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The Lorentz invariance of tachyon theories is investigated. It is found that in the theory of spinless fermion
tachyons proposed some time ago, the rates of various physical processes involving tachyons and ordinary
particles are properly Lorentz covariant, in the, passive sense that the measur'ements of the same situation by
different observers are related by Lorentz transformations. This invariance requires the- rates for processes
involving various tachyon configurations that can be Lorentz transformed into each other to be added
together. Lorentz invariance is not satisfied by spinless boson tachyon theories. The reason for the
differences between tachyon theories, and between tachyon theories and ordinary theories is discussed.

I. INTRODUCTION

Some years ago, a quantum fieM theory was
proposed' to describe hypothetical, noninteracting
particles of imaginary rest mass (tachyons). This
proposal stimulated a large number of papers on
related theoretical subjects, ' as well as several
experimental searches for such particles, ' all of
which have given negative results. In the original
article, a. number of questions were left unan-
swered, and the succeeding literature has not en-
tirely filled this gap. In the present work, I shall
reconsider one such question, that of the Lorentz
invariance of the particle theo''y associated with
the field theory. Specifically, I shall describe a
precise criterion for Lorentz invariance of a
particle theory, and indicate the extent to which a
theory of interacting tachyons can be shown to sa-
tisfy this criterion.

Ordinarily, the Lorentz invariance of a field
theory leads directly to Lorentz invariance of the
particle interpretation of the theory. Suggestions
that this might not hold for tachyon theories are
connected with the peculiar transformation pro- .

perties of the particle states in such theories, as
opposed to those in ordinary theories. Specifically,
in the theory outlined in Ref. 1, the Lorentz trans-
formations are such that a state containing no

tachyons changes, under Lorentz boosts, . into a
state containing antitachyons with each momentum
value in a continuous range determined by the ve-
locity of the boost. This state will therefore have
a nonzero antitachyon density in each volume of'

space, and an infinite antitachyon number in an
infinite space. Thus two observers, related by
Lorentz boosts, will have very different notions
about the tachyon content of the "same" configura-
tion of the external world. We shall see below
that just this peculiar transformation is required

- to satisfy Lorentz invariance of the description of
physical phenomena. In this connection, it should
be recognized that two descriptions may look dif-

ferent, andnevertheless give identical results in all
cireumstanees, in which case the difference is at
most one of esthetic preference.

In order to introduce the relevant results, let us
consider a situation in which some observer X
sees at some time a single charged tachyon pres-
ent in some region of space, which may be taken
arbitrarily large, and no other particles present
anywhere. This situation is not stable, because

V' .

a charged tachyon can radiate photons by Cerenkov
radiation. Therefore, at a later time there will
also be photons, as well as the charged tachyon.
This radiation will continue indefinitely, although
the rate of energy loss will decrease rapidly be-
cause the tachyon has less energy to lose, and
eventually only photons of arbitrarily low energy
will be radiated. We disregard the possibility that
the tachyons ean also decay by other channels. The
rate of radiation of photons will depend on the
tachyon energy at any given time, and could be
computed by the standard methods if we prescribed
the matrix element for photon emission by a
tachyon. However, we need not consider in this
paper the precise form of this matrix element.

The rate of radiation of photons, or equivalently,
the rate of appearance of photons, involves only
quantities referring to ordinary particles. Hence
it must have the simple Lorentz transformation
property

where p, is the photon momentum and R, is the
rate at which photons appear in the invariant mo-
mentum interval d'P„/E„per unit volume of space,
all as measured by one observer, while p„', A„' are
the corresponding quantities as measured by a dif-
ferent observer. The quantity R' must be calcu-
lated from the matrix element evaluated in the
transformed tachyon state seen by the second ob-
server, which state, from the above remarks,
v ill be very different from the one-tachyon state
seen by the first observer.
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In particular, the second observer will see pho-
tons appearing as the result of Cerenkov radiation
by any of the many tachyons present, or by any of
the antitachyons present, or as the result of an-
nihilations of a tachyon with an antitachyon into a
single photon, also a kinematically allowed pro-
cess for tachyons. The total appearance rate of
photons will for any observer be the sum of all of
these, but for our first observer, who by assump-
tions detects a single tachyon at tp only the first
process in the state is measured. In order for the
relation (1.1) to be satisfied, two things must hap-
pen: There must be a relation between the matrix
elements for tachyon Cerenkov radiation and
tachyon pair annihilation, which is to be expected
from crossing symmetry, since these processes
involve the same product of field operators, or
the same Feynman graph. Qf course, a derivation
of such relations would require a quantum field
theory of interacting tachyons, which we do not
have available. In the present work, we shall
therefore have to assume the required property. of
the matrix element.

