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We derive the axiomatic lower bound on the s-channel slope parameter B(s). The result is that B(s) has
the lower bound B(s) >const X s ~*(Ins)~!? (> 0) for some sequence of s — co. In the special case when the s-
channel scattering amplitude F(s,t) satisfies the scaling limit for s — o lim[o7ImF(s,0)/ImF(s,0)]/
B(s)™ = const (>0) for some fixed m (>3), B(s) has the stronger lower bound B(s) > const

X s 8/m(Ins)=2~*™ (> 0) for some sequence of s — co.

It will be interesting to know what kinds of re-
strictions on the s - and #-channel slope parameters
|[denoted respectively by B, (s) and B,®)] can be
derived from the general principles on the scatter-
ing amplitudes. In our previous paper' we investi-
gated this problem and obtained the result by using
as general principles the unitarity of the § matrix,
analyticity ins and ¢, s-u crossing symmetry, and
the polynomial upper boundedness of the scattering
amplitude. The improved result? is that af least
one® of B,(s)and B,(#) has the lower bound

B, (s)=constXs™®(lns)™ (>0)
for some sequence of s -, or 1)

B,(u)=constXu™(Inu)™ (>0)

for some sequence of u—«, In this paper, we in-
vestigate the axiomatic lower bound on the s-chan-
nel slope parameter. The result is that B,(s) has
the lower bound

B,(s) = constX s~ %(Ins)™!2 (> 0) (2)

for some sequence of s— . In the special case
when the s-channel scattering amplitude F,(s, t)
satisfies the scaling limit

lim[ 3} ImF (s, 0)/ImF (s, 0)]/B,(s)" =const
(>0) )

for some fixed m (>3), we'obtain the stronger
lower bound

B, (s)> constXs /M (Ins)2"4/m (5 0) @)

for some sequence of s —. In the following, we
shall sketch the derivation of the new lower bound
by referring to various equations in our previous
paper! with a prefix N, i.e., (1.1) will be referred
to as (N1.1). For simplicity we consider the spin-
less elastic scattering A + B—~A + B (s channel)
coupled by crossing to A + B~ A + B (4 channel).
In order to avoid kinematical complications, we
set the masses of A and B equal to unity. The
scattering amplitude F (s, ¢) satisfies the twice-
subtracted dispersion relation*

_ s? ™ ,ImF(s’,{)
F(s,t)—A(‘t)+B(t)S +;Ld8 T (s7o8)
» ImFy (u’) t)
+—f du u,g u, u) ’ (5)
with

S+t+u=4,
F(s,t)=F(s,t)
(6)
and
Fu(u,t)EF(/l—u—t,t).

The unitarity of the.S matrix gives the constraints

o</t <msl ()<, ()
so that
’ 1/2
o7 ImFy (u', 0) = '\uu > (u'i4)"‘
x 3 e 1) LU ey
I=m (l )
(>0),

with the simplified notation

aml(u,o>z(5})"F<4-u—t,t) o ®)

(Throughout this paper we explicitly give relations
involving one of F| and Fy;, since the other rela- -
tions can be similarly obtained.) Similarly to
(N2.11), the polynomial upper boundedness
[o7F (s, 0) < |s|" as [s|=< ©)

can be derived from the polynomial upper bounded-
ness of the scattering amplitude.

With the help of the general principles (5)—(7) and
(9), we shall investigate the lower bound on
97 ImF (s, 0) for any fixed m (m=3, 4, ...). The
result is that 3" ImF (s, 0) has the lower bound
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lim sup s®(1ns "*28,™ ImF (s, 0)> 0.
s=>®

¢

In the case when at least one of the two conditions

10)
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and

=0 (12)

does not hold, we find (10) in a similar fashion to

lims® " ImF (s, 0)

(N3.11). In what follows, we investigate the case
when both (11) and (12) hold s1mu1taneously From
lims?9,™ ReF (s, 0)=0 (11) (5), we find
s> )
m 1 "ImF(s’,0) 1 s u' +4 1
8,"F(s,0)=¢,s +cz+7r-f ds’—‘—s—_l—g—L— - j; du’[;ﬁ -t u,_4+s]at"‘lmﬁ}l(u’,0)

e P R v

where

Cm , 9, ImIi(s’, 0) ImFs
¢, =8,"B(t) s, - fd " L 0

p=0,"A D)= -~f g5 2 IMA, 0) Imj}(s 0 g
4
and
1 r° 8, * ImFy(«’,0)
i - Ut 11 2
Ii(s)=(-1) (m Z)' nj; du (u' =4 +s)1™

