
PHYSICAL REVIE% D VOLUME 17, N UMBER 1 1 JAN UAR Y 1978

Simple approach to soft-pion emission in pp interactions near threshold*
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Viewed in the pion rest frame, the Feynman amplitude for emission of a soft pion is simply proportional to
the amplitude of the core, each possible source nucleon contributing a term proportional to its chirality.

Together with threshold approximations, this observation enables us to write, in a very simple way, a general

expression relating the cross section cr(pp ~f+ n') to cr(pp ~f), and the cross section cr(pp ~f + n. +) to

cr(pn ~f), near threshold. A comparison is made to data on the reactions pp ~ppm, pnm+, AAn, X
ApK+m', and X pK m, with varying degrees of success.

I. INTRODUCTION

Current algebra and the partial conservation of
axial-vector current (PCAC) hypothesis have been
used extensively over the past fifteen years to study
pion emission (or absorption) within the framework
of the "soft-pion" theory. In all this time, only a
few papers have been devoted to soft-pion emission
in pp and pp interactions: Uritam and Nuthakki'
studied the annihilation reaction pp-KK~v, treating
both pions as soft; Intemann and Greenhut' cal-
culated a cross section for the process pp-KKn;
more closely related to the present work, Beder, '
Schillaci, Silbar, and Young, and Baier and Kuhn-
elt' all examined soft-pion production in pp -NNn
near threshold. In this paper, we will address
single soft-pion emission in pp interactions near
threshold, with special attention to pp-BBn.

It is important to keep these calculations as sim-
ple as possible. The extremely limited amount of
data available and the kinematic ambiguities in-
herent in the theory cannot justify many complica-
tions, but a simple calculation, which can be com-
pared to data at least in a crude way, may have
some value. In addition, it is easy for involved
algebraic manipulations to obscure some of the
relevant threshold physics.

One simplification occurs by realizing that be-
cause a soft pion has no momentum, its effect can
only be to change the spins and isospins of the oth-
er particles in the reaction, i.e. , the "core" par-
ticles. ' Equation (3) in Sec. II represents this mix-
ing explicitly. In particular, when viewed in the
pion rest frame, the helicity of all core nucleons
is conserved. Though presumably well known, this
is not often exploited in actual practice. In this
helicity representation, the soft-pion amplitude for
n emission is simply proportional to the core amp-
litude, each source nucleon contributing a term
proportional to its chirality (velocityxhelicity).
Charged-pion emission still has the added com-
plication of mixing different isospin states, but
this is a minor inconvenience in pp and pp inter-

actions.
Another important simplification follows the in-

troduction of "threshold approximations. " In the
pion rest frame, the velocity —and hence, the chi-
rality —of any final-state nucleon must vanish at
threshold, while the velocities of the initial-state
particles have the same magnitude. For v' emis-
sion, this produces cancellations in certain spin
configurations; for n emission, it results in cor-
relations between spin and isospin states. This
correlation nullifies interference between the I = 0
and I = 1 cores in pp and pp interactions and pro-
duces simple relationships between pion-emission
cross sections and core cross sections.

But, more importantly, no particle in the final
state contributes to the amplitude at threshold;
that is, a threshold soft-pion amplitude contains
no information about the final state. Together with
our simple representation, this allows us to write
an expression [Eq. (21)] applicable to a variety of
processes.

We begin in Sec. II by deriving our "simplified"
approach from the more familiar insertion rules
of Adler. ' In Sec. III this formalism is applied to
pp -NNm near threshold. Section IV contains the
generalization to other final states. Finally, in
Sec. V we compare the threshold predictions to
data on reactions of the types pp-BBr and pp

BPKv.

II. SOFT-PION INSERTION IN THE PION REST FRAME

The first step in constructing a soft-pion amp-
litude is to identify the "core," which is obtained
from the pion emission (or absorption) process of
interest by removing the pion. A single diagram
for soft-pion emission is reconstructed from the
core by "inserting" the appropriate axial-vector
vertex into an external particle line. The full
soft-pion amplitude is then the sum over all such
"insertion diagrams. " As examples, and for future
reference, the insertion diagrams for pp-ppn and
pp-pnn' are illustrated in Figs. 1 and 2. The core
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FIG. 1. Soft-pion diagrams which contribute to pp-pp7r .
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of the first process is the elastic-scattering reac-
tion pp-Pp; the second process also possesses the
cores pp-nn andean-gn.

