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Starting with partial-wave amplitudes for n N ~No and m'N —+several isobar-model states of Nm, we are
able to apply the constraint of unitarity (using the K matrix). This permits the removal of the overall phase
ambiguity of the isobar amplitudes at each energy. The K-matrix fits generate a smooth prescription for the
T-matrix amplitudes, enabling us to search the complex energy plane for poles. The uniqueness of these
poles is demonstrated by doing Breit-Wigner refits to the fitted T-matrix amplitudes. The success of the
refits and the obvious interpretation justifies a simple determination of coupling signs for which there can be
checks with theory.

I. INTRODUCTION

The various aspects of our partial-wave analysis
of the reaction wK-Nn7t in the (1300-2000)-Me&
region mere recently presented in a series of pub-
lications. ' ' The purpose of this report is to dis-
cuss in detail yet another aspect: the K-matrix
formalism and the procedure of parametrization
for the partial-wave amplitudes. To see how this
topic fits into the whole scheme, it will be useful
to review briefly the salient. features of our analy-
sis.

It is assumed that the reaction 7TN-N~m pro-
ceeds through several intermediate quasi-two-
particle states. For the intermediate states, w' e
specifically consider the isobars 6, p, and q with
their mass-IJ quantum numbers as 1236-—,

' —', ,
760-11, and 650-00'. Restricting ourselves to
orbital f, ~ 3 and total J ~ 7/2, we construct the
total amplitude T» for mN- N~w as a linear sum
of the amplitudes for production of each isobar,
or, schematically,

T,3= aT,~+ bTp„+ ~

where the coefficients contain the necessary ki-
nematical factors, angular functions, Clebsch-
Gordan coefficients, etc. Details of this isobar
model, partial-wave expansions, and related
topics are given in Ref. 1 which forms the basis
of our analysis.

Equipped with this formalism and 200000 events
in the energy range 1.3 to 2.0 Qeg for the three
charge channels m'm n, m n'p, and m.'7t'p, we per-
formed maximum-likelihood fits and found two
solutions: solution A containing 24 partial waves,
and solution B containing 28 partial waves. These
were reported in Ref. 2 and the a,mbiguity between
the two was resolved in Refs. 2 and 3. For de-
tails of the fitting program, tests, and quality of

the solutions, etc. refer to Ref. 4.
From a group-theoretic poi.nt of view, one would

like to think of the process vN-N~m as taking
place through a single-particle meta. stable state
or resonance. The complete picture then becomes
mN- resonances - quasi-two-particle states -N m~.

An immediate point of interest in doing the entire
partial-wave analysis is to find these resonant
states, obtain their characteristic parameters,
and make comparisons with predictions from sym--
metry groups and other theoretical models, par-
ticularly SU(6)~. Such comparisons are made in
Ref. 5.

The subject rnatter of the present paper which
meets the three definite needs of the analysis are
as follows:

First, the Argand amplitudes reported in Refs.
2-4 were obtained from an energy-independent
analysis. This means that they were defined at
discrete energies and lacked continuity from one
energy to another. The methods to express them
as smooth complex functions of the total energy W

are now presented.
Second, the Argand amplitudes presented so far

also have an arbitrary phase at each energy. In
this paper. we show how the constraints of unitarity
and knowledge of elastic amplitudes can be uti. lized
to remove this arbitrariness in phase.

Third, three possible ways are discussed to ob-
tain the much desired resonance parameters.

The present paper is more detailed than the let-
ter published earlier. The K matrix is first in-
troduced which is free from branch cuts in the
total energy and is related to the T matrix in such
a way as to satisfy the unitarity constraint im-
posed' on the S matrix. This relation, an integral
equation, is then reduced to a matrix equation by
making simplifying assumptions concerning the
subenergy dependence of the T- and K-matrix am-
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plitudes. We also relate the new reduced ampli-
tudes appearing in the matrix equation to the cross
section. In Sec. III we discuss how the K matrix
can be used to scale stati. stical errors and show
how the overall arbitrary phase of the isobar-mod-
el amplitudes can be removed by the K matrix.
The K matrix, suitably parametrized with real
poles and background terms, is then fitted to the
energy-independent Argand amplitudes by using
the minimizing method due to Rosenbrock. ' As a
result of this fit, we obtain the resonance param-
eters for the K matrix, determine the arbitrary
phase at each energy (all Argand diagrams are
now determined to within an overall sign which is
chosen conventionally; see Sec. IV), and obtain a
smooth prescription for each amplitude. The re-
sults on y' are given in Tables II and III and the
Argand diagrams are displayed in Fig. 3. In Sec.
V, our matrix equation is extended analytically
into the complex 8'plane to determine the complex
poles, their residues, and the partial widths for
the T amplitudes. This constitutes another ap-
proach to extracting resonance parameters. A
third approach (Sec. VI) is to do a refit of the
smooth amplitudes from the K matrix fit using a
unitary background plus a ]3reit-Wigner term.
Results from these three methods are summarized
in Table p. In Sec. &II, we give a prescription for
fixing coupling signs for a resonance coupled to
different channels. These signs are useful for
comparison with theory. Finally, two other chan-
nels, Ng and Nmn7t, are predicted from our analy-
sis and their evidence is discussed in Sec. VIII.

II. E-MATRIX FORMALISM

In this section we discuss how three-particle
cross sections can be described in terms of the

d g~ d Q'2 d g3
2e, 2e, 2e, ' (2 I)

where P is the overall four-momentum and q,- is
the four-momentum of the ith particle in the final
state:

e;=(e; a;)

F is the Mgller invariant flux factor,

(2.2)

z= /q, /~s. (2.3)

Here Q, is the center-of-mass (c.m. ) momentum
of the beam particle and vs is the c.m. energy of
the system. Finally T» is the invariant matrix
element for the 2-3 particle process.

Now, in the context of the isobar. model, we as-
sume that the reaction proceeds through three qua-
si-two-body channels,

I

mN- wb (1236)

-Np(760)

Nq,

(2.4)

where q, represents a strong S-wave mp final-state
interaction at around 650 Me&. Appendix F extends
the formalism of Ref. 1 to give the total cross sec-
tion in terms of the partial-wave amplitudes:

isobar-model amplitudes. We also discuss how

an integral K-matrix equation can be reduced to
an algebraic equation. Furthermore, we introduce
the parametrization of our K matrix which is used
to describe simultaneously N~-N~ and Nz-N~n
partial-wave amplitudes.

The cross section for 2-3 particle processes
in our normalization is'

(2w)'
4y

~ Z (~+2)(Q
n ndsn

IT~'„(s„,s)l' 4~s4~~" +Z p T~V(s„, s)C „T, (s, s)ds„ds . (2.5)
0

Here subscript l indicates the incoming partial
wave; m and n denote the discrete set of quantum
numbers necessary to describe the quasi-two-par-
ticle state in the angular momentum representa-
tion; Q„ is the momentum of the n-type isobar in
the overall c.m. ; q„and s„are the breakup momen-
tum and the energy squared of the n-type. isobar in
its own rest frame. Finally, the functions 4 „are
the recoupling coefficients as given in Ref. 8. No-
tice that we have not yet integrated over the Dal-
itz-plot variables s and s„ in the second term on
the right-hand side.

We have given the total cross section for two
particles scattering into three particles via quasi-
two-particle amplitudes of the isobar model. Using
the K-matrix representation of Graves Morris'
and Jacobson, "we can write an integral K-matrix
equation for two-particle scattering. We extend
this. integral equation to quasi-tw'o-particle sys-
te'ms by defining T,.z(p, , qz ), where i is the in-
coming state of up to three particles (o. ~ 3), f is
the outgoing state of up to three particles ( P & 3),
and p, q are the four-momenta of the particles.
This extension is accomplished by defining a K
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x5 P- p; (2 8)

If K;f(p, , qf ) is Hermitian then T,f(p, , .qf ) is
unitary. This is shown in Appendix A after We

make y, partial-wave expansion via the isobar
model.

If we expand T,.f in terms of partial waves and
use the isobar-model decomposition as we did
above for the cross section, we obtain (y=two-
particle state, j, 0 = three-particle states, i -.
several n isobars, f- several m isobars for a
given Js state)

t

zp z ~ zp Qy zi'
nm nm 2 ~ ny 4~ ymS

z&
Tn' QfqiKfm

matrix K,.f(P;, qf ) which is related to the above

T;, by an integral equation analogous to that for
2- 2 scattering:

~if(pi t 'qfB) Kif(

pi&�

!qfB)

$I 2
' &; (p;., p;)K f(p; qf,)

. -m'- - k=l

As it stands, Eq. (2.8) is an integral equation.
We shall now make certain factorization assump-
tions that will reduce Eq. (2.8) to a matrix equa-
tion. It is clear that a matrix equation will be
easier for practical calculations (i.e. , fitting the
isobar amplitudes). Indeed the factorization as-
sumptions we make are already inherent in the
isobar model.