In the following discussion it will be useful to
notice

s u' +4 1 (s —4F

“UImF, (u’ 0)+21 (s), 13)

r
Considering the case where (12) holds, we have
an inequality

0<9,"ImF (s,0)<s™* as s—, (1m

Furthermore, we have
059,/ ImF;(u,0)<constXu(lnz)?’*2 as u—=
(18)

in much the same way as we obtain the Froissart
bound.® With the help of (17) and (18), we can
evaluate various integrals in (13) and (14). First,
¢, and ¢, in (14) are found to be finite. Second,

e W W aTs S W (W= 45s) (>0) (15) we find from (14)
and limsi™2I,(s) =0. (19)
.
1 1 (s —4)(s—4+2u) ‘
u? " (u'-4+sP ~ uPu'—4+s)y ¢0). 16 Finally, we have
° ’ 1 m ’ 1 ° ’ m I 1 ® 1.7 m !
f ds' ———— 8,"ImF (s ,0)+—f ds'a,"ImF;(s ,0)+—;f ds’s’a,"ImF(s’,0)
A s'=s s J, s? J, :
1 H(s
_Tf ds' <7 o,"ImFy(s",0) ( s(z )>, (20)
4
where d, <, (24)
lim |H(s)|<const. 21) Then (24) gives®
sorco
The inequali'iy (21) can be‘ obtained f'rom _(11) and 1 f du’ - (s -4 o, ImPFy; (', 0) — d,s
(12) by applying the technique described in the (u U =4 +3)
Appendix of our previous paper.’ , s(u'+4)-16
If we assume that =““f du w'?(u' -4 WHu'— 4 +s)
E%f du’u'"28,"ImFy(«’, 0) (22) X9, " ImFy (u',0) [=G(s)],
* lims™1G(s) =0, (25)
is infinite, we have o
- and
lim | du’'— S5, "ImPy (4, 0) = . (23)
s Jy u'2(u 4+ S) t 1T . s (26)

However, (23) contradicts with (11)-(@3), (15),
(16), and (19)-(21). Therefore we conclude

f du'u'"38,"  ImF(u’,0)<°,
4

In obtaining (26), we have used the inequality
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12 ~-1)!
0<8,"ImF(«,0) - Wul__af)_[a:m"l ImFy; («,0) - (mlfﬂi)! (u f4> ((3’11 4)’1’31] , 27

which results from (7). Since the integral

4+2u’ R
J(S) J du’ T(u—m ImFH(u 0)

o, 1 s—442u' s—4 m—1 '
_L qu L S=4s2 (1—3_4+u,>a, ImF, (u’, 0) 28)

4+u

is found to be uniformly convergent on account of (26), we have®

limJ(s) =0 (29)

s>

Equation (29) together with (11)-(16), (19)-(22), (25), (28), and (29) leads to
¢, +d, =0 . C (30)

and

9, ImF(s’,0)

m 1 ° !
9, FI(s,0)=cz+—n—f ds s

s(u'+4)-16 \ (s—4)s-4+2u") ,
+—f du [— (=4 15) 9,"ImF(u',0)+m WU —a 15y 9, 1ImFH(u,O)]

+?;Ii(s). , (31)

With the help of (7), the integrand I(x’;s,m) of the second integral on the right-hand side of (31) is divid-
ed into two parts, I(4’;s,m);c,, and I(4’;s,m);=,,. [Hereafter we attach to I the suffix [<2m (I=2m), in
order to denote that I is composed of contributions from partial waves {<2m (!=2m).] Then we easily
find by using (7)

lim du’](u’;s,m),(am:f du’[— utf 8, ImFy(u’', 0)+ z ,”"‘Ian(u’,O)}
4

§>® g

i<am

<zf:du'1(u’; m),<2,,,>. (32)

Since I(#';s,m);=,, is shown by (7) to be négative bdefinite, the assumption

dzgf du'I(u';m);z g == 33)
4 .
leads to
limf du'I(u';s,M)y=gm=—2. . (34)
s Jq

However, (34) contradicts (11), (12), (14)-(16), (19)-(21), (31), and (32), so that d, should be finite. Then
we .find®

{ -
cz+7£ du'I(u';m)=0 (35)
and

atm‘FI(syo)z

S

) ’—_._._.___a‘ ImFi(s’, 0) L i V[ L gm ’ o) M, Fy(w',0
J; ds s'=s ﬂj; du u'—4 +s 9,"ImFy; (u', 0) (’ 4+s)2 'Im 11( )

(36)
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By applying the same logic to the second integral on the right-hand side of (36), we find (for m >3)

3

fds'a,'"ImFI(s',o)=f du’ 3, ImF, («’,0)
4 4

and

1 ° H(s)