In addition, there must be a relation between the
tachyon and antitachyon numbers in the states as
seen by the different Lorentz observers. For in-
stance, if the photon appearance rate as measured
by the second observer is to get a contribution
from tachyon pair annihilation, or from anti-
tachyon Cerenkov radiation, his version of the
state must contain antitachyons. This is just a
statement of the fact that the laws of quantum
mechanics allow only transitions from particles
actually present in the initial state to those actual-
ly present in the final state.

This required relation between states is exactly
of the type that occurs in the theory of Ref. 1. We
shall prove below that in this theory, the relation
is just such as to ensure the validity of Eq. (1.1)
for the case of photon production-. We shall then
indicate how it can be proved for an arbitrary
tachyon process, and for arbitrary initial tachyon
states, always provided that the matrix elements
satisfy simple "crossing relations" and Lorentz
transformation properties. It is not clear that
other theories of tachyons that have been proposed
have the necessary connection between states in
different Lorentz frames to satisfy Eq. (1.1) for
arbitrary initial states. Hence it seems likely
that such theories fail to satisfy this requirement
of Lorentz invariance for quantities referring to
ordinary particles, and so fail to meet the mini-
mal requirements of, a relativistic quantum field
theory.

The theory of Ref. 1 therefore is Lorentz invari-
ant insofar as quantities referring to ordinary
particles are concerned. This is true in the pas-

sive sense that observers moving at different ve-
locities will have measurements on the same sys-
tem that are related by Lorentz transformations.
Measurements by a single observer on two sys-
tems, say with different energy, are not simply
related in general, so that "active" Lorentz in-
variance may not be satisfied, although it may
hold for special tachyon distributions.

Since all measurements ultimately are made on
ordinary particles, one may be satisfied with a
Lorentz invariance that refers only to their pro-
perties. Note that the tachyons that interact with
the ordinary particles are not virtual particles,
in that they have been taken to satisfy the usual
mass-shell conditions. A statement of Lorentz
invariance for quantities directly involving tachy-
ons will require a better understanding of tachyon
states which, unlike the few particle states con-
sidered here, transform in a simple way under
Lorentz transformations. This problem will be
treated elsewhere.

II. CERENKOV RADIATION BY TACHYONS

We calculate here the photon production rate
through various tachyon processes related by
Lorentz transformations. Actually, the formulas
that I shall use are valid for the.production rate
of any combination of ordinary particles by tachy-
ons, eith'er by emission or by pair annihilation, as
I shall not use anything about the properties of pho-
tons. With the minor changes N-1 —N, k--k,
they would apply to the decay of some combination
of ordinary particles into tachyons, and by super-
posing these two cases, to any reaction in which
tachyons scatter or convert into ordinary parti-
cles through Fig. 1..

Let the rate per unit volume of photon production
in an invariant momentum interval be denoted
R(k), i.e. ,

dk
ur(u) =a(k)

CO~

is the number of photons produced with this mo-
mentum, per unit volume of space. R(k) is the re-
sult of the related processes of Cerenkov radiation
by tachyons, by antitachyons, and of tachyon pair
annihilation into a single photon. We neglect other
photon-producing processes. We imagine that all
of the processes we consider are described by a
single Feynman graph (Fig. 1) and a single matrix
element, evaluated for various -possible positive
and negative four-momenta of the tachyon lines,
We hasten to add that the use of negative energies
here does not involve the existence of negative-en-
ergy states any more than when it is done to ex-
press crossing. symmetry for ordinary particles.
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We adopt the notational convention that a four-
vector p, always has a positive energy, so that
—p„has negative energy. Let M(p„p„k) be the
matrix element corresponding to Fig. 1. Then

M(P„P„k) is the matrix element for Cerenkov
radiation by a tachyon, M(-p.„-p„k) is the matrix
element for Cerenkov radiation by an antitachyon,
M(p„-p„k) and M(-p„p„k) are the matrix ele-
ments for tachyon-antitachyon pair annihilation in-
to a photon. We assume here that a single analytic
function describes all these processes.

We further define N(P) to be the tachyon number
density per unit volume, in a momentum interval,
and N(P) to be the corresponding antitachyon den-
sity, both as measured by some observer. That
is, N(p)d'p is the number of tachyons with mo-
mentum p, per un'. t volume of space. Strictly
speaking, we should consider separately the quan-
tities N, , N& that characterize the initial and final
states. However, for a given process such as
Cerenkov radiation, N& is determined by N, and so.
we need not consider it as an independent variable.
Stated differently, the density matrix for' the final
state is determined by that for the initial state to-
gether with the S matrix. For the fermion tachyon
of Ref. 1, we have 0 ~ N(P) «1, but for the moment
we consider the general case. By allowing N(P)
to differ from an integer, we are considering a
statistical mixture of occupation numbers, rather
than a pure state, a generalization that will be of
some value to us.