We assume T ~ to factor,

~nB uBfafB &
(2.11)

where f accounts for the barrier factors and fi-
nal-state factors of the isobar decay and 7.

~ is
only a function of s.

In addition, we assume that K ~ can be factored
in the same way:

KnB ~nBfn fB & (2.12)

where k depends only on the total energy 5 and is
free from branch points in the energy plane. We
shall take it to be a real function of s =.W'. If
the several final-state resonance bands did not
overlap, then a real K matrix would imply a sym-
metric T matrix.

We can now reduce the integral Eq. (2.8) to a
matrix equation by the substitution of K 8 and T ~:

Tffj C jk Kk~ ds jds k ~

(2.7)

'l

0;8 '~ma
2 ~ &y y'A y8'

' y)t

For stable two-body states

(2.13)

T'„"-K„"=—' g
. y)t

Now the functions 4,~ have the significance

C,~~ = P. 5,~5(sy —s)5(s- s„)

for the stable two-body states
~
y) and

~
A), and

(2.9)
r

In Eq. (2.7) K~„has direct two-particle channel
cuts removed, while Kj~ has quasi-two-particle
cuts of the three-particle channel removed (which
in our model describes the three-particle system).
It should be noted that K~ still has two-particle
-subenergy cuts present. '-If we include the stable
two-body states and also the diagonal elements
of the three-body state in 4~~, we may rewrite
Eq. (2.7) as

QA~~fyp (2.14)

i.e. , diagonal with value proportional to Q times
the barrier factor, and for three-body states

y)i
—

y)t y )tdsy ds)t ~ (2.15)

The fact that the integrals over the subenergy
variables can be evaluated separately to calculate
b,„imparts the desired matrix character to Eq.
(2.13) which now connects a finite number of ele-
ments that depend on the total energy only. In Ap-
pendix A we demonstrate that Eq. (2.13) is con-
sistent with the usual unitarity relation w —7'
=i 7'~7'.

Next we discuss the barrier factor f. In general,
we write

f.=W. a.(Q. , I,„), (2.16)

for the quasi-two-body states
~
y) and

~

X) which
belong to the same three-body angular momentum
representation. (We call this the "'diagonal ele-
ment" of the three-body states and it is simply a
statement of our normalization convention. ) Hence-
forth we shall discuss a single partial wave, so the
superscript, J can be dropped.

where B is the square root of the Blatt-Weiss-
kopf barrier" which depends upon the orbital angu-
lar momentum in the center of mass. Our confi-
dence in this choice for B. has recently been in-
creased by von Hippel and Quigg, "who showed
that its validity is not restricted to square-well
potentials and derived it from the general proper-
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FIG. 1. s-channel diagram for isobar e outgoing and

isobar P incoming, where B(q,l) is square root of Blatt-
Weisskopf (Ref. 11) barrier factor for momentum Q in
an angular. momentum state L. W~ is the Watson final-
factor for the o isobar W). and W~, see Eq. (2.17) in
text.

y B„(q,l ) (2.18)

In Fig. 1 we show the various elements that enter
into the transition amplitude for P isobar- n iso-
bar. The quantities E„and y for the 6, p, and

q isobars are listed in Table I. Substitution of
Eqs. (2.17) and (2.18) into Eq. (2.16) yields

ties of spherical harmonics.
We have introduced a weight factor W in Eq.

(2.16) to take into account the essential character-
istics of the isobar n. Thus, W =1 for the stable
two-body state and is given by

To)

[f I T I'(q /4v's )ds ]' '

for a quasi-two-body state involving the n isobar.
Here T, not to be confused with the previous T ~,
is defined as

, , Z„—W
(2.21)

Turning our attention back to the cross section,
we note that it can be expressed in terms of the
reduced amplitudes r,„. Starting with Eq. (2.5)
and taking only one partial wave and isobar, we
obtain (v's„-=E„)

By substitution of Eqs. (2.11) and (2.19) into Eq.
(2.22), we get

1

f I r, „(W) I' ,'(Q„q„)B,'B—„'
I T„(E„)I'dE„

f I T„(E„)1',' q„dE„-

Noting that T,„(W) and B,' are independent of E„,
this becomes

Q„B /(4&s), which is a dimensionless quantity.
Therefore k a in Eq. (2.13) is a dimensionless
number, and in fact the whole Eq. (2.13) is dimen-
sionless.

We assume that k z is real with no branch points
and can be described by simple factorizable points
(which represent the formation of N* resonances)
plus nonfactorizable background terms which are
polynomials in v s . The K-matrix program KANAL

which was written to do the fits had a possibility
for three regular poles and a background linear in
W, that is,

T, (s )B (q„,I.„)
I f IT I'(q /4~s)ds Pi' '

where Eq. (2.15) for the diagonal element A

representing the n isobar becomes

J I T I'B '(Q /4&s)(q /4~s)ds
4

f IT I'(q /4vs )ds

(2.19) o'i„= a (8+ a) i
r, „(W) i

A| &„„.
1

If the partial-wave S matrix is defined by

S ~= 5 g+2iA g, .

the cross section is given by

(2.24)

(2.20)

We see that the normalization in Eq. (2.17) was
chosen so that 4 is essentially an average of

4)T(Z + —,')
I A, „l

'
0'1n. Q21

Comparing Eqs. (2.24) and (2.26), we have

(2.26)

TABLE I. Breit-Wigner parameters used in Watson final-state factors, Eq. (2.18).

Isobar,
Mass, Er~

(pion masses)
Width, y

|', dimens ionless)
Orbital angular
momentum, Q

8.83
5.464
6.0

0.40
0.20
0.8
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7,
ln (2.2'7)

fit would be in good agreement with the elastic
phase- shift prediction. Resonances in the 1500-

The A,„amplitudes are the results of the isobar-
model fit to ~N- ~wN (Refs. 2-4) and the A» am-
plitudes come from the elastic phase-shift analysis
EPSA."" The program KANAL was written to fit-
the A's by a X' method, using the K-matrix para-
metrization of Eq. (2.21).

Before leaving the K-matrix forrqalism, we indi-
cate how we dealt with the fact that there are two
b. isobars in the Nmv final state (N~, ~, = &,~, + 4, n,).
We treated them as separate channels with the
same coupling. This coupling was y~/v 2, where
y~ is the total b coupling. Once we calculated the
T's for the individual 6's, we added the amplitudes
together as

TQ~ T+2

v2
(2.28)

An explanation of this equation and the last para-
graph is found in Appendix G.

III. DETERMINATION OF THE OVERALL PHASE AND

SCALING OF ERRORS

A. Scaling of errors

In order to use the K matrix, we needed to sup-
plement our N7r7r amplitudes A,„with the elastic
amplitudes A». Two sets of Ayy were available,
one from CERN" and another from Saclay. " Us-
ing these, we made two separate fits. However,
it is well known that the deviations between the
two solutions are greater than the statistical er-
rors; this situation resulted in our use of larger
errors in these fits. The errors, 5(A»), were
calculated by taking the rms (root mean square)
deviation between the two A» solutions. For a
few waves at some energies this external error
was too small, so the statistical error claimed
by Saclay analysis was used (no statistical error
is quoted by CERN). For the inelastic waves it
would be nice to use external errors. However,
using our statistical errors which we felt were
too small, we decided to scale our errors so that
the inelastic and elastic data would contribute
equally to the overall multichannel X'. For the
purpose of scaling errors, we wanted to select
a wave (or waves) that had one clear resonance
in the elastic phase shift and where our inelastic

In this section we discuss how we use the K ma-
trix to scale our statistical errors to more reason-
able values. We also show how the intrinsic over-
a,'ll arbitrary phase of our isobar-model ampli-
tudes at a given energy can be removed by the K
matrix.

