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Narrow resonance in an open channel
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We discuss the possibility that a very narrow resonance will exist in a multiresonance system above the
threshold of an open decay channel. We show that its width varies as the square of the commutator of the
mass and width matrices near the vanishing point of this commutator. A hypothetical example of such an
effect, relevant to narrow-resonance searches in e *e ~ annihilation, is discussed.

Very narrow resonances can exist in strongly
interacting systems even in the presence of open
decay channels. This fact was observed by Fonda
and Newton in their formalism of resonance reac-
tions! and by Coulter and Shaw in an N/D ap- .
proach.? We analyze this phenomenon within the
Weisskopf-Wigner approach® where it becomes a
simple quantum-mechanical effect. We present
the criterion for its existence and discuss the
stability of this phonomenon. We point out that
in the realm of particle physics it could be ob-
served in e*e” annihilation, i.e., a.narrow bound
state of heavy quarks may be found above the pro-
duction threshold of pairs of states which have
the new quantum numbers of these heavy quarks.

This phenomenon may occur in a system of over-
lapping resonances in which the number of open
decay channels is smaller than the number of res-
onance states. In particular, we will consider a
system of two overlapping resonance states which
couple to only one open decay channel. Using for
the resonance states a basis |1), |2) which is in-
variant under time reversal, and denoting the
coupling of these states to the open channel by «
and B, respectively, it is clear that the combina-
tion B|1)—a|2) is a state which decouples from
the open channel, i.e., has zero width. However,
in general such a decoupling does not occur.? The
system of resonance states, which can be de-
scribed by the effective Hamiltonian®

‘H-m -1

H=M-1T, W

where M and T are real symmetric matrices, can-
not be diagonalized by the orthogonal transforma-

tion that diagonalizes the matrix I'. The reason is

that in general
Cc=[Mm,T]=#0. (2)

Hence both complex eigenvalueé of Eq. 1 will have
nonvanishing imaginary parts. '
The investigation and understanding of resonance

17

systems dates back to the original paper of Weiss-
kopf and Wigner.® In recent years there appeared
in the literature several studies of overlapping
resonance systems with the intent of application

to particle physics,®® in particular relating the
Hamiltonian (1) to an S matrix which is propor-
tional to (EI —M +%iI)™. In narrow-resonance
systems one often regards M and I as constant
matrices. In general, they may have an energy .
dependence which is regulated by a dispersion
relation. The S matrix may then be described in
terms of two fixed poles and an energy-dependent
background or, alternatively, as having two effec-
tive poles whose location and decay structure vary
with energy. The rich hadronic spectrum and
structure observed in e*e™ annihilation around and
above 4 GeV is an example of a physical system
which should be explored in terms of overlapping
resonances.” Here the resonances are produced
by a virtual photon. Very narrow states, whose
nonzero width comes from electromagnetic decays
and strongly suppressed hadronic decays, are ob-
served below 3.72 GeV. Above this energy allowed
hadronic decay channels open up and broad reso-
nance structures are obtained. Our purpose is to
show that even in the presence of such an open
channel one may find a narrow resonance.

The phenomenon that we discuss here occurs
when the commutator C is small. Let us param-
etrize our 2 X2 mass and width matrices using as
a basis the Pauli spin matrices o:

M=MI+ag,+bo,,
(3)

L= (c?+d®)"Y +cq, +do,,

where M is the average mass of the two-resonance
system and I is a matrix of rank one, i.e.,
detI'=0, as required in a single-channel problem.
The commutator is then

Q:i_(_)_'yA, A=2(ad -bc) . (4)

When A vanishes H can be diagonalized by the
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orthogonal transformation that diagonalizes I.
The condition for obtaining a zero-width resonance
is therefore

I,(E)=0if A(E)=0, 2(5)

where we denote by I'; the width of our narrowest
resonance. Satisfying this condition may be quite
an accident. We will, however, show that it suf-
fices to have A small in order to obtain a very
small I',. Intuitively, this is clear if one consid-
ers the variation of I, as a function of A. At the
point A=0, T'; vanishes. However, since zero is
also the minimal value that I'; can obtain,

aT,
94 A=0

=0 : (8)

and T, will vary as A% for small A.

Let us solve for I'; in terms of the five free pa-
rameters of the problem which are given in Eq. (3).
Diagonalization of the algebraic system of equa-
tions is a straightforward exercise. Solving the
problem in the neighborhood of A=0 we find

r A?

1

T, 16(ac +bd)?+4(c?+d?)? "

2

(7)

We conclude that as long as [AI is considerably
smaller than the other bilinear combinations of
parameters which appear in the denominator of
Eq. (7), a narrow resonance should exist.