We will restrict our attention to pion emission.
(Diagrams for soft-pion absorption would be ob-
tained by reversing the sign of the pion momentum
and taking the Hermitian conjugate of the isospin
matrices. ) Further, we assume for now that the
pion is inserted only into nucleons (or antinucle-
ons), so that the isospin vertex is ', 7." -Usi.ng the
usual terminology, a diagram is designated "pre-
emission" or "postemission" according to whether
the vertex is inserted into a particle line in the in-
itial state or in the final state of the core.

An axial-vector insertion into a nucleon (or anti-
nucleon) line is accomplished by making one of the
following substitutions for the appropriate wave
function in the core amplitude.

Preemission diagrams:

and f, is the pion decay constant (=93.7 MeV).
These substitutions are considered valid only
"near" q=0, or more accurately, for q'«k ~ q.
The pole at q =0 comes from the new propagator
created by inserting the vertex.

Although it is not usually done, it is possible to
take this procedure one step further and to write
the soft-pion amplitude directly as a superposition
of core amplitudes. To do this, substitute into
Eqs. (1) from the relations

(((+M = Q u(k, s) u(k, s),
SPlnS (2)

)I(' —M= g v(k, s) v(k, s).
spins

These are valid when k'=M', with the normaliza-
tion uu = -vv = 2M. The on-mass-shell condition is
satisfied in the soft-pion limit.

Now, let K(f +s" i) represent the soft-pion amp-
litude, and let M(f i) represent a core amplitude.
Note that these are the full Feynman amplitudes,
complete with all external wave functions, and not
just the form factors. We also introduce the 2x2
spin and isospin mixing matrices

Postemission diagrams:

x — *
2~ ('2 x)((K-M)A' I,

Of

uXt - [u(Ity'(P +M)] X~

(lc)

(ld)

1U„=
2k

u(k, s) gy'u(k, s'),
2k ~ q

1
V„.= „v(k, s) gy'v(k, s'),

2k ~ q

where u, u (v, v) are the Dirac spinors for the N(f7();
k, M are the four-momentum and mass of the core
nucleon; X is the isospinor of the core nucleon
[(,') for p or p, (', ) for n or n]; n, q are the iso-
spin index (1, 2, or 3) and momentum of the pion;
T" are the usual Pauli matrices; QA is the axial-
vector renormalization constant (=C„/Cv = 1.23);

Using these, Eqs. (2), and isospin completeness,

X,.X,~ =1,
J = fl

we can write the insertion rules (1) in the forms
given by the following table:

FIG. 2. Soft-pion diagrams which contribute to pp pn71'. Note that there is only one preemission diagram, in con-
trast to pp pp7t' .
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Preemission Postemis sion

(3)

=-0
SS Ir

U„, = o„t ~ (k/k )
(4)

It is more convenient to work in the mRF, since
the NRF depends on the particular insertion dia-
gram considered. If the nucleon is polarized to
have definite heticity h=~ —,

' in the vRF, then Uis
diagonal .

Uqq =&&sh5gg i &s=l Gsl, h

Alternatively, one can interpret Eqs. (4) as
follows'; because

(5)

0'
0 ~ 'U = s'U exp -sn —~ '0

and similarly for ~, the effect of soft-pion emis-
sion on the nucleon is to rotate its spin through ~
radians —in the NHF (or the sRF)—about the direc-
tion —'0, (or 'V „),and simultaneously to rotate its
isospin about the direction n.

The matrix V can be obtained from U by switch-
ing the rows and columns a,mong themselves. That

Each entry in this table represents the contribution
of one insertion diagram to the soft-pion-amplitude
3R(f+v li). The subscripts s and j refer to the
spin and isospin of the pion source nucleon in the
final amplitude; s', j', i', and f' symbolize the
spin and isospin assignments, which must be
summed, of the same nucleon in the core ampli-
tudes.

These expressions have a natural interpretation:
because a soft pion does not carry momentum, its
influence can only be to mix the spins and isospins
of the other particles in the reaction. The above
table just represents this mixing explicitly.