Me7 region were not good candidates because we
were missing inelastic data from 1540-1650 Me&."
Resonances near 1900 Me7 were also poor candi-
dates, since we had limited ourselves to I waves
in our analysis. This meant we were unable to .
describe satisfactorily the peripheral production
of pions that becomes important in this energy
region. ' For these reasons, the 1700-Me& reso-
nance region seemed ideal. In this region there
are four resonances that are clearly seen in the
EPSA: the S31, D33, D15, and F15. Since
$31 and D33 resonate near 1650, they could not
be used because of the energy gap. The D15 is
not in as good an agreement with the EPSA as
the F15. Therefore, we only took the F15 wave to
scale y' elastic with X' inelastic in our K-matrix
fltso

The procedure was to adjust the errors on the
inela, stic amplitudes for the E15 until the X' per
energy bin was equal for the elastic and the inelas-
tic contributions. We used only one pole and a
constant background as parameters in the K-matrix
fit for the F15 partial wave in the energy region
1585-1810 MeV with the inela, stic amplitudes hav-
ing one free phase at each energy. Notice that at
this point we are using the K matrix to describe
only the moduli of the inelastic amplitudes.

When we first fitted with external errors on the
elastic and raw statistical errors on the inelastic,
by far the greatest contribution to y' came from
the inelastic channels. As we scaled up the Sta-
tistical errors on the inelastic amplitudes, the y'
began to shift to the elastic channel. At a scaling
of three on the inelastic errors, the y' per bin of
energy became equal for the elastic and inelastic
contributions. Three seems like a large factor.
However, if one looks at the statistical errors
quoted by Bareyre at Batavia" and compares them
with the external errors, one also finds a factor
of from 2 to 4. So for the rest of the partial-wave
fits, we used three times the statistical errors
for the inelastic and the external errors for the
elastic amplitudes.

8; Overall phase

At each energy all the inelastic amplitudes are
' well determined with respect to each other but
have an overall arbitrary phase. With the uni-
tary constraint relating the elastic amplitudes to
the inelastic amplitudes, we are now in a position
to determine this phase at each energy. For this
purpose we only consider dominant partial waves
shown in Fig. 2. In particular, the D15 and the
E15 which dominate partial waves in the energy
range 1585-1810MeV show good resonant motion
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FIG. -2. Diagram of 1—q~ for the six different reso-
nances used in determining the overall phase.

in the elastic channel; so we expect to see this
behavior in the inelastic channel as well. This
was our starting point fog determination of the
overall arbitrary phases in this energy region.

Qur fitting program (MCANAL) %as designed to fit
with an unknown overall phase Q, at the ith energy
bin for the inelastic data. First we obtained a
solution for F15 and D15 from 1585-1810 MeV (8
elastic+ 5 inelastic bins). Here we used a single
pole and a constant background as parameters with
an overall undetermined phase at each energy.
This fit was performed separately for both the
CERN and Saclay EPSA solutions for the elastic
channel and resulted in four sets of overall phases,
one set of five phases each for D15 and F15 waves.
Qur aim was. to reduce these four different sets to
only one set that would equally well describe the
data for different inputs: D15(CERN), D15(Saclay),
F15(CERN) and F15(Saclay). We accomplished
this goal through an iterative process. The values

of Q,. were essentially adjusted by hand until we
obtained the best overall X' for the four solutions.
For minimizing the total X' for solution A, how-
ever, a more complicated procedure given in Ref.
16 was used.

Next we looked at the F35 and F37 waves which
went from 1730-1970 MeV in energy. In the over-
lap region (1730-1810MeV), we minimized all
four waves, each with two combinations, leaving
the (1850-1970)-MeV phases free for the F35 and
F37. However, this procedure did not change the
overlap phases very much from the values ob-
tained by just considering D15 and F15.

After finally arriving at a set of phases from
1650-1810 MeV, we determined the phases from
1850-1970 MeV just using F35 and F37, where one
pole and constant background were again used in
the K matrix. Thus, we were able to arrive at
nine phases for our nine upper energies.

We then turned to the lower energies from 1310-
1540 MeV. In this region the D13 and P11 are
dominant waves and are ideal for determining the
phases. The problem here, however, was to find
a solution that would continue across the energy
gap. The D13 at 1540 MeV is very inelastic, but
at around 1650 MeV this is no longer the case.
Qn the other hand, the Pll stays very inelastic
all the way through the energy region. For this
reason the P11 was the only partial wave that could
be used to make the connection across the gap.
Qnce we continue across the gap we may use, as
above, both D13 and P11 to determine phases be-
low the gap.

With the upper energy phases fixed on the values
determined above, we parametrized the K matrix
by two poles and a constant plus linear background.
The pole positions in the K matrix were initially

TABLE II. Results of ~ matrix for solutions A and B.

CERN X Saclay

Solution A

Degree
of

freedom
CERN Saclay
X'/d. f. y'/d. f. CERN p Saclay

Solution B
Degree

of
freedom

CERN Saclay
y /d. f. X /d. f.

S11
$31
P11
P13
P33
D13
D33
D15
~15
E35
E37

89
136
153
118

202
110

59
44
27
23

57
142
161

89

225
119
70-
31
21
10

62
73
98
47

142
52
20
31
34
23

1.435
1.863
1.561
2.511

1.423
2.115
2.950
1.419
0.794
1.000

0.99
1.945
1.643
l.894

1.585
2.288
3.500
1.000
0.618
0.435

203
114
190
197
110
221
168

65
78
40
52

157
125
187
172
104
210
166

81
59
34
39

106
82

119
55
52

148
124

20
35
34
25

1.915
1.390
1.597
3.582
2.115
1.493
1.355
3.250
2.229
1.176
2.080

1.481
1.524
1.571
3.127
2.000
1.419
1.339
4.050
1.686
1.000
1.560

Total 925 582 1.651 1.589 1438 1334 800 1.797 1.667
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A 112?
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u 1850

1B90
X 1930
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FIG. 3. Continued

set and held at 1415 and 1130 MeV (nominal p'osi-
tions of P11 resonances'4), and the lower phases
were left free to vary. %e fitted over the entire
energy range from 1370-2010 MeV in order to
continue across the gap. This gave the P11 given
in this paper. %'e later let the pole positions in
the E matrix vary.

Having provided a continuation across the gap,
we turned to the D13 solution which was also fitted
in the same range (1310-2010 MeV) as the P11.
For the D13 we used two poles and a constant and
linear background. At this point the lower phases
were determined with essentially the same pro-
cedure as was used. for the upper energies.

IV. K-MATRIX FITS

In this section we give the results of the K-ma-
trix fits. These fits were performed using the
minimizing method due to Rosenbrock. ' ln Table
II we give the y', degree of freedom, and y' per
degree of freedom for each wave appearing in
solutions A and B. Since the fits for the two solu-
tions were done with different sets of waves and
energy range, we present in Table III the y' cal-
culated over the same energy range and same
number of waves. In Fig. 3 we display the Argand
diagrams for solution 8 (Saclay) for the inelastic
as well as the elastic channels. For solution A



1802 8, . S. I. ONGACB, E et al.

(b)
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FIG. 3. Continued

A
%ave X2 CERN

B A B
CERN X Saclay X. Saclay

Sll
$31
Pll
P13
D13
D33
D15
E15
&35
E37

Total

89
136
153
118
202
110
59
44
27
23

961

114
78

152
197
221

68
65
71
40
52

1058

57
142
161
89

225
119

70
31
21
10

925

86
88

148-
172
210

65
81
54

39

TABLE III. K-matrix g solutions A and B over same
energy range and same number of waves.

see Longacre's thesis. " The K-matrix pole posi-
tions and partial widths are shown in Table IV
which also lists the T-matrix resonance parame-
ters discussed in the next section. For an expla-
nation of the signs attributed to the Argand dia-
grams (Fig. . 3) and couplings (Tab1e IV) see Sec.
VII.

V. POLES IN THE T MATRIX

gow we discuss how Eqs. (2.13) and (2.20) are
analytically continued into the complex energy
plane. This continuation naturally lea.ds to an
analytic T matrix except for complex branch
points associated with the isoba, rs and poles due
to s-channel resonances.
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PEG. 3. Continued

A. Kinematics

Once the K-matrix fits were completed, we
searched in the complex energy plane for poles
identified with the different resonance states. Be-
cause the K matrix generates simple poles in the
T matrix, the residue of the pole is factorizable.
A simple proof of this is given in Appendix B. The
residue matrix of the T-matrix pole is identified
with the coupling of the resonant state to the
different channels. One would like to relate this
coupling matrix with the usual partial widths F
of the resonance. The partiaL width is equal to
the coupling times a kinematic factor. The ques-
tion is: Should this kinematic factor be evaluated
a,t the pole or on the real axis 7 We decided to
take the kinematics calculated on the real axis

because for a, simple Breit-Wigner form with
narrow width, the partial width will be more real
and the sum of the partial widths will 'be closer
to the total width. See Appendix C.

