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We derive the axiomatic lower bound on the s-channel slope parameter B(s). The result is that B(s) has
the lower bound B(s) ~ const )& s (iri) ' (& 0) for some sequence of s —+ Oo. In the special case when the s-
channel scattering amplitude F(s, t) satisfies the scaling limit for s —+ co lim[s, ImF(s, O)/ImF(s, O)j/
B(s) = const (& 0) for some fixed m (& 3), B(s) has the stronger lower bound B(s) & const
)& s ' (lns) ' (& 0) for some sequence of s —+Op.

It will be interesting to know what kinds of re-
strictions on the s- and u-channel slopeparameters
[denoted respectively by B,(s) and B,(u}] can be
derived from the general principles on the scatter-
ing amplitudes. In our previous paper' we investi-
gated this problem and obtained the result by using
as general principles the unitarity of the 8 matrix,
analyticity ins and t, s-u crossing symmetry, and
the po'lynomial upper boundedness of the scattering
amplitude. The improved result' is that at least
one' of B,(s) and B,(u) has the lower bound

with

s+t+u=4,
E, (s, t) =E(s, t)

and

u' ~ ImEII u, t
tt 4 u" (u'-u)

Eii (u, t ) =E(4 —u-—t, t ) .

E(s, t ) = A(t)+ B(t)s + — ds'

(6)

B,(s) & constxs '(lns) ' (&0)

for some sequence of s -~, or

B,(u) & constxu '(lnu} ' (&0)

for some sequence of u- ~. In this paper, we in-
vestigate the axiomatic lower bound on the s-chan-
nel slope parameter. The result is that B,(s) has
the lower bound

The unitarity of the S matrix gives the constraints

so that

]6&
8 ImE«(u 0) =

i
—

( )

B,(s) & const x s '(lns) "(& 0) (2) x p (2l + 1)
™

Imf", (u )
(1 -nt !

for some sequence of s- ~. In the special case
when the s-channel scattering amplitude E,(s, t)
satisfies the scaling limit

lim[ss ImE, (s, 0)/ImE, (s, 0)]/B, (s ) = const

(&0) (3)

for some fixed rn (&3), we'obtain the stronger
lower bound

with the simplified notation

m

St E«(u, 0) =— —E(4-u —t, t )Bf
0 =0-

(&0),

B, (s ) - con st x s '(
( lns )

s '(~ (& 0) (4)

for some sequence of s-~. In the following, we
shall sketch the derivation of the new lower bound

by referring to various equations in our previous
paper' with a prefix N, i.e., (1.1) will be referred
to as (Nl. l). For simplicity we consider the spin-
less elastic scattering A+ B-A+ B (s channel)
coupled by crossing to A + B-A+ B (u channel).
In order to avoid kinematical complications, we
set the masses of A and B equal to unity. The
scattering amplitude E(s, t ) satisfies the twice-
subtracted dispersion relation

(Throughout this paper we explicitly give relations
involving one of El and E„, since the other rela-
tions can be similarly obtained. ) Similarly to
(N2. 11), the polynomial upper boundedness

I'tEi(s 0}I-lsl»» lsl-" (9)

can be derived from the polynomial upper bounded-
ness of the scattering amplitude.

With the help of the general principles (5)-(7) and
(9), we shall investigate the lower bound on
S, ImEt(s, 0)for any fisted m (m=3, 4, . . .). The
result is that St" ImE, (s, 0) has the lower bound
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lim sups'(lns)' +'8," ImE, (s, 0)& 0. (10) and

In the case when at least one of the two conditions

1im s '8, ReE, (s, 0) = 0
S~

lims48, "ImE, (s, 0) =0 (12)
g~eo

does not hold, we find (10) in a similar fashion to
(N3. 11). In what follows, we investigate the case
when both (11) and (12) hold simultaneously. From
(5), we find1,8& ImE, (s', 0) 1 ", s u'+4 1

8, Fr(s, 0.)=c,s +c, + — ds' ', ' ' + — du' „—„+, 8,"ImFi&(+', o)
7T S —S . . g 4 . Q Q, N —4+S

+ du' „—.. ., 8g 'ImF„(u', 0)++I;(s), (13)

where

/(i)~
1

d
I E ( 0)

7r S

(14)

Considering the case where (12) holds, we have
an xnequal~ty

0&8, ImF (s, 0)&s ' as s-~.
Furthermore, we have

mf OO

(m —i)! w, (u' —4 ps)"'
In the following discussion it will be useful to
notice

s u'+4 1 (s —4)'
+ „, 4

= „(, )
(&0) (15)

0- 8&, 'ImE«(u, 0)&constxu(lnu)"" as ~-~,
I

(16)

in much the same way as we obtain the Froissart
bound. ' With the help of (17) and (16), we can
evaluate various integrals in (13) and (14). First,
c, and c, in (14).are found to be finite. Second,
we find from (14)

and

(s —4)(s —4 ~2u')
u" (u'- 4+s)' u "(u'- 4+8)'

lims' 'I, (s) =0. .
..S~m

Finally we have

(19)

t ds', 8& ImE(s', 0)+— ds'8, ImE, (s', Q)+ —, ds's'8, ImE, (s', 0)1, I ", ; 14, , 4

S2
ds', 8, ImF, (s', 0) =—,, (20)

where

lim (H(s)[ & const .
g~ OQ

d~ &~.