The Pauli representation of U is given by

1 Me +kU„. =
o Se„. ~ (qSk-kSq)k ~ q M+k ~ eo

I +Mq /k ~ q -/„0) Mq
1+M k' k~q ss

Here, cr„, =}(tag... and eo=(1, 0, 0, 0) is the unit
vector in the time direction. This takes on a par-
ticularly simple form in either the pion's rest
frame (wRF) or the nucleon's rest frame (NHF):

U„, = -a... ~ (q/q')
NRF

is, in an obvious notation,

I'„, =v(k, s) gy'v(k, s')
= -u(k, -s) y'fy'y'u(k, -s')

=u(k, -s) /y'u(k, -s')

-s -s' '=U

Note that the identification v(k, s) = y'u(k, -s) re-
sults in a phase convention not uniformly employed.
Provided one remains consistent, however, there
should be no error. In the helicity representation,
the matrix t/' is then given by

V„„t — -2'U~h 6„„t ~

7r RF
(6)

Introducing these diagonal matrices into (3) re-
duces the spin sum to a single term. The isospin
sum could likewise be eliminated, but it is more
convenient (here) to write amplitudes explicitly for
charged-pion emission. It is clear from Eqs. (3),
(5), and (6) that, in the pion's rest frame, the
amplitude for emission of a soft pion of definite
charge can be written in the form

Preemission Postemission
n'0 emission

Insertion into p or p

Insertion into n or n

m emission

n+ emission

Note that Eq. (7) is still fully relativistic; no low-
energy approximations were used in its derivation,
apart from the sof t-pion approximation itself. These
will be introduced in the next section when we examine
the reactions NN-NN~ near threshold.

There are a few brief remarks worth making.
Although a soft pion has no energy or momentum,
it does have velocity. Thus the soft-pion limit is

K(f +sit) = g yZM, (7)
insertion
diagrams

where M is the core amplitude with nucleon charges
appropriate for the diagram, and Z -='Uh is the
chirality of the source nucleon. The value of p,

depends on the pion's charge and on the type of
insertion, according to the following table:
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not well defined unless this velocity —or equiva-

lently, the rest frame of the pion —is specified.
By writing the soft-pion amplitude as in Eq. (3)

or (7), we are free to use any convenient pheno-
menological model for the core amplitudes. There
is no need to write everything in terms of invari-
ant multilinear combinations of Dirac spinors.

This "velocityxhelicity" formalism is not new.
It first appeared several years before the work of
Adler' began to dominate soft-pion physics, when
Nambu' developed this approach as a consequence
of broken chiral symmetry. However, it has not
been used extensively in actual calculations; that
is, the spinor formulation of Eqs. (1) is generally
preferred. Nonetheless, this alternative approach
can be convenient, especially for doing certain
"threshold" calculations, to which we now turn.

N~N2 N3N4

so that Z, is the chirality of the initial antinucleon,

Z, is the chirality of the initial nucleon, and so
forth.

The soft-pion amplitudes for charged-pion emis-
sion can now be calculated from Eqs. (8), (9), and

(10). It is convenient to do this in terms of the iso-
spin amplitudes Mo and M„where, as usual,

M(pp I pp) = ,'(M-, +iv, ),
M(nn I pp) =-,'(M, -M, ),
M(pn I pn) =M

Then,

&3II(pnv'I pp) = "[(Z,-Z, +2Z, )M,

III. SOFT-PION CALCULATIONS FOR NN ~NNm

NEAR THRESHOLD

-(z, +z, )M, ],

&2K(gpss I pn) = " [(2z, +z, -z, ) M,

(1la)

-"Wppv'I pp) ~

~&II(pp& I pn) =3II(pp~'I pp) +3|1(nnv'I pp)

(8)

Of the fourteen charge-conserving amplitudes
3}I(N,N, @IN,N, ), no more than three can be linear-
ly independent. One possible set consists of the
amplitudes for the three neutral-pion emission
processes pp -Pp~', pn -pnw', and pp -nnm . Amp-
litudes for the two inequivalent charged-pion reac-
tions pp-Pnn' and pn-ppm can then be evaluated
as the sums

&3}I(pn"I pp) =3II(pn~'I pn)+3}I(an" I pp)

—(z ~+z2) Mo] . (11b)

It is easy to verify that Eqs. (lla) and (11b) can
also be derived directly from Eq. (7), using the
values of p, appropriate to charged-pion emission.

Our purpose now is to explore the consequences
of Eqs. (10) and (11) at energies near the pion pro-
duction threshold. Accordingly, we introduce two

approximations which are motivated by the idea
that, at threshold, all final-state particles are at
rest in the center-of-momentum frame. The first
of these arises from identifying the pion's rest
frame with the c.m. frame:

-3}I(pnm' I pn) . (9)
I z, I

=
I z, I =p,./W~ . (12)

The other nine amplitudes are related to these five
by either G or C invariance. (See Appendix A. )

It would suffice, then, to consider only the three
processes pp-ppn, pn-~m, and pp-Hnm'. Their
soft-pion amplitudes are easily written from Eq.
(7):

%(Pp& I pp) = (z, +z, -z, -z, )M(ppIpp),

(10a)

zo
3}I(nnv'I pp) =- "(Z,+Z, +Z, +Z, )M(nnI pp),

(10b)

K(pnv I pn) = " (Z, -Z, -Z, +Z, )M(pn I pn).