B. Analytic continuation

In order to search the complex energy plane for
poles, we had to continue analytically the 6 mat-
rix into the complex plane. The off-diagonal terms
of the b, „matrix turn out to be from 5 to 20% of
the diagonal elements. In view of the fact that
these terms add little to the analytic sheet struc-
ture and a lot to the computer time, we set the
off-diagonal terms of the 6 „matrix to zero
when we searched for complex poles.

Now to continue the b, „matrix to complex en-
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F&G. 3. Continued

ergy 8', we have to do a contour integration in the
complex diparticle mass F plane related to a
given isobar. Let us rewrite Eq. (2.20) making
the energy dependence explicit (in the remainder
of this paper, we shall sometimes set E =F. for
brevity:

(l/4W)f + IT(E)I Q(W, E)—, (E)B (W, E)dE

f...~3 I T(E)I' 'v(E)«-
(5.1)

1
Ta .

~ ~m~- lg 0t
(5.2)

Recall that T is essentially the 2- 2 scattering
amplitude, so thatm is an inverse K matrix.
Therefore, IT J' can be written as

in a Taylor series with real coefficients as a
function of E . Every term in the integral is
obviously analytic except IT„I'. However, we
know that T is analytic. In fact, T„can be re-
lated to a function m„, which is free from cuts, by

When we are on the real axis, all terms in the
integral are real. Since we want all terms to be
analytic in E, we must be able to expand them

1

~.n +9'n

which is obviously analytic.

(5.3)
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FIG. 3. Argand diagrams for the elastic and inelastic channels. The smooth curve on the Argand diagrams is the
amplitude obtained from the K matrix when the description was possible. Cross-hatched marks on the curve corre-
spond to the energies D, E, F, etc. ' The arrows indicate the known resonances of Ref. 14. The sign in the upper left-
hand corner of each Argand plot converts amplitude to "baryon-first" convention.

The polein IT' I2

Next we derive Eq. (5.6) to show that ~T„~' has
a pole, and that it occurs exactly where the
sheet-II pole occurs for the amplitude V' of Eq.
(5.2). We use the standard definition of sheets;
the'imaginary part of q &0 (&0) corresponds to
sheet I (II). Therefore, dropping the rr. index, we
have the usual relationships:

both sheets:

m(E) —zq, (E) m4(E*) + zqf, (E*)

=T,(E)T (,(E*)

1 1

m(E) —fq„(E) m*(E*)+iqf, (E")
=T „(E)Tf(E*). (5.6)

1rN)- (E),. (E),
1

Trr(E) =
m (E) —rqrr(E)

(5.4)

Since T(E) is the two-body elastic scattering
amplitude of the particles that make up the isobar,
it will have a pole on sheet II that is properly
identified with the isobar, as we set out to show.

m*(E*)=m(E), q, (E) =r-q[(E*),

qr(E) =-qrr(E), qrr(E) =-qrr(E*).

From Eqs. (5.3) and (5.4), we have

m'(E)+q, '(E) m'(E)+q„'(E) ' (5.5)

This can be written in a symmetric form using

Z; Contours of integration

Notice that both integrals in Eq. (5.1) are path
dependent because of the pole in ~T ~'. We can
choose from among many paths of integration. %e
are, however, only interested in the paths that
go most directly to the end points of integration
because they lie near the physical region, which
is just the real axis.
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FIG. 4. Three different paths 4, D', 4" in the E plane.
E is the diparticle-mass that makes up the isobar. W

i:s the complex ~s (three-body) where one searches for
poles in the three-body T matrix.
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In Fig. 4 we have drawn three different paths
of integration and labeled them with the symbols
b, , A', b, " as used for the integrals themselves,
and in Fig. 5 we have deformed the three con-
tours to show that they differ only by circles
around the pole. Also in Fig. 5 we show a branch
cut coming to the end point of integration. which is
due to the factor Q in the integral in the numera-
tor of Eq. (5.1). Along b, ' we want Q to be con-
tinuous; but this means that Q is on a different
sheet when the integration passes near the pole.
So in order to define on which sheet 4 ~ is
evaluated, we must specify both the sign of the
imaginary part of Q at the lower limit of integra-
tion and also the path (b„L', or b, ") of the in-
tegration. Summarizing Figs. 4 and 5, we find
six sheets generated by three contours (4, E', b.")
and two possible signs for ImQ. However, we
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FIG. 5. The paths of Fig. 4 are deformed so that they
differ only by integration around the pole.



1810 R. S. LONGACRE et ul.

only expect to find poles on the sheets with IrnQ
&0 for rea, sons of causality. (a) (b

3. Sheetsin W plane

Next we poi.nt out that all values of 6, rh', and
6" approach zero if the end point of integration
(W-m, ) approaches E~,~, . To see this, consider
Eq. (5.1), which we write as b. = I/D.—Then D
diverges a,s the end point approaches the pole
(in ~T J ), but the integrand of I contains a factor
Q which always goes to zero at the end point and
cancels the divergence of ~T ~'. Thus at the end
point, 6 equals a finite number divided by in-
finity, which is zero. Hence, for L as a function
of W, we have shown that its values A, h', 6" all
become equal at W=E „,+yyg3 sothat E„„,+rn3 is
the beginning of a branch cut (see Fig. 6). There
is, of course, also a conjugate branch cut at
E =E*„,~, +ms, also drawn in Fig. 6.

Soon we shall discuss hunting in W, looking for
a pole in T. Suppose we find a pole at W on the
4 sheet; i' general there will be "shadow poles"
at W' on the 6' sheet and at W" on 6", where
W, W', W" may be close. Hence we must under-
stand the W-sheet structure of Fig. 8 to decide
which of the poles is most influential at the real
axis.

To understand Fig. 8, it is helpful to consider
Fig. 7, a sketch of contours in the E plane. In
Fig. 7, a dashed line starting at E p & corre sponds
to the branch cut starting at Ep,~, +nz, in Figs. 6
and 8. This line is no barrier to the contours
6, 6', 6", but we cannot move the end point Ã-m,

Ali +my

„ (c) LE gE

fA) +ITlp Alp +mp

across this line without changing the names of
the contour (changing sheets in the W plane).

Note that if W-yn, is near the real axis the only
short contour is h. Consequently the W sheet
connecting to the physical region in Fig. 8 i:s

6 Sheet
=2

IW

FIG. 7. Three different paths of integration in the E
plane at four different values of O'. The dashed line is
the projection of the branch cut from the 5' plane which-
is not crossed by W —~& as it moves from (a) to (d).

Epo)e+ mg
Sheet Lw

Ep,~e+m5

(b)

6 Sheet

I

I

I
I

I

I

Ag

I
h

L1
I

I

I

I

I

I

IW

2

(c) h
Lk

FIG. 6. 'She branch cuts in the ~s or W plane (total
c.m. energy) generated by the pole in the final-state in-
teraction, of the isobar.

FIG. 8. Three points on the 6,4', and D" sheets and
how one has to travel from them to the physical region
in a continuous way.
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labeled A.
To go further we need Figs. V(a) through 7(d).

In Fig. 7(a), the end point of the integral is be-
low the dashed line. As we deform the contour
from Fig. 7(a) to Fig. 7(d}, the end point of the
integral moves around the pole in the E plane. In
Fig. 7(d) we are above the dashed line. If we
consider point 3 in Fig. 8(a) and move it con-
tinuously up through the branch cut, we will change
sheets. We see that the b. contour in Fig. 7(a}
deforms continuously into the 6' contour in Fig.
7(d). Thus point 3 of Fig. 8(a) would move from
the b, sheet to the L' sheet, e.g. , point 2 of Fig.
8 (b).

In Figs. 8(a) through 8(c) we show three points
on each of the 6, 6', and 6" sheets. For each
point we have drawn continuous paths leading
to the physical region. In Figs. 8(b) and 8(c),
when we pass onto the b, sheet (the only sheet
connected to the physical region) the lines are
dashed. The length of the lines in Figs. 8(a)
through 8(c) are a measure of how close a point
is to the physical region. Therefore if we find a
pole on 6, 6', or 6", we can use Fig. 8 to tell us
how close it is to the physical region.