An example of this effect is given by the figures.
Figure 1 is a trial fit to the e*e” annihilation
cross-section ratio R in the neighborhood of
4 GeV.® This fit is obtained by using a constant
background plus two overlapping resonances in a
two-channel problem. One of the two channels is
assumed to open up only at 4.0114 GeV. Below
this energy we have then a system which can be
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FIG. 1. Pattern of two interfering resonances pro-
duced by a trial fit to e'e” annihilation data under the
assumptions specified in the text.
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FIG. 2. The result obtained by changing only the sign
of the parameter'd in the effective Hamiltonian of the
system that is shown in Fig. 1. )
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described by Eq. (3).° By reversing the sign of
the parameter d in this fit we obtained the struc-
ture shown in Fig. 2. The latter is dominated by
a very strong narrow resonance since the condi-
tion for Eq. (7) is met. This resonance occurs on
top of a seemingly slowly varying “background”
which consists of the wide resonance. Clearly
both signs of d are physically allowed and, within
this model, Fig. 2 is a priori as probable and
plausible a result as Fig. 1. Figure 2 is by no
means exceptional. The parameters a, b, ¢ and d
are of the same order of magnitude, and whenever
their relative signs are such as to make ]Af
small, a narrow resonance will appear.

The location of the narrow resonance depends
on M. By increasing M we can shift the peak to
the region in which the two channels are open in
the example discussed above. We find that, de-
pending on the values of the other parameters,
sometimes the resonance stays narrow and some--
times it broadens considerably. It is clear that
in general a narrow resonance will occur if both
the conditions

c=0, det_l_“_éo (8)

are met. Whenever the number of open channels

is smaller than the number of overlapping reso-
nances, detl’ vanishes, and only one condition is
left. However, even if the number of channels is
large, the possibility exists that two resonances
will have very similar eigenchannels, in which
case a narrow resonance will appear if the condi-
tions for Eq. (7) are met. .

The actual physical situation in the region o
our example is somewhat different from the as-
sumptions that we have made in order to illustrate
our point. We know that there exist two open
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channels (DD and DD* +D*D) below 4 GeV. This
makes the existence of a very narrow resonance
less likely. Such an effect as we have discussed
could have existed in the region between 3.72 to
3.87 GeV, where only the DD channel is open, if
there were overlapping 17" resonances in this re-
gion. A more favorable situation may be found in
systems of higher quark masses such as the re-
cently discovered T states,'® where one ex-
pects a denser set of levels to appear in
the region of the first continuum channel.!!
The narrow-resonance effect may of course
occur in many other systems. It can, how-
ever be quite elusive when searched for in

normal scattering channels. The clear advantage
of a process such as e’e” annihilation is that the
production of the resonance is determined by its
coupling to the photon, a parameter which is in-
dependent of the details of its hadronic decay
modes.

It is a pleasure to thank Y. Aharonov, K. Gott-
fried, H. J. Lipkin, and J. L. Rosner for fruitful
discussions. D.H. wishes to acknowledge the kind
hospitaiity of the Fermilab Theoretical Phys"ics
Department during the period when this work was
done. This work was supported in part by the
National Science Foundation.

*On leave of absence from Tel-Aviv University.

tPresent address: TRW Systems, Inc., Redondo Beach,
Calif. 90278.

!L. Fonda and R. G. Newton, Ann. Phys. (N.Y.) 10, 490
(1960).

2p. W. Coulter and G. L. Shaw, Phys. Rev. 188, 2443
(1969).

%. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).

%1,. Stodolsky, in Experimental Meson Spectroscopy,
edited by C. Baltay and A. H. Rosenfeld (Columbia
Univ. Press, New York, 1970), p. 395.

%Y. Dothan and D. Horn, Phys. Rev. D 1, 916 (1970).

K. W. McVoy, Ann. Phys. (N.Y.) 54, 552 (1969);
L. Stodolsky, Phys. Rev. D 1, 2683 (1970); R. L.
Warnock, Ann. Phys. (N.Y.) 65, 386 (1971); L. Dur-

and, Phys. Rev. D 14, 3174 (1976) and references
therein.

Y. Dothan and D. Horn, Nucl. Phys. B114, 400 (1976).

8J. siegrist ef al., Phys. Rev. Lett. 36, 700 (1976).

%0ur basis is defined through the assumption that the
o,=+1 state couples to the photon whereas the ¢,=—1
state does not. We use the same formalism as in Ref.
7, suitably modified to take into account the variation
in the channel structure within the resonating region.
A more detailed account of this analysis will be pub-
lished elsewhere.

3. W. Herb et al., Phys. Rev. Lett. 39, 252 (1977).

g, Eichten and K. Gottfried, Phys. Lett. 66B, 286
(1977).