(10c)

The index on Z labels the "source" nucleon for a
particular insertion diagram. The indexing scheme
is

Here, p, is the initial nucleon c.m. momentum,
and vs is the total c.m. energy. The second ap-
proximation is to set the relative velocity between
the pion and either final-state nucleon at zero,
which gives us

Z, =Z4=0. (13)

This corresponds to the vanishing of postemission
diagrams at threshold.

Note that Eqs. (12) and (13) imply that the core
amplitude refers to an inelastic, unphysical pro-
cess. This in itself is not bad, but it does leave
one with the problem of extrapolating off the en-
ergy shell from rea, l-world data. We will not ad-
dress this problem in detail here; its impact is
somewhat lessened by phase-space averaging which
comes later (using th. e dispersion-theoretic ap-
proach of Fubini and Furlan, "Young, "and Baner-
jee et al."have partially analyzed the effect of
extrapolating the pion mass up to its physical val-
ue on soft-pion predictions for the reactions NN
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-NNm. Young especially pushed the analysis to
the point of making some numerical estimates, but
his results cannot be immediately generalized to
the pp system. At any rate, the problem of in-
elastic cores remains. )

Substituting the threshold approximations (12)
and (13) into Eqs. (10) and (11) leads to a number

of interesting predictions on the effects of polari-
zation. Note that the two amplitudes 9R(ppv'IPP)
and 9R(nnv'I PP) vanish at threshold when the two

initial particles have opposite helicities. In con-
trast, 9R(pnw'I pn) vanishes at threshold when the
initial particles have the same helicity. Only the
core M, contributes (at threshold) to 9R(pnv+ I PP'),
regardless of helicities; and 9R(ppv I pn) exhibits
an interesting spin-isospin correlation: M, con-
tributes when the initial particles have the same
helicity, while M, contributes when they have op-
posite helicities. Since these two possibilities
are mutually exclusive, there is no interference
between the M, and M te~ms at threshold.
fortunately, it would be difficult to verify any of
these predictions experimentally.

We will use Eq. (10a) to write the total, unpolar-
ized cross section for pp-ppmo. With the normali-
zation convention Qu = -vv = 2M, the total cross
section is

(2v)~ 1
o(PP PPv ) =

(2 )9

PP PP
spins

~ —.
' p & I 9R(PPv'I PP) I'&. ,

splns

(14)

where d'R, is differential three-body phase space

R (ppvo) is the total phase-space volume, and ( ~ ~ ),
represents an average over three-body phase space.

When Eq. (10a), modified by the threshold ap-
proximations, is substituted into Eq. (14) and the
sum over spins is done, two of the spin-triplet
amplitudes —those with opposite helicities —will
not contribute. Let 0 (or t) represent a particle
with positive (or negative) heficity in the center-of-
mass frame. The sum over spine in Eq. (14) be-
comes

4 2

I~())"(I(()1'-=(*," p (I~((( l()P()I IM(() '
I(~~(()l*l.

SPiflS f, final
spins

Spin singlet and triplet amplitudes can now be introduced:

lM', I'I = l M(PP I P~P'i), M(PP I P~P~)1
v-,' v —,

'

Note that the labels s and t refer to particular superpositions of initial-state he)icities, the final-state
spins being unspecified. Because invariance under charge conjugation and rotation forbid singlet-triplet
transitions in the core, the final spin state of M' must be a singlet, while in M' the final-state particles
can be in any one of three possible triplet states. Tw'o of these triplet amplitudes vanish at threshold, be-
cause the total angular momentum about the beam direction must be conserved. Therefore, right at thresh-
old, the sum over spins reduces to only two terms. Nonetheless, for reasons which will be more apparent
later, we will use the more general expression

2

Q l~((( 'I)()I'—= ( '),*
Q (IM'(* ~ ll'(').

spin s f, final
spins

Note again that singlet and triplet terms appear with equal weight, because interference between the two
initial-particle chiralities has nullified two of the three possible triplet amplitudes.

The cross section for this process is now given by

o(P -PPv') = „,~ f"," —,p &IM'(PP IPP)l'+IM'(PPIPP)l'&. .
ff1)al
splns

Our objective is to compare this to the elastic cross section

1 2 1 1
~(PP-PP) =, , ~R(PP) 4g &IM'(PPIPP)l"—sl~'(PPIPP)l'&, -=-.'(u'+9~').