For the observer in question, the photon produc-
tion rate is then the sum of three terms,

FIG. 1. Three processes which are related by Lorentz
transformations: (a) Emission of a photon by a tachyon,
(b) emission of a photon by an antitachyron, (c) annihila-
tion of a tachyon and antitachyon into a photon.

R(k) =Rr(k)+Rrgk)+Rrr(k),

where

(2.2)

(2.3)

(2.4)

(2.5)

These three terms represent respectively the
rates for Cerenkov radiation by tachyons, Ceren-
kov radiation by antitachyons, and tachyon-anti-
tachyon pair annihilation into a photon. Note that
the rate corresponding to spontaneous appearance
of a tachyon-antitachyon pair together with a pho-
ton, all other particles being undisturbed, van-
ishes by energy conservation, since no negative-
energy states occur in this theory. The presence
of the factors (1—N) and (1 —N) in R r and R r re-
quires some 'comment. Since our tachyons are
fermions, a given process cannot occur if it re-

suits in a tachyon being emitted into a final state
already containing a tachyon, whereas it is per-
mitted if no tachyon is present. On the other hand,
the rate for any of the processes will vanish if
N =0, if there are no t3chyons present in the initial
state with the relevant momenta. This explains the
presence of the factors N, N inR»R» R~~. A general
derivation of (2.2), (2.3) and (2.4) will be given in
Appendix A. The use of the same matrix elementI in R~, R~ and R~~ is the crossing relation re-
ferred to earlier.

The rate R, or the partial rates Rr Rr Rrr
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cannot be calculated, even if M is known, , unless
we specify N, ¹ We could of course calculate
them for specific N or N, such as

N
6'(P-P.

N'(P') =N(P) 8(P.)+ [1—N(-P) j&(-P.), (2 6)

where V is the volume of space and p, is some
specific three-momentum. This would correspond

)

to the photon production rate by a single tachyon in
all space. However, the rates obtained for this
case have little direct significance, because the
distribution assumed is a very special one, valid
in at most one Lorentz frame.

We instead ask how N and N, and hence R, trans-
form from one Lorentz observer to another. The
quantities N, N can be expressed in terms of ma-
trix elements of the tachyon or antitachyon number
operators c~(p)c(p), (f'(p)d(p);

The Lorentz transformation of such operators is
determined by the transformation properties of the
tachyon field (t)(x}, as described in Ref. 1. There-
fore, we can relate the values of N, N as seen by
different observers. In line with our comment
above, we -need only consider the transformation
of particles in the initial state. In the theory of
Hef. 1, Lorentz transformations do not take parti-
cles from initial to final state. It is straightfor-
ward to show (see Appendix B) that

N'(P') =N(P)e(P, )+ [1 N-( P-) je( p, ) . (2.7)

Here N and N' are the tachyon densities as mea-
sured by two observers, related by a Lorentz
transformation a„„, and p' is the four-vector
Lorentz transform of p, i.e., p„' =a„„p„orp„
= a„„p„'. When a given Lorentz transformation
a„„is applied, p, and p,' will have the same sign
for some p and opposite sign for other p. Then
(2.6) and (2.7) say that for those P, where sign
p,'/p, =+1, the tachyon densities at corresponding
momenta are equal. On the other hand, for those
P where sign P,'/P, = —1, the tachyon density mea-
sured by one observer is proportional to the anti-
tachyon deficit (1—N) seen by the other observer
at the corresponding momentum. In writing (2.6}
and (2.7), we have taken the final energies po to be
positive, as this is the application we shall make
below. These rules are a straightforward exten-
sion of those given in Ref. 1 for states with definite
occupation numbers. They obviously make sense
only for fermion tachyons, where 0 &N~ l. We
shall see that for boson tachyons, there is no
simple variant of (2.6) and (2.7) which can be
made to give Lorentz-invariant results.

The second observer will detect photons with
different momenta k„' =a „k„and with different
rates, which we denote as R'. These can be ex-
pressed in terms of N', N', and the Lorentz-trans-
formed matrix element M', by formulas analogous
to (2.2), (2.3), and (2.4):

(&R') fR'(ul)[( —R'=(ul)]]M'(u, ', u,', u')]'Apl' —u*)&(p,"—u')u(R, )&(R.')d'u &'Dl'&'(u, —u,''-u'), '
1

R ;(u ) fR (u)[( R-'(u=)]
l

M'( u.', u-,', &') l'~(u;*--u') &-(ul'- u)()(R)u(R') &'(u,' u: u')&'u'&'u:, --
gt Qt Nf IN' I Mt i 1 P 2Q I2 2 g 12 . 2 g +/ 0 +i Q4 t+ t P~ d4 1 4

d'p,' = d4p, ,

5'( p,'+p,'- k') = 6'( p, +p, —k),

6(p, —V')=6(p, '- I'),
I

etc.
We obtain the expressions

R'(&') fR(u )[(-R(u=.)] lM'(u' u;, &') l'&(u, '- u')&(u. '-u*)u(R,')u(R,')u(R, )u(R. )&'(u, u. &)&'uu)'u. -—
+ N(p )N( p.) IM'(p' p.', k'} I'-&(p.'- ~')&(p.'- ~')&(&')~(&')~(& }&( ~.)~'(p -P. »d'p. d'p. -