In practice it is necessary to calculate only one
contour integral. To show how this is done, let
us define

(5.7)

where I is the main integral and D is the denomina-
tor of E(I. (5.1). Call the denominator residue
RD; then, but using Cauchy's integral formula for
contours 6 and 6",. we obtain

~ —2wiq (w, z,...}B'(w,z„.„)R,/D
1 —2viRD/D

(5.11)

In the case of 6' the spiral around E~~, is counter-
clockwise (see Figs. 4 and 5), so 2mi- —2wi, and
that is the only change in the denominator D. Iri

the main integral I, however, q changes the sign
because it is on the other sheet (see Fig. 5).
Taking these into account, we get

~l b —2))'iq(W. Epo(e)B (W, Zp ( )RD/D
1+2viR~/D

(5.12)

Another property which may be demonstrated
is that

i), (w) = -~(w*) (5.13)

for all three contours b, , A', 4" and both signs of
q. Furthermore,

q(w, z) = -q*(w*,z*) (5.14)

for a given imaginary part of q. This follows
from

We must be sure that we evaluate q(W, E„(,) on
the correct sheet. If we know 6, g~, and D, we
can evaluate 6' by

I" I-2viq(w, zp, (, )B'(W, zpo(e)R~
D" D(1 —2wiRn/D)

(5.10)

D —D" =2mi&D q'(w, E) = q'(w*, E*). (5.15)

=2vi Iim (Z,...—Z)~Z, »~2. q(z)
E Epole

I —I"= 2mi q( W, E p), ) B (W, E „,}Rn.

(5.8)

(5.9)

All other terms that appear in Eg. (5.1) are
Hermitian. Thus they are the complex conjugate
of the value above the real axis when they are
integrated below the real axis. With this in mind,
we have

J ~g+~2 ~T(E)~ q(W, E)
2

B (W, E)dE

J,~ (T(z)~* ~ dz

f".-. (r(~)('q(&' ~. ). a'((("z)dz)',
f w -m& ~T(z)[2 (f( ) dz

(5.16)

Therefore Eq. (5.14}is true by the way we con-
structed our integrals.

C. Poles

To illustrate sheets and poles in our model, we
will take the F15 amplitude as an example. The

I

F15 resonance lies near the pN threshold which is
v s = (1700 —i 54) MeV as shown in Fig. 9. When we
did the T-pole search, we found E15 poles on each
(b, , A', b, ", for Imq &0}sheet. The pole on the
sheet generated by the 6 contour is closest to the
physical region. Figure 9 shows the sheet struc-
ture and continuous paths going to the different
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FIG. 9. The poles of theF15 T matrix which lie near
pN threshold. Each sheet is generated by the pN cut.

VI. BREIT-WIGNER REFIT

This section discusses how we refitted the
smooth T matrix obtained from the K-matrix fit
with an amplitude which is a sum of a unitary
background and a Breit-Wigner form, rotated in
such away as to ensure unitarity for the total
amplitude. Once the refits are performed, the
resonance parameters obtained from the K mat-
rix, the T-matrix poles, and the Breit-Wigner
refit can be compared. The motivation for these
comparisons was to fi:nd out how sensitive the
resonance parameters are to the prescription
from which they are obtained.

A. U(UB+ BW) amplitude

In the. past, resonances were parametrized by
the Breit-Wigner form. The Breit-Wigner form
by itself is unitary. Since there is always a
background present due to other singularities,
the T matrix is in general a sum of a Breit-
Wigner form plus background. Because this is
not evidently a unitary prescription, we have
turned to the K matrix. Now that we have made
the K-matrix fits and obtained a smooth descrip-

poles on the different sheets. The poles and cor-
responding sheets are 1668-i 66 (b.), 1681 i61 -(b, '),
and 1665-i 72 (b."). The path from the physical
region to the pole on the 6" sheet is drawn in
such a way as to reveal where it crosses the
branch cut. All poles reported in this paper are
those closest to the physical region.

Table IV gives a summary of the K-matrix and
the T-matrix poles for solution 8 using both the
CERN and the Saclay EPSA. Further discussion
of these parameters is described in Sec. VI. The
coupling signs and other sign conventions are ex-
plained in Sec. VII.

where 1";=q y,e' i, (6.1)
J

where- all terms are real except 7,
The Davies-Baranger constraint equation is

ga, , ry= r, . (6.2)

I

Let us relate Bfj to the background T matrix T:

B;, = 5;)+2iq; i qI i'T;). (6 8)

Now if we substitute Eqs. (6.1) and {6.3) into
Eq. {6.2), we obtain

(5 + 2iq &/2q &/& T ) q &/2e&e;

which can be shown to be equal to

y,. sine, . = gq, y, T,,e "~. . .

j
(6 5)

The right-hand side of Ecj. (6.5) seems at first to
be a complex number, but tl1e left-hand side is
real. So we can set the imaginary part of the
right-hand side equal to zero, i.e.,

g q,.y,. lm (T„.) cos 6,. —g q,.y, Re(T, ,) sin 0,. = 0 .

(6.6)

At this point we assume that Q, is real. This
means we must restrict ourselves to energies
such that the jth channel is open (q,.' & 0). We
now define the vectors

tion of the data, we would like to know what the
Breit-Wigner parameters are for comparison
with theoretical predictions. For this purpose we
used a unitary amplitude consisting of a Breit-
Wigner form and a unitary background with no
local poles denoted by U(UB+BW). Since we be-
lieve that the background should not be affected
locally by the presence of the resonance, we
assumed that it is unitary with no local poles. In

order to construct U(UB+BW), the Breit-Wigner
form was permitted to rotate by energy-dependent
phases (we believe that the Breit-Wigner form,
and not the background, must accommodate itself
to unitarity). These phases are calculated by the
Davies-Baranger" constraint equation; also, see
Goebel and McVoy. " Once we have made a K-
matrix fit, we then refit using U(UB+BW) to the
smooth T matrix in the region of the pole, in
order to extract the Breit-Wigner parameters.

Let us assume we have a unitary background
matrix 8,, , and a Breit-Wigner form given by

—I";I",
{E& &) 'i Z-. y:-q~ '
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(sin) =

sin8,

sin8,

formed on three well-established resonances which
were coupled to two, three, or four channels.
We used the D15, F35, and F15 resonances. The
results of these fits and refits are given in Table
V. In line one of Table V we have identified the
pole term of the E' matrix with Breit-Wigner-type

(cos) = cos I9,

and the matrices

Q,y, Re(V'») Q,y, Re(Z'») ~ ~ ~

(Re) = Q,y, Re(T») Q,y, Re(T») ~

Q~y~ Im(T») Q2y~lm(T») ~ ~ ~

(Im) Qlyi ™(&»)Q2Y2™(T»)''

(6.7}

(6.8)

resonance parameters: The mass is the location
of the pole, 8„, the ith partial width is just (ki-
nematics) & y, ', and the total width is the sum of
the partial widths. From this K-matrix fit we
looked at the T-matrix pole where. the real part
of the pole position is identified with a mass;
twice the imaginary part is identified with-the total
width (pole position is recorded in the mass col-
umn of Table V). From the residue of the T-ma-
trix pole we defined the partial wj.dth as discussed
in the first part of Sec. V. We record the real
part, the imagina, ry part, and the modulus of
partial width in Table V. For the total width we
record the sum of the real parts, the imaginary
parts, and the moduli of each partial width. For
this T matrix we do a U(UB+BW) refit from one-
half width before the pole (in the T.matrix) to one-
half width after the pole. We then obtain Breit-
Wigner parameters (mass, partial widths, and
total width) which are recorded in Table V. For
the Breit-Wigner term of the refit, we look at the

Equa, tion (6.6) then becomes

(Im) (cos) —(Re) (sin) = 0 (6.9)

or

(cos) = (Im) ' (Re) (sin). (6.10)

In addition we have the added constraints between
the sine and the cosine,

cos'8;+ sin'8; =1. (6.11)

m

e, (w) = Q, (w) P a„w" .
n=o

(6.12)

8. D15,F35, and F15 refit (solution A)

Having established this system, a series of
E-matrix fits and Breit-%'igner refits were per-

Unfortunately we were, in general, unable to solve
these transcendental equations. Therefore we
imposed upon Eqs. (6.10) and (6.11) a X' constraint
and parametrized 8& as a polynomial iri 5".

We were also interested in looking for the pole
in T = U(UB+BW) (which is just the pole in the
Breit-Wigner term) in the complex W plane.
Since the U(UB+BW) amplitude must be Her-
mitian, 8; must have the same real axis cut struc-
ture as Q; [or &,;; see Eq. (5.13)]. Therefore a
natural parametrization for 8; would be

~e,. =e,.(w= iw, .„i)
e,(W= (W„,.(

2 Im(W, ...)), (6.13) .

where S;„,is the pole position in the T matrix.

pole in th.e complex W plane thus recording the
pole position and residue-related partial widths
as we did for the T matrix. Next we refit the
T matrix again, but this time relaxing the Davies-
Baranger constraint, thus performing a UB+BW
refit where the 8&'s are now constrant with energy.
From this Breit-Wigner refit we record the fitted
parameters and the pole parameters. Finally we
went back to the K-matrix fit and took out all the
inelastic amplitudes, thus performing a fit only-
to the elastic data. '"" In order to absorb the
inelastic part, we added an unconstrained ~7t'

channel. We then went through the same series
of refits and pole searches except for leaving out
the U(UB+BW}, since we only wanted to fit the
elastic channel.