Pc.m.
spms
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(Note the assumption that the three initial triplet
states couple equally into the final states, at least
in an average sense. ) A major difficulty arises in

doing this. Equation (16} contains off-shell amp-
litudes averaged over three-body phase space,
while Eq. (17) contains on-shell amplitudes aver-
aged over two-body phase space. It is not immedi-
ately clear how to relate these hvo. The usual ap-
proach" is to average the two-body cross section
over the range in kinetic energy allowed to the pp
subsystem in the three-body final state. The weight
function is chosen to incorporate the effects of go-
ing from two-body to three-body phase space and

of bringing the amplitude off shell. Effectively,
one approximates

&( M.„,)'},=, dq[q(e -q)]'" q(q) &) M„„)')„

where the integration variable g is the kinetic en-
ergy of the pp system, e =Ms —(2M„+ m„) is the
maximum available kinetic energy, the weight fac-
tor (8/)re }[q(e —q)]' comes from three-body non-
relativistic phase space, and y(q) is some function
which changes an on-shell amplitude into an off-
shell one.

%ith this approach, the relationship between Eqs.
(16) and (17) is finally given by

Treiman relation.
Now consider the corresponding calculation for

rr' emission, beginning from Eq. (11a). The only
significant difference that arises is that, after
threshold approximations are invoked, only one
term survives. That is, setting Z, =Z, =O, we
have

8g(pn)r+
~ pp) =—&2Z, M(pn I pn),

where the identification M, =M(pn
~ pn) has been

made. Thus, unlike z' emission, there is no se-
lective cancellation of spin states, and the sum
over spins becomes

P (sg(pn)r'~pp)['
SP ms

1 G~ 24
[ [M'(pn ( pn)] +3[M'(pn ) pn)]'].

Comparing this to Eq. (15) shows that the rr' emis-
sion cross section can be obtained from Eq. (19) by
replacing —,'((r'+o') with —,'(o'+ 3(r'). Thus,

x —,[(r'(pn-pn) + 3(r'(pn-pn)] e'.

x —[rr'(PP-PP} +rr (PP-PP)] e . (19)

This is essentially the form that was reported in
Burns el al. ,"except that@/M» was substituted
for G„/f„ in accordance with the Goldberger-

x ,' [a'(Pp-Pp) —+o'(PP-PP)], (18)

where o =(8/)re') J, dq[q(e —q)]' 'cp(q)cr(q) is the
appropriately averaged core cross section. Be-
cause rp(q) is not known unambiguously, we will not
pause to dwell on the details of this averaging pro-
cedure; in practice it will be done in only a crude
sense.

Because Eq. (18) was derived within the frame-
work of threshold approximations, it seems rea-
sonable to expand the kinematic factors in square
brackets to lowest order in &. The details are
written down in the next section; here, we will
simply lift the answer from Eq. (23). To lowest
order in e and to lowest order in m, /M„,

ft(pp»o) 4p, .' W~»' m„
R(pp) s 4 M»

Then, to first order, the cross section for m' emis-
sion is given by

(r) r(") „)-, '-)'('"
=)

Taken together, Eqs. (19) and (20) predict that
the ratio of neutral to positively charged pion pro-
duction is approximately unity:

(pp-Pp")
o (pp pnrr+)

.[o'(Pp -Pp) +o—'(PP-Pp)]
;[ '((prnid )+n3(r'(pn-pn}]

However, it is important to note that this predic-
tion is not unique to soft-pion theory. For example,
it would be obtained from any model in which the
~' is emitted preferentially from only a single
isospin--, ' line, but the m' is emitted equally
from two such lines, with negligible interfer-
ence between the two diagrams. The experimental
ratio o(pp-pp)/o(pp-nn)=6 (weakly) suggests that
this might happen in a N*(1, 1) production model.
That is, we might conjecture that (r(pp-pN'*)/
o(pp-N'*n) =-6, so that a rr' would preferentially
be emitted from a X'* line.

Although they seem similar, such an effect would
be legitimately different from what occurred in the
threshold soft-pion calculation. '4 There, for the
two spin states in which there was constructive in-
terference in the n amplitude, the amplitude was~ times that for w' emission, but this was offset
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by destructive interference in the other two spin
states (i.e., four initial spin states contributed to
m' emission, but only two contributed to wo emis-
sion). The net effect was thus to equalize the two

cross sections.
4

A crude statistical calculation predicts R = —,

(see Appendix A), which would also be difficult to
distinguish from R = 1. In contrast, the a(3, 3)
production model predicts R = 2.