„( ) (p, } (p.)l (p„ p„ )I (p, u ) (p. ~ ) ( ,) ( .) (p, p. ) p,d p.
In order to compare the rates as measured by the two observers, we must substitute the formulas (2.6)

and (2.7) for the transformed densities N', N', into the expressions for R', and make some assumptions
about the relation between M' and M. We can also use the identities

+ 1 —N-p~ 1 —N p2 ™p~', p2, 0' 5 pi & 5 p2 ~ OE~~E20-E

& 6'(p, —p, —k)d'p, d'p,
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+ ~ N Py N P2 ~ Py P' M P$7P27 ~ ~ Pg P

x 5~(p, P, k)d'p, d'p, , (2.8)

z-'{k') = J)e{e,)[k -Ã(e}]]M'(-e,', -e,', k')I e(e'—.,*e')e(e, ' —e*)e(z')e(z')e(z )e(z,}e'(e,—e, —k)d ee{'z,

Pl P2 P37 P17 ~ Pl 0 P2 I 1, 2 1 2 Pl P2 P1 P2

+ ~ N Pj. ~ @ PQ M P27 Py7~ ~ Pj 0' ~ P2 P

x 5'(p, —p, k)d4p, d4p,

+ j.-N-P, -P M'-P, -P,', 0'6P, —p, 5P, —p, OE,'OE,'O-E, O-E,
x 54(p, —P, —k)d'P, d'p, ,

z'ee(k )= fz(e )e{(P)Iee(e, k'k '),
I

e(e-—e )e(e,' —IP) e(z') e(z') e(z) e(z) e( e+ e,
—l))d'De'9,

(2.9)

+ N(&.)[1-N(-&.)]IM'(P,' -~2 &') I'5(~,'- ~')5(~.'- ~')8(E,')8(E.')8(+Ei)8(-E.)
x 5'( p, +p, —k)d'P, d'P,

+ [1—N(-P. )]N(P.) IM'(&' -P' &') I'5(u: —~')5(P.'- ~')8(E,')8(E.')8(-E,)8(E.)
x 5'(p, +p, —k)d4p, d41,

+ [1-N(-P,)][1-N(-P,)] IM'(0,', -0,', &') I'5(&,' —&2)5(P,'- &)8(E,')8(E,')8(-E,)8( E,)
x 5~(p, +pz &)d'p, d P2, (2.10)

R' ={R~+R ~+R z ~ .

It may be seen from Eqs. (2.8), (2.9), and (2.'10) that the individual rates R r, R'rr cannot be equal to the
corresponding unprimed rates, for arbitrary N, eN, because of the extra terms that occur in each of them.
This is just because the change of the tachyon and antitachyon densities from observer to observer implies
that some individual processes that were possible for one observer are impossible for another, and con-
versely. However, we may take the attitude that there is no need to require the invariance of those indi-
vidual rates, since they refer to particles that are unobserved. Qn the other hand, the total production
rate of photons can be determined just from measuremenets on known particles, and so should be invariant.

We now assume that the matrix element IM I' satisfies the invariance property IM'(Pie p2} k') I'
= IM(P„P„k)I, as it would in a theory of ordinary particles. This amounts to the assumption that the
S matrix in a field theory of interacting tachyons could be written as a Lorentz-invariant functional of the
tachyon and photon fields. In the absence of such a theory, we will simply assume the required property.
It is simple to obtain examples of M, satisfying this condition by analogy with ordinary charges.

We can then group the terms in R' that contain a factor such as NN, with the following results (aftei
various interchanges of p, with -p„or p, with P,):

z'(k') Jz(e )[)-z(=e.)]IM(.p„e., k)I'e(e, ' —e')e(e.' e')e' (e, e. —k-)e'e, e'e, [e(z,)e{.z,)]-

x [8(E,')8(E,') +8( E,')8( E,')+8(E,'—)8( E,'-)]

+ N Py 1 —N Pg M-P27-Py7k & Py —0' & P2 —P, 5 Py-P~ —kdPydP2 OEy O E

x [8(E,')8(E,') + 8(-E,')8(—E,') + 8(+E,')8(—E,')]

+ N' Py N PP M Py7 P37 k 5 Py P 6 P2, P 6 Py +PP k d Pjd P2 O Ej O Eg

x [8(E,')8(E,') + 8( E,')8(E,') + 8(E,')8( E,')]— —
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+ [1-~(p,)][1-f7(p,)] l~(-p„p„&)I'&(p,'- I")&(p; I—")6'(-p, p-. —&)[0(E,)0(E,)]

x [0(E,')0(—E,')+ 8( E,')—8(E,')+ 8(—E,')8(-E,')] . (2.11)

