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Some exact dyon solutions for the classical Yang-Mills field equation*
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Many exact dyon solutions for the classical Yang-Mills field equation with Higgs scalar fields are obtained
in Minkowski space. We accomplish this by solving the field equation for a sourceless Yang-Mills theory
using the self-duality condition and a specific ansatz in Euclidean space, Each of our sourceless solutions in

SU(2) can be converted into one of the real solutions in SL(2, C) previously discusseQ by Wu and Yang.

I. INTRODUCTION

Recently 'tHooft' has shown that one may find a
static solution for the spontaneously broken Yang-
Mills field equations that corresponds to the mono-
pole predicted by Dirac in his piorieering work.
Julia and Zee' found an explicit realization of
Schwinger's dyon' which possesses both electric
and magnetic charge by analyzing a set of the
coupled nonlinear differential equations on a com-
puter. Subsequently Prasad and Somerfield4 dis-
covered an exact regular solution by "shimmying"
rather than systematically solving the field equa-
tions. Hsu and Mac' found a complex solution by
"a stroke of luck" which is very similar to that of
Prasad and Sommerfield; their solution was later
analyzed and discussed in the context of SL(2, C)
by u and Yang. ' Even though other finite-energy
solutions are obtained in larger gauge groups, "
all the other solutions obtained in SV(2) so far lead
to an infinite energy.

It is the purpose of this paper to present a syste-
matic method to obtain the other exact dyon solu-
tions; in this scheme the above-mentioned two
exact solutions emerge naturally. The coupled
nonlinear differential equations for monopoles and
dyons are very difficult to solve analytically. In
Sec. II we outline our method of avoiding this dif-
ficulty and obtain exact analytic solutions in a cer-
tain version of these models. Using a specific an-
satz we present solutions closely related to the
pseudoparticle solutions' in Secs. III and Ig. In
the conclusions we discuss the masses and electro-
magnetic fields of the dyons that we obtained and
also we discuss the SL(2, C} aspects of our com-
plex solutions.

II. SELF-DUALITY CONDITION IN EUCLIDEAN SPACE

We are interested in a classical SU(2) non-
Abelian gauge-field theory with a Higgs triplet, "
l.e. )

g g 12=-4E,'~E', .+ 2 Ep) Ep;
—a D(0'Dg0'+ b Do4"Dod" + l'(4')

where

l'(4) =-. ~'0'4'- -' ~4'0',
D Q'=8 Q'+ e,Ab Q

The field equations are"

8 "D„pa+ eq, b, A "D„pa —P Qa+ Xpap'=0

and the constraint equation is

(2)

(3)

(4)

Consider the static case where

A;(y) =0, p'= X=0.

Equations (2), (3), and (4) reduce to

8,I";,+ ee.b.A, F;,= e~. „,Q D;Q',

8,D,Q'+ eq„,A.,' D.,Q' = 0, . .

Under the change of variable

ya fia Aa —ga

Eqs. (6) and (7) become

(6}

(7)

(6)

(10)

a(r) .
ez'

Eqs. (2), (2), and (4) reduce to

The relations are exactly the field equations for a
static sourceless Yang-Mills theory in Euclidean
space. If one uses the Wu- Yang-'t Hooft- Julia-Zee
ansatz, i.e. ,
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x K"=K(K +H —J' —1)
2

x'H" = 2 HK'+ —,(H' —y, 'H), (12) Thus we have

+2+I/ 2' 2

Therefore, if B;. and B; solve Eq. (10) in Euclidean
space, then

A'=B'

Ao + Bo sinhy

P'=+ B;coshy

is the solution of Eqs. (6) and (7) in Minkowski
space as already noted in the Ref. 4.

In order to find the Euclidean-space solution B'
of Eq. (10), one can use the self-duality condition
of Belavin, Polyakov, Schwartz, and Tyupkin. "
Consider a dual-field strength

a 1 a
eve g eg

and calculate

a a a a a a 5F +v F &v z (&vez&v&PEe~ Fy&+ &i~kEko&i)i F io)

t7

g" = -8" ln g b, +. (17)

where b, , X, , and X,. are arbitrary constants.
When bi = 0, A, » = 0, X,.= 0, we then have

ga &aie

C, = —, C, =O, y=0.