Figure 10 shows the Argand diagrams obtained
from the U(UB+BW) refit to the F35 wave. The
solid line is the total amplitude from 1740-1900
MeV (one-half width below T-matrix pole to one-
half width above). The dashed line is the back-
ground for the same energy range. Arrows show
the direction of increasing energy. I,et us define
&8; as the change of rotation angle 8; of the Breit-
Wigner fit over the range of refit. Then
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i. N7r Nm

Z 8,=5
f ~2
N 7r 5,7r

f. 3.
N7r pN

2.67r DTr) 68p=-20 3.pN pN, 68'=-15

FIG. 10. Argand diagrams from the 0 I,
'US+ BW') refit

to the F35 wave. Solid line is the U(UB+ BW) amplitude,
while dashed line is the unitary background UB. Energy
range is from 1740 to 1900 MeU, where arrows point
direction of increasing energy. D~; is the change of
rotation angle of the Breit-Wigner fit in this energy
range [Eq. (65)].

VII. SIGN OF COUPLINGS

One possible prescription for extracting the
signs of resonance couplings (for the different
channels) from the total T matrix near a reso-

~9; is plotted next to the elastic Argand diagrams
of Fig. 10.

The results for the three resonances for both
CERN and Saclay EPSA input are listed in Table
V. Note that the pole position and residues for
the T matrix from both the X matrix a.nd U(UB
+BW) are very close to each other. This is sim-
ilar to the observation of Ball and Shaw" for the
F33 resonance of the Nm system. A word of warn-
ing is necessary. These U(UB yBW) refits exactly
reproduced the X-matrix solution with a smooth
parametrization in the region of the pole. This
would not be the case if we refitted our data.
Appendix D shows how small fluctuations cause
rapid shift in the pole position. The E-matrix .

parameters for the E35 have very little to do with
the actual resonance parameters. This is because
the background term in the K matrix is very large,
and we have shown in Appendix D of Ref. 16 that
the background term couples directly into the pole
position of the T matrix. Also, one can easily
show that the K-matrix pole is not stable under
change of dimensionality (see Appendix E). For
these reasons the resonance parameters obtained
from T-matrix poles and U(UB iBW) refits are
the best candidates for checking theoretical pre-
dictions. Since they disagree by factors of 2 with
each other, we would not expect theory to do any
better.

nance energy is discussed in this section. 'These
signs are important, for comparison with theory.
The following is a summary of our procedure and
conventions.

'

When the analysis was begun the set of partial
waves had an arbitrary overall phase at each
energy. This arbitrariness was resolved by the
K-matrix fit. The resulting complete set of di-
agrams, however, was still determined only to
within an overall'arbitrary sign. " We chose
PP11 (&m) to be "up, " thus fixing the orientation
of the other diagrams r'elative to this amplitude.

A (~) or (-) sign appears in the uPPer left-
hand corner of the inelastic diagrams in Fig. . 3.
Its origin is as follows. Inside our programs a
certain arbitrary convention was used' to con-
struct the three-particle final states in the angular
momentum representations. We then had to switch
to the "baryon-first" convention. This switch,
in general, affects the Clebsch-Gordan coeffi-
cients and gives rise to the upper-left sign indi-
cated in the diagrams. An Argand amplitude
shown in our "internal" diagram must therefore
be multiplied by its corresponding upper-left
sign to convert it to the baryon-first convention.

We now come to the coupling signs. For the
X matrix, the sign in the upper right-hand corner
of the box in Table pl (where the partial width is
shown) comes from the real K-matrix coupling of .

Eg. (2.21) and has already been changed to the
baryon-first convention. These parameters and
the signs are so meaningless that they were not
even tabulated in Ref. 6.

The T-matrix coupling signs, indicated in the
upper right-hand corner of the box in Table IV,
come from the off-diagonal terms of the residue
matrix and again have been changed to the baryon-
first convention. These signs correspond to the
method III of Ref. 6.

One can also read the sign directly off the Argand
diagrams of Fig. 3 and multiply this coupling sign
by the sign to change to the baryon-first convention
given in the upper left-hand corner.

However. the resonance is not always necessari-
ly pointing up or down. In these cases one could
do a unitary Breit-Wigner refit to determine the
sign of the resonance coupling. But this is really
not necessary because if we can see the resonance
shape we should be able to guess the resonance
rotation angles 8,. We see from Eq. (6.1) that
the angles should be measurable by comparing
the elastic and the inelastic channels. In the
elastic channel (A.»} the resonance is rotated

by 28„and in the inelastic channels (A„.) the
resonance is rotated by 8, +8;.. It is clear that

8,- has a range from -90'to 90. Thus by deter-
mining these angles we will fix the sign of the
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TABLE VI. List of partial width times sign of coupling (in MeV) and the angle of rotation of the. Breit-Wigner form
from eyeball fit.

Mass ~totg]
(WreV)

Wave SD11

~pN

SS11

eN Other

AN ~other 0Other

SP11

1510
1660

-100
130

2p 0'
58 -22'

-2 -80'
-6 0'

+4
+8

po

65'
4

-18
00

po

+70
+40

55'
-55'

Wave

-1390
1710

200
75

P11

110 -30'
15 -70'

P13

PP11

-50 -40'
-15 0

-20
+15

PP13

10'
40'

+20
+30

70'
70'., :, :.. . . . ,

1720 150 30 -45' -120 -25'

Wave D13 DS13 DD13 DP13

1520
1710

150
300

90 0
-30 -45'

+15 ' 0' +23 -45'
+ 75 -45' -60 -45'

+15 -40' + 7
.-45' -120 -45'

Wave

1660 150

Wave

D15

67 -10'
F15

DD15

-83 -10'
EP15 FP15 ED15

1670 ' 130 78

Wave S31

50

SD31

po po

SS31

po -19 po

1600 150 60 -60 60 -10' -30 -60'

1640 300 3p -45 -270 -45'

Wave D33 DS33 DD33 DS33

1680 240 48 -15 -72 -12 -75' + 1p8 55

Wave

1830 220

Wave

40 —15

50

-48

EE37

-60

po

FP35

-132 -35'

EE37

-36 —70'

Ap FP37

po

couplings. We have seen that once we made the
unitary Breit-Wigner refit, the total T matrix
produced by this method was very close to the
T matrix produced by the E matrix.

Thus we shall employ the simple interpretation
of U(UB+BW) but determine the coupling sign
directly from the T-matrix elements produced by
the original K-matrix fits. In fact, for all the
resonant waves which have been fitted, we have
looked at the T matrix for all the elastic (in-
cluding, e.g. , hm- hm) and inelastic channels and
determined by eye what the nominal values of the
8's are. This procedure is essentially the one
given in methods I and II of Ref. 6. Table VI gives
a list of the signs of the couplings and the angles
from this eyeball fit. If the nominal value of 8
is within +30', we think we are safe in determining

the sign. But if the value of 8 is greater than
+60', the sign is questionable.

I

VIII. PREDICTED CHANNELS

In this section we discuss two K-matrix fits in
which we introduced an extra channel in order to
make up for the lack of cross section observed
in the Nmm system. In the S11 wave we- know'
there rr1ust be a component of Xq. In the E37 wave
we. assumed that the additional channel was Nome.

The P31 has no evidence for resonance struc-
ture, and such a small cross section of it was
observed in the isobar amplitudes that we did
not do a K-matrix fit.

Around 1520 MeV a sizable amoug. t of cross
section goes into Nq (about 4 mb). In our K-matrix
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fit to 811 we included the Ng channel' as a pre-
dicted channel (i.e., no input amplitude to con-
strain the y'). Our results are consistent around
1520 MeV with all the Ng cross section going into
the 811 wave. The S11 amplitude for the Ng pre-
dicted from the K matrix is seen in Fig. 3.

In the 1900-MeV region we do not saturate the
inelasticity of the F37 wave by 3 mb, so we in-
troduced a predicted channel. In this energy
region, 1900-2000 MeV, the Nrem cross section
grows from 4 to 6 mb, "so we made the predicted
channel an I" 37 decaying by ~p with angular mo-
mentum in a P wave. --Thus our analysis forces
a prediction of the amplitude for F37 decaying
into the ¹ngvia a 4p decay in a P wave. The
predicted Argand amplitude is shown in Fig. 3.