Since 0, is positive the last term vanishes, because the 6 factor requires p, ,+p, , to be negative, while
the 8(E,)8(E,) factor forbids this. The other terms can be written as

&'(~') = &(p )[1—~(p.)] l~(p„p. » I'&(p.'- ~')6(p: p')6—'(p p -&)d'—p d'p 0(E )0(E ) [1—0(-E')0(E')]

&(p.)[1—&(p.)] IM(-p. , -p. , » I'&(p '- w»(p. '- ~')&'(p. —p. - &)

x d P,d P,B(E,)0(E,)[1 0(-E—,')0(+E,')]

+ &(p.»(p. ) l~(p. -p. , »I'&(p, '- I")6(p.' I")&'(-p +p. &)—
x d4p, d4p B(E,)0(E,)[l —8(-E,')0(-E,')] . (2.12)

It may now be seen that the 0 functions in the last
set of brackets in each of the terms in R' vanish,
when multiplied by the corresponding 6~ -function,

by the argument given above. When these terms
are dropped, we get immediately the desired re-
sult that, for any N, N,

a'(I ') =a(a)

by comparing Eq. (2.12) with Eqs. (2.3), (2.4), and

(2.5).
The two observers will therefore agree on the

photon production rate at corresponding momenta,
although they will ascribe the rate of origin of the
photons to different linear combinations of the
three rates we have considered.

We note that because of this last circumstance,
if we try to make an "active" interpretation of the
Lorentz transformation, and use it to compare the
photon production rate under two different circum-
stances for one observer, we obtain rather unin-
teresting results. These would say that the photon
production rates are equal for two different tachy-
on distributions, related by (2.6), and (2.7), where
now N, ¹ represent two densities as mea, sured by
the same observer for two different states of the
world, in which all particles have different mo-
menta, related by a, . Because of the 8(-p, ) terms
in (2.6) and (2.7), these two states involve very dif-
ferent numbers of tachyons and so the relations
are not very enlightening. This is to be contrasted
with the case of ordinary particles, where the cor-
responding relations are between states with equal
number of particles, and so give useful informa-
tion about how the transition rates depend on the
momenta of the initial particles.

The difference between these two cases is not,
however, an indication of non-Lorentz invariance
of the tachyon theory. It is instead a consequence
of the fact that when tachyons are involved, the
states we dea) with always have complicated

I

I orentz transformation properties. An instructive
comparison can be made with processes involving
only ordinary particles, but in which there is a
background distribution of rnatter involved in the
process. For example, one may consider the an-
nihilation of positrons with the electrons in a solid
body, whose average momentum is zero in some
Lorentz frame. In this case, because of the mo-
mentum distribution of the individual electrons in
the solid, the pair annihilation rate into one pho-
ton, say, will depend in a complicated way on the
positron momentum. In other words, the annihi-
lation rate as measured by any one observer for
two different positrons will not be simply related.
The reason is of course that Lorentz invariance
will instead relate processes in which the solid's
momentum is changed as well as the positron's.
The latter relations will be of the same type that
we have derived here for tachyons, that is, they
will relate the photon production rates measured
by two different observers in the same external
state, e.g. , the state in which a single positron of
some momentum is incident on a solid in a solid's
rest system. The only difference between this
case and the tachyon case is that here it is ob-
vious that something other than the positron must
be Lorentz transformed, whereas for the tachyons
it is the formal theory that indicates the need to
transform the tachyon numbers as indicated in
(2.6) and (2.7).

The lack of an active form of Lorentz invariance
for processes involving physical tachyons will
probably spill over into a similar lack of active
Lorentz invariance for processes in which only
virtual tachyons are involved. For example, it
is possible that the self-mass of an electron will
receive a contribution from the emission and ab-
sorption of tachyons, which is not the same for
electrons of different velocity as seen by a single
observer. I say this is possible, rather than cer-
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tain, because this conclusion depends on being
able to do calculations with virtual tachyons, by
way of quantum field theory, and it is not yet clear
(to me) how this can be done.

If this type of noninvariance does occur for or-
dinary particles, its significance for the existence
of tachyons will depend heavily on the strength of
their interaction with ordinary particles. Other
considerations indicate that the tachyon —ordinary-
particle interaction must in any case be extremely
small, in which case there may be no practical
consequences of the lack of active invariance. I
shall return to this question in another palce.