Experimentally, R =1 for P~, ~1.05 GeV/c or
P„, ~1.50 GeV/c. Between these two energies,
R rises quickly to 2 (or 'larger), and then falls
slowly until it is again approximately 1.

IV. A QUICK GENERALIZATION AND THE LOW-ENERGY
EXPANSION

Since postemission diagrams do not contribute to
the soft-pion amplitude at threshold, Eq. (18) was
derived withno input .of information about the na
tuse of the final state. ' lt is therefore very tempt-
ing to immediately generalize it to other reactions.
This can be done by inspection; viz. , for the pro-
cess pp-f+rr', near threshold,

'[o'(PP-f)+-cr'(PP-f)l (21)

(2rr 3 )&/2- &/& (gm )&/2

21'[ln —l] (Pm)'" '
where gm (Qm) is the product (sum) of the mass
es of all particles in the system. In what follows,
let n be the number of particles in f

To evaluate R(f), set e =m, . Note that the use
of Eq. (22) requires the particles in f to be mass-
ive enough to remain nonrelativistic with total
kinetic energy m, . The numerator R(f+rr) is
evaluated by changing n n +1 and setting c =Ms
—(P/M + m, ). The ratio is then given by

R(f+rr) (2v3)j/2 I'(2n —r')
n 3 3 /2

R(f) I (!n)

(22)

3n/2- l
Q/M

e =v s —(P/M + m, ) .
The quantity 4p,. 2/s is written more easily:

4p, ,
„' 4M„'C.III.

s s

as was done in Eq. (20).
Close to threshold, the quantity in curly brackets

can be expanded to lowest order in &, the available
kinetic energy. At low energies, n-body phase
space is approximated by the expression"

The cross section for charged-pion emission o(pp
-f+rr') is obtained from this by making the replace-
ment

l [o'(Pp-f) +o'(pp-f)] -l [cr'(Pn-f) +3cr'(Pn-f)],

to lowest order in &.
In particular, for the reactions pp-BBm', where

B is any baryon, the low-energy expansion be-
comes

R(BBrr') 4p, '
rr

' 1-[2M„/(2M, +m. )]'
R(BB) s 2 (1+m, /2M )s/2

= v 2 (-,'rr) [[I—(M„/Ms)'] +4 [ t(M„/Ms) —3]m, /Ms —3, [63(M„/Ms)~ —15] (m, /Ms)'+ ~ ~ ~ ) c'.
(23)

One usually hears the argument that only terms of
lowest order in m„/Ms should be retained. The
point is somewhat moot; at best, the entire cal-
culation is valid only to first order in m „/Ms.
Thus, one cannot a priori justify the preference
of one expression to any other which is its first-
order equivalent.

V. DATA AND DISCUSSION

Despite the approximations which have been
made, there is surprisingly good agreement be-
tween the soft-pion predictions of Sec. III and
some low-energy pion production data. In making
these comparisons, we will assume that the core

cross sections obey

—,'(o'+cr ') =-,'(o'+3o') =cr,

for lack of evidence to the contrary. The results
for pp-ppm', pnn', and npm have essentially been
presented in Burns et al. ,"but for completeness
they are included here in greater detail.

Exhibiting the best case first, Fig. 3 compares
Eq. (20) to the combined charged-pion production
cross section o(pp-pnrr') +o(pp-nprr )."" The
abscissa is scaled according to In[e(GeV)]. The
shaded region represents an estimate of the un-
certainty in the soft-pion prediction due to am-
biguities and uncertainties in the averaged core
cross sections. We have used 30 mb& o(pn-pn)
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&50 mb and o(pp-npv ) =g(pp-pnv+). The the-
oretical prediction is in excellent agreement with
data for P„, & 1.12 GeV/c, and in reasonable
agreement (within 40%) even as high as 1.35 GeV/c.

The results for pp-ppm, shown in Fig. 4, are
also very good below 1.12 GeV/c, but there is
greater disagreement at the higher energies. In

estimating the theoretical bounds, we have taken
44 mb& a(pp-pp}&72 mb.

Figures 5 and 6 compare Eq. (21) to the lowest-
energy data available" on pp-AAm' and pp

Z g+w . The ranges used for the core cross
sections were 22 gb& o(pp ZZ+) &4-2 pb and 15 ~b
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FIG. 6. Comparison between threshold calculations
and data for pp —Z -Z+7I . See caption of Fig. 3.
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& rr(pp-AA) &95 orb. The data for Z Z+rr' are rea-
sonably close to the prediction, but this is not the

case for 4Am', where the theoretical values are
too small by one or two orders of magnitude.