IX. CONCLUSIONS

We were able to apply the constraints of uni-
tarity (using the K matrix) to isobar-model-gen-
erated amplitudes. We obtained a good repr'esen-
tation of the Argand diagrams in almost all chan-
nels. These permitted us to remove the overall
phase uncertainty of the inelastic amplitudes at
each energy.

With a good representation of the T matrix we
then could extract the pole parameters associated
with resonant behavior in the Argand diagrams.
The uniqueness of the pole parameters was dem-
onstrated by doing Breit-Wigner refits to the
fitted T-matrix amplitudes. Thus we found the
same pole parameters in this alternative pres-
cription. However, these refits showed, in gen-
eral, that it was not possible to relate pole pa-
rameters unambiguously to the parameters of the
Breit-Wigner fit. Furthermore, the success of

the refits and the obvious interpretation of the
amplitude U(UB+BW) (of Sec. VI) justified a sim-
ple determination of coupling sings from the fitted
T-matrix (K-matrix-generated) amplitudes.
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APPENDIX A: UNITARITY OF THE 7. MATRIX

We wish to show that the r matrix as defined
in the text satisfies

r —r' =ir'4r. (Al)

f» 4»)„ff' ds„dsg . (AS)

Now it was shown in Ref. 8 that the recoupling
coefficient 4 is Hermitian, i.e., C»=4». From
this it follows that 4 is also Hermitian, &=4'.
If we solve Eq. (A2) for the r matrix, we obtain

v'=k(I ——'hk) '. (A4)

Let us substitute Eq. (A4) into the left-hand side
of Eq. (Al); we get

7.
k(t. —,'i~k)-' (I+-,'ik~')-'k='ir'~r. (A5)

The next step is to introduce the unit matrices
within [ ], in the appropriate places in the left-
hand side of Eq. (A5):

It was related to the K matrix by [see Eq. (2.1S)]

r -k =-,'irM. (A2)

By definition the K matrix is real. 'The 4 matrix
introduced in Eq. (2.15) is

or

[(1+2iM+) '(1+2 ikb')]k(l ——,'ill) ' —(1+ 2 ikb') %[(1—2iM)(1 ——,
' iAk) '] ='ir'bv',

(1 + ~ ik &') '[(1 + 2 ik&')k k(1 ~ id&)] (1 —~ i dA) ' =i»+b»,
'7.

(1+—,
' ikA') ' ~(ikcVk)+ ~(ikM)(1 —2 ilk) '=is'6».

(Ae)

(A7)

(A8)

Since ~ is'a Hermitian matrix, we have

i(1+~ ikrV) %bk(I —~ ill) '=i»'6». (A9)

Finally, from Eg. (A4) we note that the matrices
following ~ are just r and the matrices preceding
6 are»' Indeed E. q. (Al) is satisfied.

APPENDIX B: FACTORIZABLE RESIDUES

In this appendix we show that simple poles in
the T matrix have factorizable residues. B)~ = U jcB„U,~, (B2)

The first step is to demonstrate that a factor-
izable matrix has only one nonzero eigenvalue.
Consider a matrix B which has only one nonzero
term B„. Let U&& be a unitary matrix. Consider
the matrix B' such that

(Bl)

Using the condition that only the B» term is non-
zero, we obtain
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or, rewritten another way,

B,', =(v. +;&a„)(&a„fJ,J) .
It follows from Eq. (B3) that '

(B3)

(a4)

0

B'*~ah = (Bl~)'.

We shall use this result shortly.
It is clear that when we have a pole in the T

matrix, the determinant of T ' will be zero. We
may diagonalize T ' with a unitary matrix U.

0

(E E)
X2

0

(E E)

1
C

0-

0 . (all}
0

Notice that the nondiagonal residue matrix is just

(B12)

From Eq. (C4) we know that it factorizes.

TD 0 x,
f

(a5) APPENDIX C: POLE AND RESIDUE FOR A SIMPLE.

BREIT-WIGNER FORM

The determinant Det(Tn ') becomes

Det(T ') = X,Xp, I ~ ~ . (B6)

If we have a simple zero at complex total center-
of-mass energy E=i„ then only one eigenvalue
is equal to zero. By contrast a dipole (higher-
order pole) would have two (many) zero eigen-
values. Therefore we may assume that one eigen-
value is given by

X, =C(E -E,) (B7)

and the others are nonzero. Therefore the diagonal
T ' matrix can be written

In this appendix we discuss the shift of the pole
parameters from the mass and width parameters
of the Breit-Wigner fit. Also, we discuss possible
defin'itions of the width and how it is related to the
reSldue.

For simplicity we take a single-channel T ma-
trix which is generated by a K matrix

(cl)

where ~ is the kinematic factor. If we want a
simple S-wave Breit-Wigner form, we need a
simple pole in the K matrix without any barrier
factors. Therefore we have

C (E —Eo) 0 (c2) .

D 0 (as} where E is the total center-of-mass energy and

E„is the K-matrix pole position. For 6 let us
take a form that has a square root-behavior and is
equal to one at E =E~:

and the inverse is (c3)

C(E —E )
0

(B9)

Substituting Eqs. (C2) and (C3) into (Cl), we ob-
tain

1

(E„E)/r/2 f(E/E )-'~2 '-
Vfe know that we will have a pole in T when we

have a zero in D(E), the denominator of T. Let
EI, be the value of E where D(E) is equal to zero:

The diagonal residue matrix is defined as

B~ = lim (E —E ) T~.
g» gp

From Eqs. (B9) and (810), we get

(B10)

D(E )=O.

Therefore

(C5)

(C6)
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Squaring both sides of Eq. (C6), we obtain

EP+Ea =0
~

2
r2

which can be solved by the binomial theorem

EP ER 1 2

If we make the narrow-width approximation
(E„»I'), Eq. (CB) becomes

(C'I )

(c8)

The residue of the T matrix is related to the
coupling of the resonance. We may define the
coupling such that I; „,=2k x (coupling). Now the
question is: What momentum should we use in
calculating the total width? For the coupling we
used the residue of the pole, so one might think
that the momentum at the pole should be used. On

the other band, the momentum on the real axis
tells us how much of the coupling is physically
seen.

We also know that the total width is associated
with twice the imaginary part of the pole position,
which is equal to

r ir r (c9) r3
r„„,= 2 x Im(E, ) = r—

R
(C 17)

Taking the root with the minus sign because we
want the pole to be om the correct sheet, we see
that EP is given by

' Using the A on the real axis evaluated at Re(E~)
and the residue Eq. (C16), we obtain

EP =ER 1 —
2 1

32 2 ~ C10
E~.— 8E~ I' z I'

(C18)

The real part of the pole position has been shifted
by —I'/8Es from the K-matrix pole position. Al-
so, the width has been reduced in size by rs/32E„'.

Next we expand D(E) in a Taylor series about
,~

BD
D(E)= —— (E -E)+ ~ ~ ~P

g

recalling that D(E~) =0. Differentiation of D(E)
and Eq. (Cll) yields

Using E„»I", we get

. ir I"
total 4E ]6E 2

Next we use 4 at the pole position

r2 Zr ir3

to tat ER.

pg)=, —+ „,) (z —z) .2 i/2
P R

(c12) (C20)

If we substitute into Eq. (C12) the expression Ep
[Eq. (C10)] and assume that E„»I' we obtain

where ER» r. Thus

i I" I"
total 2E 8E2 i/2D(F)= —

+( (
. ~))~ ) (Eg E) . (C(3)- (c21)

Simplifying, we get

( )= (-~,~(4~ ( —').2

The residue at the pole is defined by

(E E)
D(E)

Therefore we see tha.t

r zr'
2 8ER

(c14)

(c16)

(c16)

: It is clear that 6 on the real axis gives a total
width with smaller imaginary part and magnitude
closer to twice the imaginary part of EP. -

APPENDIX D: FLUCTUATIONS
AND THE T-MATRIX POI.KS

In this appendix wi. show that the poles in the T
matrix depend on how smoothly one parametrizes
the T matrix. For example, let us take the well-
known Nm' resonance P33. The simplest form for
the P33 resonance amplitude is

60
1236 —E —.i 60
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For simplicity we have suppressed the kinematic
dependence in the total width. This amplitude can
be parametrized by an M matrix I see ma, in text,
Eq. (5.2)],

(D2)

Again, for simplicity, q has been set equal to the
value of 1. Therefore we have

1236-E
60

It is clear that we have a pole in the T matrix at
(1236 —i 60).