Then (24) gives'

(24)

d, =—— du 'u ' ' 8 ~ imF» (u', Q)
4

(22)

is infinite, we have

The inequality (21) can be obtained from (11) and

(12) by applying the technique described in the
Appendix of our previous paper.

If we assume that

lims 'G(s) =0,
S~m

(25)

1 !", '(s —4)'du' „. . . 8,"ImF, , (u', 0) —d,s
7F J 4 1,s(Q'+4) —16

u "(u'-4+s)
x 8, ImE& (u', 0) [=G(s)],

lim du' „, 8, imF„(u', 0) =~ . (23)s~~ 4 Ec u -'4+s

However, (23) contradicts with (11)-(13), (15),
(16), and (19)-(21). Therefore we conclude

du'u' '8 'ImE)l(u', 0)&
4

In obtaining (26), we have used the inequality

(26)
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m(u —4) ' " ' (m —1)! u —4 (u —4)

(27)

which results from (7). Since the integral

s —4y2u'

J4

s —4+2u' s —4
u" s —4+u' s -4+u' (28)

is found to be uniformly convergent on account of (26), we have'

lim J(s) =0.
S~oo

Equation (29} together with (11)-(16), (19)-(22), (25), (28), and (29) leads to

c, +d, =P

and

(29)

(30)

1 I",8, ImF, (s', 0)
4

1 ", s(u'+4) —16, , (s —4)(s —4+2u')
u Q —4+s u" u', —4+s

m

+Q I, (s) . (31)

With the help of (7), the integrand l(u'; s, m) of the second integral on the right-hand side of (31) is divid-
ed into two parts, I(u';s, m)«m„and l(u'; s, m), ,„. [Hereafter we attach to I the suffix i&2m (I)2m), in
order to denote that I is composed of contributions from partial waves l & 2m (1)2m). j Then we easily
find by using (7} I

OO oo I I

lim du'I(u';s, m),(,„= du' — „&, ImF«(u', 0)+ „&, 'ImF&&(u', 0)
S~oo 4 4 u

Since I(u'; s, m), , is shown by (7) to be negative definite, the assumption

(
du'I u'; m, &, . 32

4

d, = du'I(u';m},
4

leads. to

(33)

lim du'I (u'; s, m),
S~ oo

(34)

However, (34}contradicts (11), (12), (14)-(16), (19)-(21), (31), and (32), so that d, should be finite. Then
we. find'

1
c + — du'I(u' m) =0

2
1r

t
4

and

( )
1 „,&, ImF(s', 0} 1

7r4 4

ImF„(u', 0}—, , &, 'ImF«(u', 0)u'-4+s ' " ' (u'-4+s '

+, , &, 'ImF„(u', 0) ++I,(s).m(m —1)
u —4+s

(36)
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By applying the same logic to the second integral on the right-hand side of (36), we find (for m ~ 3)

ds' S,"tmd) (s', 0) = f du' d, "ImF«(«'. , 0) (37)

s, F, (s, 0) = ——,— ds's's, ImE, (s', 0)+1 1
" . . . H(s)

1 ", 1 ~'-4 m
s u' —4+s ' " ' u' —4+s'
m(m —1) „, , m(m —l)(m —2)

+ (, },S," 'ImFii(u, 0)-
(

(
)&

Sd ~imFit(u 0) +XI (s).
i=4

(38)

Similarly treating the second integral [denoted by
K(s)] on the right-hand side of (38), we obtain by
noticing (21) and m&3

lim s'K(s) = —— du'[(u'-4)s, ImF«(u', 0}
S~ 4

+ms, ' imFqq (u ', 0)] .
(39)

Then (ll), (12), (38), and (39) lead to

The elastic scattering amplitude FI(s, i) among
two spinless particles A and B (of equal and unit
mass) satisfies

16' s ' 1
~"

xg (2l+1); Imf', (s),

(44)

lim H(s) = ds's'S, ImF, (s', 0)
S~~ 4

with

0 & Imf1 (s) (1. (45)

+ du'[(u'-4)S, ImE„(u', 0)
4

+ms, ' ImF„(u', 0)] . (40)

On the other hand, the integral H(s) defined by (20)
gives'