The discrepancies which arise can probably be
blamed on resonance formation in the final state,
a problem which plagued the low-energy theorems
for pp-pnn+. " The data of Figs. 3 and 4 are "con-
taminated" with a (3, 3) formation above the reso-
nance threshold Pb,, ~1.26 GeV/c. The sudden

jump in the ratio of neutral to charged pion pro-
duction above this threshold also suggests that reso-
nance formation is a dominant mechanism; Bacon
et al."concluded that it accounts for the entire
pion production cross section at these higher en-
ergies. Likewise, a~~ the data in Figs. 5 and 6 fall
above threshold for 5* and A* resonance produc-
tion. Indeed, it is remarkable that the Z Z+n'

cross sections fall as close as they do to the soft-
pion prediction.

Equation (21) can be applied to more complicated
reactions, but it becomes difficult to find data
close enough to threshold for meaningful com-
parisons. " For the sake of argument, consider
the processes pp -ApK'~' and pp -Z' pK'm'. Both
have been observed" at P b„,„=5.7 GeV/c with
cross sections rr(pp-ApK'rr'+c. c.) = 30+3 orb and
o(pp-Z'pK'rr'+c. c.) =19~4 orb. The prediction is

o'(pp ApK rr )=4.6rr(pp-ApK4) e r2,
(24)

APPENDIX A: SYMMETRIES

There are fourteen charge-conserving processes
NN-N¹. Using G invariance and C invariance,
they can be collected into five G-C equivalence
classes, as shown below:

3R(pnrr' I pp) =SR(nj5rr
I nn)

I! (Ala}
5R(p-nrr Ipp-) =-3R(nprr-I nn),

SR(jprr I pn) =3R(nnrr
I np)

'. I ll

-5R(pprr' I prr) = 3R(rr-nrr'
I np),

(A lb}

3R(pprr'I pp) = -3R(nnrr'I nrr)

3R(pprr'I pp} =-3R(nnrr'I err),
(Alc)

5R(nnrr'I pp) = 3R(pprr-'I nn)

5R(nnrr'I pp) = -3R(pprr'I nn),
(Ald)
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o(pp-Z'pK rr )=4 9&&(pp Z+pK )-c'r'.

At best, only rough estimates of the core cross
sections can be made. If we take~'"

3R(pnrr'I pn) = 3R(np-rr'I np)
II II

3R(pnrr I pn) = -3R(nprr I np) .
(Ale)

rJ(pp-ApK" +c.c.)=25-35 IJb,

rr (pp -E+pKo +c.c.)= 10-25 p, b,

then Eqs. (24) become

rr(pp-ApK" rro+c. c.)=71-99 gb,
rr(pp-Z'pKorro+ c.c.)= 21-54 orb .

The first is too high by a factor of 2 or 3, but the
second overlaps the experimental value. How-
ever, the data were not taken close to threshold,
and other (resonance} processes can be expected
to significantly affect the results.

At the very least, the soft-pion model is seen to
agree with pp-NNm data close to threshold. At
this low energy, the rise in cross section essen-
tially comes from phase-space growth, and soft-
pion physics determines the ratio rr/R (NNrr) in the
limit &-O. It may do just as well for the other
final states considered —certainly, the compari-
son to Z Z'w' in Fig. 6 is encouraging —but avail-
able data are at energies too high to decide the
issue.

In each class, the horizontal equalities follow from
G invariance while the vertical ones follow from C
invariance. The position of a particle label in the
amplitude implies its momentum and polarization.
For example, in the top two amplitudes, the neu-
tron in one final state has the momentum and polar-
ization of the antiproton in the other.

From this alone, the number of independent
amplitudes is reduced to five. However, from
isotopic-spin considerations, only three of these
can be linearly independent. The initia. l state must
be in one of two isospin-invariant subspaces, a
singlet or a triplet. The final state must be either
in a quintuplet, in a singlet, or in one of two pos-
sible triplet subspaces. The quintuplet is of no
consequence, since it cannot couple into the initial
state. This 1eaves only three independent tran-
sition amplitudes; one between isotopic singlets,
and two between isotopic triplets.

There are three ways of coupling the final-state
particles together, each one leading to a different
definition of the two isospin triplet amplitudes. We
choose to first couple the NN subsystem together.
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3R(pnm' I
p'p

3R(ppw I pn

g1/6

That is,

(2 + g 2) g 3 = (1@3) e 3,
= (I g 3)e (34' 3),
=3'e(5e3ei).