For the demonstration, we will add a small fluc-
tuation to the M matrix. We can then write the M
matrix as

In this appendix we show that the pole in the K
matrix depends on the dimensionality of the K ma-
trix. To demonstrate this simply, assume that we
have an elastic scattering amplitude (T») which is
generated by a two-channel factorizable K matrix

Yf

E~ —E
(zl)

Therefore
2.

ER E ~~l~l ~ 6~2
(z2)

I et us also assume that we are below the thres-
hold of the second channel. This can be expressed
by letting

APPENDIX E: THE E-MATRIX POLE AND ITS DEPENDENCY
ON THE DIMENSIONALITY

1236 —E
M = —+ e sin(n(E —1236)) .

60

The T matrix will now have a pole at E Ep
where

(D4)

Substituting Eq. (E3) into Eq. (E2), we get

E „,=1236+60e sin(n(E „,—1236)) —i 60. (D5)

If the fluctuations are small, we expect

E,.„=1236-i 60. (D6)

If we now describe the amplitude by a single-chan-
nel K ma.trix,

Substituting Eq. (D6) into the right-hand side of
Eq. (D5)~ we find for the change ln Ep~(0 (Ezyo)e )

1
1jK- iq, ' (E5)

b, E~„, + 60m sin(n(-i 60)). (DV}

Using the properties of the sine, function, we have

we will obtain an equally good fit to the data if

2
K=z.+ lq, I ~: z-

Epp/e k 606

= ~i 30ee60". (Ds)

It is clear that the two-channel K matrix has a
pole at E~ while the single-channel K matrix has
a pole at E„+Iq, Iy, '.

The usual parametrization for a single-channel
K matrix is

We see from Eq. (Ds) that it is possible to have

a large shift in the pole position due to small fluc-
tuations in the M matrix if n is a large number.
Why has this happened? An analytic function is
determined by I aplace's equation. This means it
has to have a boundary condition in order to be
well determined. We have only defined the func-
tion on a short interval. on the real axis. Because
of this fact, we need an added assumption that the
ft.uctuations in the M matrix must have a period
equal to or greater than twice the particle energy
spacing (smoothness assumption). Stated another

way, fluctuations must arise only from particle
structure. If one describes the experimental fluc-
tuations in the real data too well, thus having a
very small period, one will find poles which differ
by a la.rge amount in the complex plane.

AK=— +B . (EV)

For our case we have

E,=zs+
I q.(E.}I ~: . (zs)

2

+B=
F-s+ Iq. l~.'-& ' (z9}

where B does not have a pole at E~. Solving Eq.
(E9) for 8, we get

~ „'(E, E}-~(E„.Iq,l„-E)-
(E.+ I q. I ~: z)(z, z)--(E10)

where B has a pole at E =E~. Using I ' Hospital's
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Thus we can describe the amplitude with a single-
channel K matrix by letting

2

+B.
d

I e, (E~) I 2 Fn —&
dE

Therefore, both pole position and residue are de-
pendent on the dimensionality we use.

APPENDIX F: DERIVATION OF EQUATION (2.5) OF
. THE'MAIN TEXT

Starting with Eq. (60) of Ref. 1

- r2
do =F—g If„ I'dp,

and Eq. (43) of Ref. 1

(Fl)

f„=g g."(j)T.(w, , ),
n

we obtain by substitution and integration

(F2)

theorem, we can remove the pole from B by set-
ting

2,)1
dIq, (z, )I

~2

sum over j and k (j4k), we obtain,

g2
o =g g g g)„'g)' T„(W,w;}T„*(W,w, )dp.n m n o y m

f st Z d d," t'„(term, . ) r"„(term )dp.
~P p n

(F4)

The first term of the above equation has already
been worked out in Appendix C of Ref. 1. The re-
sult is (for o, = —,

' and o„=0)
I

first term= —I (d+-', ) f )r„' (tern, ))'dm, '.
i

We have suppressed the sum over j because the j
index is now included in n. For the second term
we have

second term =
nm

Q g„"g„" T„(W w, )

x T*(W, w, )dp. (F6}

If we now pick for phase space dp Eq. (Slc) of
Ref. 1, we have

0= g~ gt' V„Wu,.

xT„*(W,w, )dp . (FS)

second term= —, g„"g" T„W,; Tm Ww&
pj~A

1
X —

2 d)Mj j Qgglg

We 'note that although the indices n and rn include
the indices j and k [see Eq. (1) of Ref. I], we will
let them be separate for now.

If we take the sum over j and k and divide the
double sum into a single sum over j and a double

x dcose dp dn . (FV)

Since all the dependence of p. , cos0, d, and n are
contained in g„", we can sum and integrate over
these variables. Thus we can write

' m' „g„"g"d cose)d dn
second term =— T„*(w,w~ )

" ",: —T„( W, w)dw&' dw'd.
nm J

(FS)

The quantity in square brackets can be nonzero only for the states that have the same initial J quantum
numbers. The reason is the same as that given in connection with the first term in Appendix C of Ref. 1.
Thus we can redefine our normalization of T„and g„and obtain Eq. (2.5) of the main text. It is also nec-
essary to break up the single index n and m into an index that runs over the initial J~ state and the isobar
channel:

I
T'„(w )I' @"q"

4W4se„
T rtt (W, witt)4))ttt T„(W,w„)dwttt dw„~

(F9)

APPENDIX G: DERIVATION OF EQUATION (2.28) OF MAIN TEXT

In order to show why Eq. (2.28) is of the form it is, let us consider four channels Na, 4,v, b, ,v, and Np,
where Nv(n =1}, b, ,w(n =2), b, ,m(n = 3), and Np(n =4) for a certain J~ state.



1824 R. S. LOÃ GA CRE et ul.

From Eq. (2.5) of the main text, we have

Q2 q2ds . Jp 2 Q3q3ds, ~&, Q4q. ds
ITy2 I 4~ 4~ + ITyg I 4~4~ + IT14 I

~P+ T 13 12 dS3dS2+ T,4 *,4 T» dS4dS2 + T,4 *,4 T13 dS4dS3

For simplicity let us ignore the 4,w, and 62~2 interference term in the cross section because it is real
and does not add anything more to the derivation than the combination of the b, ,m, and h, s, interference with

the Np system.
Using Eqs. (2.11), (2.14), (2.19), and (2.20) of the main text and substituting them into Eq. (Gl), we ob-

tain

xs xs u 34+ i4 ia iha4+ zc xa qq 34) ~ (G2)

Taking advantage of the fact that in the isospin space the two 6 contributions are equal and that we have

built into our definition of the 6 matrix the Bose symmetry, we know that L22 =433 old 624 =634 There-
fore, we can write

o' = ", (x+2)l(I &»I'+I T„I')&„+(r*„+T,*,)T„n.„+T+(T„+T„)n.,*,+ IT„I'~„].
1

This can be further reduced to

'*. (&+2)f(l T,.I' + IT,.I')&..+»el (Ti*.+Tin»i. ~24]+ ITi. I'~44). (G4)

Again Bose symmetry implies that T» = T». This
means that T» and T» must add to give the inter-
ference term.

We can form a total 6 amplitude by adding T„
and TJ3 However, we want to define a T» such
that

(G5)

which is Eq. (2.28) of the main text.
Finally, the coupling of the K matrix for the two

6 states ha. s been reduced by 1/v 2 . This can be
most simply shown, if we consider just a three-
channel K matrix, where channe11 is Nr and

channels 2 and 3 are &,r, and 42m2. If we only
have one single pole in the K matrix and no 4-~
interference, the T matrix can be written as

It is clear that

This implies that

12 + 13
M2 M2

(G6)
Y1 Y1

2
Y1 Y2

2

Y1 Y3- 2T=
EB —W

Y1 Y2 7173
2 2

y2y2 y2ya
2 2

~yy~ y3y3
2 2

2i (+11Yl ++22f2 ++3313 )
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We want to replace this by a two-channel T ma-
trix with just an Nn and a single Am channel

Yx Ya
2 2

Py3'h, Y4 Yg-2 2
ER —W- —,'i (6„y, +b.22y~')

If we now consider Eq. (2.28) of the main text, we

see that

Y& Yb,

2

ER —W-ys (b „y, +622yg )

F17 2 71+q
2W2 2v 2

ER —W —,'i (a „y—,'+ n „(y,'+ y, ')1

This equation implies that

y. =y. =ygl~~
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