1
8,"F(s,0) = - — ?f ds's’ 0, " ImF(s’,0) + ==
4

(7]

1 u'-4

37

m

_l_ ° ’ il m ’ m=-1 !
o [ |- T A (Y, 0) - e o I (w, 0)

m(m —1)

* ®'-4+s)

Similarly treating the second integral [denoted by
K(s)] on the right-hand side of (38), we obtain by
noticing (21) and m >3

lim %K (5) = = — f du'[ (u’ = 4)8," TmFy @', 0)
4

s>

+md,™ 1 ImF;;(«’,0)].
(39)
Then (11), (12), (38), and (39) lead to

lim H(s) :f ds’s’s,"ImF(s’,0)
P .

s>

+ [ (- 4, tmEy(w’, 0)
Y4

+md," 'ImF(«',0)]. (40)

On the other hand, the integral H(s) defined by (20)
gives® : :
lim H(s)=0, (41)
Sp—>®,sp=2 . ) ) ‘
with
S=ESp+1is;.

Then (40), (41), and the polynomial upper bounded-
ness of H(s) [which results from (9) and (38)] make
it possible to apply the Phragmén-Lindeldf theo-
rem’ to H(s). Thus we find that the right-hand side
of (40) should be zero, so that

8,"ImE (s’,0)=8," 1 ImF;; («’, 0)=0. (42)

Therefore, there never occurs the case when both
(11) and (12) hold simultaneously, provided that
we exclude the case (42).%

Our conclusion is that we have for any fixed m
(=3) a nonvanishing constant ¢, and a sequence
Ss,— < such that

lim s,%(Ins,)*™ 208," ImF(s,,0)=c,(>0). (43)

n—>co

3, *ImFy(«’,0) -

m(m —1)(m = 2)

(u'-—4+s)4 atm—3ImEI(ulyo)] +;li‘(s)-

(38)

r

" The elastic scattering amplitude F,(s, f) among

two spinless particles A and B (of equal and unit
mass) satisfies

i 167 s 1/2 1
8;" ImF (s, 0)= mr (S—:z> (_ST)M
Xi (2l+1)(Lll—j—Zn—1§—;— III;f{(S) ’
I=m
(44)
with
0 sImff(s) <1, 43

From (43) we find® that 8,” ImF,(s,0), at suffi-
ciently high energy s=s,, can well be estimated
by the partial waves up to L=KVsIns, provided
K is taken sufficiently large. Therefore, we have
for m=3

m 167 [ s, \/2 1
at IInFI(sn?O)gm(s _’1_4> (s _4)m
was-,,-lns,, 1 ]
x 3 (2“1)((7—%”%? ! (s,)
l=m :
2d, s, ® (Ins,)2""% (>0), (46)

where the constant d,, is finite and smaller than
Cpm (which might be infinite). On the other hand,
(45) gives for i <m

. 1/2 1
8,  ImF ((s,, 0)2};11<-S—“> —7

sp—4) (s,=4)
N KV/splnsy (2l+1)% Imf%(sn) .

I=m
(47)

When we have the inequality (46), the smallest
value of the right-hand side of (47) takes place
when

Imfi(s,)#0 only for I(Vs, lns,)"~0(1), (48)
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so that
8, ImF (s, 0) = ¢ ;)s,%(Ins ) 4m-2+21 (49)
It should be noticed that the'lower bound (49) holds

for the same sequence s,~ « as in (46). Taking
m =3 in (49), we obtain :
lim sups®(Ins)*?8, ImF (s, 0)>0 (50)
5o
and .
lim sups®(lns)*% % ImF (s, 0)>0. © (51)
§—>

It is easy to see? that (50) leads to the lower bound
on the s-channel®® slope parameter-

. 3, ImF (s, 0)
5 12%¢ JASERAS
Ll_gg sups®(Ins) “mF(s,0) 0, (52)

while the lower bound on 3,2ImF,(s, 0) has never

ON THE SLOPE PARAMETER © 1673

been investigated previously, so that (51) is an
entirely new result.

If we use the Froissart bound*
ImF (s, 0) < const Xs(Ins)? as s—~, (53)

the inequality. (10) for any fixed m (=3) (Ref. 11)
leads to '

™ ImF (s 0)
6 2m+4 t >
hm sups®(Ins) N (s 5 0, (54)
which can be rewritten into
lim sups®/ ™(1ns)?*/ "B, (s)> 0, (55)
S >

in the special cases when we have the scaling 3).
Our result (55) can also be interpreted in the fol-
lowing way: Cases where the scaling (3) holds
occur only when the slope parameter is large
enough to satisfy (55).
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