A further insight into the need for these trans-
formations can be obtained by examination of
the expression for R~, R~, and R~~. As de-
fined, these quantities represent the photon pro-
duction rates per unit volume of space. If we
multiply both sides of the equation by the volume
of space, we obtain the total rate at which tachyons
are producing photons in all space. This latter
rate is what is usually calculated in particle phys-
ics by using Fermi's golden rule. One generally
does this by taking N, Ã to represent one particle
in all of space, so that N, N will be inversely pro-
portional to V. In that case, we see that VR~, VR~
will be independent of the volume for large V, and
represent finite rates for the amount of Cerenkov
radiation in all space. On the other hand, R~~
will be proportional to V 2, so that VR~~ will van-
ish in the limit of infinite volume. This is just an
expression of the well-known fact that for one
particle in the initial state, the transition rate is
finite in the infinite volume limit, while for two
particles in the initial state, it is the cross sec-
tion that is finite, and the cross section has an
extra power of volume compared to the transition
rate.

These results imply that VR~~ would make a
vanishing contribution to VR, if N, N represent a
finite number of tachyons in all space. But we
know that VR~~ must make a finite contribution in
some Lorentz systems, since tachyon Cerenkov
radiation in one I orentz frame may kinematically
become pair annihilation in another Lorentz frame.
This implies that even if N represents one particle
in all space in some Lorentz frame, so that N
~l/V in this frame, in another Lorentz frame, Ã
must have a part that is independent of V, in order
that VR~~ not vanish in that Lorentz frame. This
is exactly what is accomplished by the factors
(1 —Ã)8(-Po) appearing in (2.6), since if Ã~ I/V
the term 1 will give something independent of V.
Therefore, the finite tachyon densities that appear
under Lorentz transformations in the theory of
Ref. 1, far from indicating a lack of Lorentz in-
variance of the theory, are essential to the demon-

stration of Lorentz invarianee of the particle the-
ory.

We have also investigated whether a similar
demonstration of Lorentz invariance, in the sense
of Eg. (1.1), can be given for spinless boson tachy-
ons'. In this case, the factors (1 —N) and (1 —N)
appearing in (2.2) and (2.3) would be replaced by
1+N, 1+N, by the standard properties of bosons.
We can then ask whether any transformation anal-
ogous to (2.6) and (2.7) can be written, which
would lead to Eg. (1.1). The answer is no, at least
if one requires this equation to hold for arbitrary
N, ¹ This is shown in Appendix C. This is ex-
pected, because the factor 1+N is never negative,
and there is no possibility of suppressing the
emission of bosons, if such emission is kinemat-
ically possible. Therefore, while a single boson
tachyon cannot produce photons if it has zero en-
ergy, a Lorentz transform of this situation, in
which nonzero- energy tachyons and antitachyons
are present, will in general lead to photon pro-
duction, and the two Lorentz observers will not
agree on the photon production rate. : Also, the-
ories of boson tachyons do not have proper be-
havior under Lorentz transformations of the com-
mutation relations among creation and annihilation
operators, ' and so it is not surprising that the re-
sults are not Lorentz invariant.

The result for fermions indicates that several
previous discussions' of cerenkov radiation by
tachyons are not relevant. These discussions try
to relate by I.orentz transformations the rate of
Cerenkov radiation as seen by different observers
for the same tachyon distribution, which is not
what the theory actually relates. Speeif ically,
there is no contradiction with having a single
tachyon emit cerenkov radiation as seen by one
observer, and the fact that if this tachyon is trans-
formed to zero energy, it cannot emit any radia-
tion. The radiation that will be observed in the
latter case will come from the extra tachyons and
antitachyons that are introduced by the transform-
ation, which do not have zero energy. Similarly,
an electron emitting Cerenkov radiation in a medi-
um can be I orentz transformed so that it is at
rest. The radiation that is still detected will now
be attributed to the moving particles of the medi-
um, interacting with an electron at rest.

The actual calculation of the rate of Cerenkov
radiation by tachyons depends on the assumption
of some matrix el ment for the process. This
will be discussed in a future paper in which vari-
ous tachyon searches are analyzed.

III. DISCUSSION

It is not difficult to extend the discussion of Sec.
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II to other tachyon processes. What is necessary
is to consider all processes that can be trans-
formed into one another by crossing symmetry of
the external tachyon lines. The standard integral
in the rate for such processes must be multiplied
by factors N(P), N(P) for tachyons or antitachyons
in the ini"ial state, and by (1 —N), (1 —N) for tachy-
ons or antitachyons in the final state. The assump-
tion of Lorentz invariance of the matrix element,
together with the formulas for Lorentz transforma-
tion of the densities (2.6) and (2.7), can then be
used to relate the rates in different coordinate
systems for the production or absorption of any
combination of ordinary particles. No new prob-
lems arise in doing this, and the result is essen-
tially the same as in Sec. II. That is, the appear-
ance or disappearance rates of any combination of
ordinary particles are invariant, just as they
would be for a theory in which no tachyons ap-
peared. Therefore, always under the assumption
of Lorentz-invariant matrix elements, the results
of observations on ordinary particles are no less
Lorentz invariant in the theory of Ref. 1 than in
standard quantum field theories. Since all attempts
to detect tachyons have and will continue to rely on
the observation of ordinary particles, this result
is important for the interpretation of such obser-
vations (or their lack). However, I do not believe
that the result completely answers the question of
Lorentz invariance of tachyon theories. There is
no example yet available of a quantum field theory
of interacting tachyons, and so no way of deriving
the invariance properties of the transition matrix
element that me have assumed. Until this is ac-
complished, some question of Lorentz invariance
remains.

