SU(N), or of O'. In the
latter case one must impose discrete symmetries
on the Lagrangian to require g„=g'„=g [the
couplmg constants of SU(2)„, SU(2)'„, and SU(2)
respectively].

'Because we have assumed that one Higgs vacuum
expectation value does the breaking of the weak
gauge group SU(2), xU(1) „, the observed weak
interactions may be parametrized by an angle 6)

reflecting the relative magnitude of g and g'. [g'
is the coupling constant of U(1) r]. This para-
meter 8 will appear in the expression for m, /m~.
In particular the covariant derivative is

D„=8 „+t(g/2) A'„X'+ ig'(I'/2) B,
+(terms involving the generators of G') .

Here the SU(N), generators A.
' are normalized by

Tr A.'X~=25'~. The charge operator of the model
if of the form Q = I'/2+I where (-,'TrI') 'I' I is a
properly normalized generator of SU(N), . We can
then define the parameter 8 by tan8= (g'/
g)(2TrI')'~'. In this ease e=g'cos8=gsin8/
(2 TrI')'I' is the electromagnetic coupling con-
stant. (For example, in the Weinberg-Salam
model %=2 and TrI' = -', , so that tan8=g'/g and
e =g sin 8.)

Finally, suppose the electron to have I„=t and I3gg
=m andthe muontohave I„=t and I,„=m -1. I„rep-
resents the "horizontal" isospin of the group SU(2)„
and I,„ its third component.

If the model is of the first type, where W„=W'„
are the same boson (as in the example of Sec.
III), then we write

m, InR (TrI') Q
I 2(T I .,)

(t+m)(t-m+1)

[The factor of 2 that appears in Eq. (18) can be
traced to the fact that for every two-loop diagram
contributing to the electron mass there is another
obtained by interchanging W„and $V'„ that gives
the same contribution'o: Thus there are twice as
many diagrams in the second type of model as in
the first where W„=W„'.J

The range of sin'6 that will fit the neutral-cur-
rent data depends upon the details of the particu13. r
model. We have not found, so far, a' Simple mod-
el where sin'0 gives at the same time a good
agreement with the neutral-current data and the
mass ratio m, /m„. In the various models we have
examined, the computed value of m, /m„ turns out
to be somewhat too large. Notice that the factors
TrI' and (t+m)(t —m+1) are bounded below: TrI'
o- —,

' and (t+m)(t —m+ 1) ~ 1.
. Now, there is a way in which in models of the

second type one may arrange to get the computed
value of m, /m„ to agree with experiment —though
it is-admittedly quite pP @0& and artificial. It is
possible by a judicious choice of Higgs multiplets
and vacuum expectation values to control the fac-
tor InR/R —1 which appears in Eq. (18). Specifi-
cally, one may introduce a Higgs multiplet, call
it X, which does not couple to the leptons, is a-
singlet under SU(2)~, and is a nonsinglet under
SU(2)„and SU(2)'„. Supposing that g„=g„' and that
the vacuum expectation value of one of the com-
ponents of X is large compared to the other Higgs-
field vacuum expectation values, then (X) will give
the largest contributions to M~ and M~. without
interfering with the ordinary weak phenomenology
of the model. To take a specific case, if y has
I„=;and I'„= —,

' and the (I» =+—,', I,'„=+—', ) com-
ponent of (X) is large" then It —= 3.

The model we mentioned above with G =SU(2) „
x SU(2)'„x SU(2)zx U(1)„and where the largest
multiplets are (—,', —,', —,'; -1) on the left and
(—', , —,', —', ; -2) on the right may be constructed so as
to reduce to the Weinberg-Salam model for low-
energy phenomenology. As is well known, in the
Weinberg-Salam model an excellent fit to the data
is possible with sin'8=(e/g)'=-0. 27. So if, in
this model, one arranges that 8 = 3 then [referring
to Eq. (18)]

m, (TrI')
„(t+m)(t -m+1) CV

g sin'g (17) ~m ln3 1 e~=—2x x —
(

=—0.0047.

If, on the other hand, the model is of the second
type, where W„and W'„are different bosons [with,
possibly, diffeient masses, so that It —= (M&„/M& )
e 1], then

The experimental value is 0.004836.
The point of the foregoing example is merely to

demonstrate that it is poqqible in principle to ob-
tain satisfactory numerical results within our
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approach. Of course, the expedient we have sug-
gested by which R may be adjusted to bring this
about is extremely contrived and is not put forWard
as a realistic possibility. It is to be hoped that
satisfactory numerical results may be achieved in
a more natural manner. %hether this is possible
is an open question.

An undesirable feature of &he model given in
Sec. III was the necessity of imposing a discrete
symmetry to force g„=g.— If SU(2)„xSU(2)„'
cSU(N), there is no need for such a discrete
symmetry. [For example, our approach can be
implemented in an SU(4) xU(1) model with the lep-
tons in l,and 15 representations of the SU(4) group. ]

At first glance it appears that the muon (g —2)
will pose a problem for all such rriodels, as there '

will be contributions to it proportional to m~ and

~x which are very- large masses. However, such
contributions are actually suppressed by a factor
(M!!,, /M~. )' and are completely negligible.

We remark, finally, that the incorporation Of

hadrons presents no special difficulty in this class
of models if the known quarks are allowed to

transform as singlets under the "exotic" gauge
interactions. For example, in the model of Sec.
III one may put the quarks into (0, —,', &), (0, 0, --, ),
and (0, 0„4,) representations.

V. CONCLUSION

We have presented here ageneral class of mod-
els in which the electron mass is finite, calcul-
able, and expressible (up to corrections which may
be made arbitrarily small) in terms of currently
measured quantities. It is perhaps not unreason-
able to hope that, given the possibility of such
models, the electron mass may afford another
clue to the underlying structure of the weak inter-
actions.
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