I,et SR', be the transition amplitude in the 3' fam-
ily, as defined above, and let SR, and SRp be the
amplitudes in the 3 and 1 families.

It is now a simple exercise to use the Clebsch-
Gordan coefficients to relate SRp Ky and Sky to
representative amplitudes from the five G-C
classes. These linear relationships are summar-
ized by the matrix equation

—=
I 3R', I, and completely neglecting interference

terms, we have

—,',
I 3R. I

'+ l I
3R', I'

—,
'

I 3R.I'+! I 3R, I'
4
5 ~

APPENDIX B: A THRESHOLD CALCULATION

FOR pp ~pnn

It is interesting to apply Eqs. (I) to the reaction
pp-pnm' near threshold for comparison to the pp
-ppm' calculation of Sec. III, and to the soft-pion
calculation of Schillaci, Silbar, and Young. 4

Using Eq. (7), we begin by writing the amplitude

GAGA
3R(pnm'I pp) = &2[Z,M(pnlnp) +Z, M(pnlpn)

3R(pp" I pp)

3R(nnr'lpp)

3R(Pn~'I pn)

—,
' $1/3

(3R,
x gg~

1
2

1
2

-&1/2 0

(A2)

M(pnlnp) = (M -M ),
M(pnlpn) = ,'(M, +M )—,

M(pplpp) =M, ,

{B2)

-z,M(pplpp)].

[Nucleon indexing is the same as in Sec. 111; name-
ly, M(N, N, I N, N, ).] If we now introduce the iso-
spin amplitudes

The three m' production amplitudes themselves
constitute a linearly independent set, so that the
charged m' amplitudes can be written in terms of
them. From the solutions

3R, =M [SR(ppx'I pp) -3R(nns'I Pp)],

3R, = -W~3R(pn" I pn),

3R', = -JR(ppw' Ipp) -3R(nnw'I pp),

we easily get the relations

&23R(pn1r'
I pp) =3R(pns' I pn) +3R(nnr'I pp)

-m(Pp~'I Pp),

&23R(pps Ipn) =3R(ppw'I p-p) +3R(nns'I pp)

-3R(pns'I pn) .

(A3)

(A4)

Note that the requirements of C invariance, as
written in Eqs. (Ala) through (Ale), imply that 3R,
is antisymmetric under interchange of X,N co-
ordinates, while 3Rp and SR', are symmetric. That
&8,

3R.(NN~ INN) -3R.(AN ~ I NN ),
3R,(NN~ I NN) = -3R,(NN~ I NN ),
3R',(N» I NN) =3R', (NNs I » ) .

Finally, we can get a rough "statistical" esti-
mate of the ratio R = &y(pp-apso)/~(pp-p-ns') di-
rectly from Eq. (A2). Assuming that 13R, I

=-I 3R, I

then Eq. '(Bl) becomes

3R(pnv'I pp) = " [P, (Z, +Z, )M, -

-g (z, -z, )M, -&zz, M, ]

A ~2
~c.m.

f, Ws

&&[(hg+h2)M, —(h, —h2)MO] . (B3)

The second equation follows from the first by using
the threshold approximations [Eqs. (12) and (13)].

Like Eq. (11b), Eq. (B3)exhibits spin-isospin cor-
relations, but now the I = 1 core contributes when
h, =h„while the I =0 core contributes when h,
=-h, . Again, because these two conditions are
mutually exclusive, there is no mixing between
1VI y and Mp at threshold

The next step is to arrange the four possible
initial-spin states into singlet and triplet con-
figurations, as in Sec. III. Assuming that each
triplet state contributes the same squared amp-
litude, at least in an average sense, the sum over
spins can be written as follows:

l~(p 'lw)l*=(f*)

x —.
' g ( I M; I

'+
I
M' I'+ 2

I
M'. I')

final
sptns
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((Ã course, the superscripts refer to spin singlet
and triplet, and subscripts refer to isospin singlet
and triplet. )

The final result can be written by inspection in

analogy to Eqs. (15) and (19):

G~ m„,
32 v~2m f,

where the cross sections in parentheses refer to
the NN-NN core. This expression compares
favorably to the one derived by Schillaci, Silbar,
and Young by a somewhat more involved route.
The only difference is that the term p,' does not
appear there because of their restriction to S-
wave scattering; i.e., g,' contains odd partial
waves only, due to Fermi statistics.
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