Nevertheless, the results of this paper are of
interest in two connections. One is that a clear
distinction arises between fermion tachyons and
boson tachyons, with the latter not leading to a
Lorentz-invariant theory. The other item of in-
terest is that because of the peculiar Lorentz
transformation property of the tachyon densities,
it is likely that in any Lorentz frame, there will
be a finite number density of tachyons over some
region of momentum space. Because of this, the
production rate or decay rate of ordinary particles
through tachyon mediated processes is likely to
get contributions both from scattering by tachyons
and from tachyon pair creation or annihilation.
Any experimental search for tachyons should allow
for both types of contributions, and also allow for
the possible suppression of effects because of the
tachyon exclusion principle. The analyses given
previously have not done this, and I shall reanalyze
various tachyon searches in this way in a subse-
quent paper.
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APPENDIX A

In this appendix, we shall indicate the derivation
of Eqs. (2.3), (2.4), and (2.5). In these equations,
the factors of ~M ~', the & functions, and the 8
functions are the standard terms and will not be
further explained. The novelty comes from the
factors of N and 1-N for fermions, and N, 1+N
for bosons. in the corresponding formulas of Ap-
pendix C. To see how these factors emerge, we
consider a system described by a statistical mix-
ture, in which the number of particles of any mo-

, mentum is not well defined. For simplicity, we
fix on a scattering from a given initial momentum
to a given final momentum of the tachyon. Con-
sider first the fermion case. The probability of
scattering is certainly proportional to the prob-
ability P, that there is one, rather than zero
tachyon io the initial state. Furthermore, as-
suming that the initial and final momenta are dif-
ferent, which is almost always the case, the prob-
ability of scattering into the final state is propor-
tional to P,', the probability that the final momen-
tum had no tachyon present before the scattering.
If there were already a tachyon with the final mo-
mentum, then by the exclusion principle a second
tachyon could not be scattered into this momentum.

The average number N of tachyons with the ini-
tial momentum is clearly Py 1 Pp. The average
number N' of tachyons with the final momentum is
P,' = 1 —P,'. Therefore

N=1 -Po =P, ,

N'=1 P'=P'
0 1

The transition probability for the scattering is
proportional to P,'P, =N(1 —N') as assumed in
(2.3). A similar derivation indicates that the
tachyon-antitachyon annihilation term is propor-
tional to NN as in (2.4).

For the boson case, assume instead that P„ is
the probability that n particles are found in the
initial state and that P„ is the same probability
for the final state. We have

In this case, the transition probability is propor-
tion~. l to

(P, +2P, +3P, + ~ ~ ~ ) x (P,'+2P,'+3P'+ ~ ~ *) .

The average particle number is given by

N =P, +2P2+3P3+ ~ ~ ~ .
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It is easy to see that the factor Po+ 2P,'+ 3P'+ ~ ~ ~

=1+¹so that the transition probability in the
boson ease is proportional to'Ã(1+N') as assumed
in Appendix C. A more formal derivation of these
formulas can be given along the lines used by
Tolman. '

APPENDIX 8

In this appendix, we derive the transformation
of the number densities Ã(P) that have been taken
to describe the tachyons. The system of tachyons
and antitachyons is taken to be a mixture, de-
scribed by a statistical matrix p.

It is convenient to use a formalism introduced
by Van Weert and de Boer' to describe relativistic
transport theory. In this formalism, the number
density per unit volume and per momentum inter-
val is

N(P) = d'u tr[pc" (P ——,'u)c(P+ ~u)]6(P u),

(B1)

N(P) = d utr[pd" (P ——,'u)d(P+-'u)]5(P u) .

(B2)

Here c, c~ and d, d~ are annihilation and creation
operators for tachyons and antitachyons, differing
in normalization from those used in Ref. 1 by a
factor V P,. Thus

(c"(p —-', u), c(p+ ~~)}= 6'(u)p, ,

and similarly for d, dt. The formalism of Ref; 6
is valid provided that the system is sufficiently
homogeneous that one can neglect variations of
densities over the De Broglie wavelengths of the
particles involved. Under this assumption, it is
valid to neglect terms such as u, /P, in (Bl) and
(B2) and these formulas reduce to more conven-
tional expressions for number densities.