From (43) we find' that s, ImFI(s, 0), at suffi-
ciently high energy s = s„, can well be estimated
by the partial waves up to L, =Kv s lns, provided
K is taken sufficiently large. Therefore, we have
for m& 3

lcm
SI ~SR= 2

with

H(s) =0, (41)
16r s„' ' 1

).x g (2l+1); Imf~) (s„)

s, ImE& (s', 0) = s," ' ImEI, (u', 0) = 0 . (42)

S =SR+ZSI ~

Then (40), (41), and the polynomial upper bounded-
ness of H(s) [which results from (9) and (38)] make
it possible to apply the Phragmen-LindelM theo-
rem' to H(s) Thus we f.ind that the right-hand side
of (40) should be zero, so that

&d s„'(lns„) ' ' (&0). , (46)

where the constant d is finite and smaller than
c (which might be infinite). On the other hand,

(45) gives for i ~m
16~ s

9, ImF, (s, O) - .
)

.
( ),.

n -. n

. I

Therefore, there never occurs the case when both
(11}and (12) hold simultaneously, provided that
we exclude the case (42).'

Our conclusion is that we have for any fixed m
(&3) a nonvanishing constant c„and a sequence
s„-~ such that

l-" m

When we have the inequality (46), the smallest
value of the right-hand side of (47) takes place
when

(47)

lim s„'(lns„)' "s, 1m'(s„, O)=c (&0) . (43)
n~~ Imf ', (s„)W 0 only for l(v's„ lns„) ' =O(l), (48)
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lim sups'(lns)" 8, ImF &(s, 0) & 0
S~ oo

(50)

and

lim sups'(Ins)'as, a ImF, (s, 0) & 0.
S-+co

I

It is easy to see' that (50) leads to the lower bound
on the s-channel'0 slope parameter-

lim sups'(lns)" ' ' & 0
8 ImF s, 0)

S-+ co ImF, (s, 0) (52)

while the lower bound on 8, 'ImF, (s, 0) has never

so that

8 'ImF (s„,0) ~ c„.,s„'(Ins„)~"a+" (49)

It should be noticed that the'lower bound (49) holds
for the same sequence s„-~ as. in (46). Taking
m =3 in (49), we obtain

been investigated previously, so that (51) is an
entirely new result.

If we use the Froissart bound4

ImF~(s, 0) - const && s(lns)a as s -~, (53)

the inequality (10) for any fixed m (~3) (Ref. 11)
leads to

, ~ 8,"ImF, (s, 0)
S~ co i~, s, o

which can be rewritten into

lim sups' (Ins)a' '"II (s) &0, (55)s~~ 1

in the special cases when we have the scaling (3).
Our result (55) can also be interpreted in the fol-
lowing way: Cases where the scaling (3) holds
occur only when the slope parameter is large
enough to satisfy (55).
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for the special M& ——MJ3

——1. Generalization of them is
straightforward and does not essentially change results.
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I;(s)=— dx ' ' 0 as s
~'A,'(x, t)

4 x-s
(for i =0, 2) is not true, we have

I (s) c; (&0)

for at least one sequence of s ,
, and c; might even

be infinite. Therefore, his logic does not permit ap-
plying the Phragmen-Lindelof theorem to I; (s) [especial-
ly in the case when f dxA„(x, t)=~].

T. Uchiyama asserts in his paper [Prog. Theor. Phys.
55, 1871 (1976)] that both B&(s) and Bz(u) satisfy (1.1)
and (1.2). Although his logic is useful in some points,
his derivation contains an essential error [his (3.26)],
so that his conclusion is not only wrong but also his
method does not succeed in deriving (3.1) and (3.2) in
Ref. l.
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The condition (42) might be physically unrealizable for
the following reason: .(42) means that we have

mf, (s') = Imfitx&(u

for any s', u' and l (—m). Then (I) leads to the fact that
interactions between two particles A and B should not
take place at any high energies s', so far as the angular
moxnentum l is larger than m. At this stage, it is use-
ful to notice the two facts that the relation l - b(s' —4)~ /
2 (where b is the impact parameter) holds at high en-
ergies and that there usually exist extended pion clouds
around A and B. Therefore, interactions between A and

B are expected to take place when b is about the pion
Compton wa.velength, so that (I) cannot b'e satisfied.

~B. J. Eden, High Energy Collisions of Elementary
Particles (Cambridge Univ. Press, New York, 1967),
p. 170.

' In the s-u symmetyzc case, (1) gives the stronger I.ow-
er bound

lim sups~(lns) 4B&(s) &0

than (2).
These results can be improved by the technique in Ref.
2: Improved results are given by the substitutions (6

5 and 2m+ 4—2m+ 2 for m =3,4, 5) and (6 6 and
2m+ 4 0. for m = 6).