Consider now a Lorentz-transformed observer,
for whom p, co~-p', (d& where the primed quanti-
ties are the geometric transforms of the unprimed.
This observer will measure number densities

N'(p') = d4u'tr[LpL 'c"(p' ——,'u')c(p'+~u'}]
x 6(p' u') (B3)

N'(p') = d4u'tr[p8(+p, )c~(p ——,'u)c(p+ —,'u)

+ P8( po)d( -p —lu-)d'(-p+ ~2)]
x 6(p'.u') (B4)

d'u/8 (+p,) t r [pet (p ——,'u) c(p+ —,'u)]

x 8(-po)[~'(u)po —d ( p+~2)

x«d(-p —~)]]4(p u)

=8( p.)N(p) 8(-p.)[1-N(-p)].
3imilarly

N (P ) =8( P.)N(P). 8(-P.)[1—N(-P)l

(B6)

(B6)

Note that if the total number of tachyons in some
Lorentz system is a finite number N„ then in the
infinite-volume limit, N(P) ~N, /V approaches
zero. However, in another Lorentz system, N(p)
will contain a finite density for some range of p,
because of the 1 in the second term of (B6). This
finite density is what is needed according to the
discussion in the text.

APPENDIX C

We consider here the possibility of Lorentz in-
variance of boson theories of spinless tachyons.
We illustrate the result for the case of Cerenkov
and annihilation radiation.

In analogy to Eqs. (2.3), (2.4), and (2.5), we now
assume

and similarly for N'(p').
From Eq. (D13) of Ref. 1, and the above defini-

tion of c, we have

Lc(p)L-' =c(p)8(p())+c"(p)8(—p()) .

By the assumptions made in Ref. 6, we must take
the energy variables in c~ and in e above to be the
same, i.e., we must neglect u, compared to p, in
the argument of c, c~. Then

)(',"()) f))(u )()+&(( )] lM(=) „)., )) I*()(),* —u)()() ' u)g(& )~(&)().'((-, —),—))& (&(''
&'g'()')= fP() )I +z((.))(l ( (.', )M. , I['() '(- v*)'() *-~ -)'(E,)+(&.)'() -'(. -))d'(, &'(. , (CI)

N(p. )N(p. )IM(p. -p. »I'&(p: —p')&(p. —p'»(&.)8(&.)6'(p+p. &)d'pd'p'—

Here the superscript B refers to boson tachyons, and we have changed the factors 1 —N of the fermion
case to 1+¹

We assume that a Lorentz-transformed observer will measure tachyon and antitachyon densities linearly
related to the original densities
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N'(P') =N(P)8(P. )+ [A+»( P)-I8( P.-),
N'(p') =N(p)8(po)+ IA+»( p) ~18( p,),

(c2)

where A, B are constants, which we try to choose to satisfy Lorentz invariance. This linear transforma-
tion of N(p) is a consequence of a linear transformation of the fields Q(x) under Lorentz transformation,
together with the bilinear expression for N(p) in terms of c, c, given in Eq. (BI), or its equivalent for
bosons.

By manipulations such as those of Sec. II, we can rewrite R so that it depends on N, ¹ Upon doing so,
we find that we must choose B =1 in order to get the term proportional to NN to come out right. The term
proportional to N, however, takes the form

d'P, d'P, N(P, )[A8(-E,')8(E,') 5'(+P, —P, —k)M(+P„P„k)

+ 8(E,')8(E,')6'(P, —P, —k)M(P„P„k) + (1+A)8(E,')8(-E,')5(P, +P, —k)M(P„-P„k)
+(I+»)8(-E,')8(-E.')~(P, P. —k)-M(P„P. , k)j8(E,)8(E.)f(P,'- u')f(P. '- V'). (C3)

Also, the boson case leads to a term independent of N and of N, proportional to A(1+A). In order to
make this term vanish, it is necessary to take A =0, since A =-1 would imply negative tachyon densities-
an absurdity. If we choose A =0 (or indeed, any positive A) it is impossible to transform the term (C3) into
the form it should have from Eq. (C1) above. The bad term is

(1+A) d'p, d'p, N(pl)8(E1')8(-E2)&(p, +p. k)M(p„—-p. , k)8(E, )8(E.)&(p,' P')&(p.'-P') . - (C4)

This term has the kinematics of part of a tachyon-
antitachyon annihilation term, rather than of a
tachyon Cerenkov radiation term, as it should
have from the factor N(P, ) In the f.ermion case,
the first factor is 1-A, which vanishes for A =1,
and so the term disappears.

Strictly speaking I have only shown that boson

theories of tachyons are not Lorentz invariant if
they describe processes such as the emission of
ordinary particles by tachyons and pair annihila-
tion or creation of tachyons. I do not know if
other boson tachyon theories could be Lorentz in-
variant.
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