.More, explicitly, in Minkowski space

Aa &aiex
~2

x'+a—
0 ~ ~2

This Euclidean-space solution corresponds to the
dyon solution which Hsu and Mac' discovered in
Minkowski space, with

Now

x'—sinhy—0

x'
p'= ——coshy —.

e t. 2 '

(19)

where the upper sign is for the Euclidean space
while the lower sign is for the Minkowski space.
Therefore, it is clear that the only nontrivial self-
dual fields are to be found in Euclidean space. The
only self-dual Minkowski-space solution is the
gauge- rotated vacuum.

One of the most interesting feature of our Eucli-
dean space solution is that, as can be seen from
Eq. (10), the solution

C'. = aa. C' =- ~rai& 0 0

In order to see the meaning of the solution (6) we

follow 'tIIooft and define a gauge-invariant elec-
tromagnetic field strength"

+ .= s (0'&:)—s.(4"&:)——~,&.4'(s, 4 ')(s.4')
8

where

is a complex solution in Minkowski space. This
aspect will be discussed later.

Bearing all these in mind we now proceed to find
Euclidean-space solutions B' of the sourceless
gauge-field equation (10).

i Fio~
1
2 ~iyk gk'

The electromagnetic field is

(21)

III. SOLUTIONS

We seek the solution of the form

1B;=—q„g",

B'= ——P'.0

(15)

The electric charge and energy of the solution are,
respectively,

d x ~ ~ E() ~

M= d'x T

The self-duality condition is
1

veg F eg 5 F ~v ~

Equations (15) and (16) imply that

(16)

~vv FavxF av+Dav, Dav++uvg

As an example we pick the following solutions
from solution (17):
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ga ~aieX
e (r+X)r' '

5X
A.'= ——sinhy

e (r+X)r' '

6A. x"
(t(' = ——co shye (r+ X}r'

(23)

Equation (28) has two trivial solutions, i.e. ,

Q3
= 0, 4f&~

= cos p, Q~
= sin p 4

(29)

(30)

One can easily show that solutions (18) and (23) are
not gauge equivalent. The electromagnetic field
and electric charge due to solution (18) are

xf

where' p is an arbitrary constant. The solution
(29) is the exact colution (18) previously obtained,
while solution (30) is merely a, gauge-rotated vac-
uum, because, for a self-dual static gauge field
with A;=0, the field strength F;,=0; t.hus I' '„=0.

If we choose $,40, Eq. (28) then reads
x]E, = —sinhy —,,e

e
Q = ——5 sinhy,

Q

(24) d 2)hr' -~ =1—(c '+c ')e'"
dx

where we have assumed

where n is the fine-structure constant. Equation
(23) gives

1 x'H]= ———3,

p, = 5 d(I(/Cr, Q, = c,e~, (((4, = c,e" (32)

where c, and c, are arbitrary constants. Con-
trary to the pseudoparticle case, Eq. (31) reduces
to the one-dimensional I iouville equation

5X . (2r —A.)x;E = —sinhy.
e (r+X'r' ' (26) d P 2p

d'v
(33}

5A, . 2y' —A,

Q = e —sinhy (r+ X)'

i I

if we put (t(= ln r ——,
' ln(c, '+ c,') + p. Equation (33}

has three distinct solutions, i.e. ,
The total charge observed near the origin is

e(5/c() sinhy, and it is zero if observed at infi-
nity. This is due to the spherically symmetric
charge distribution of the opposite sign

p = ln(r+ b),

4(n4(r r b))p= -ln

(34a)

(34b)

5X sinhy 2 5(r) 6X

4m r'(r+4)' 4r'. r'(r+4)')
(26)

This is qualitatively similar to the charge distri-
bution of a neutral atom. It is easy to see that the
energies of the system implied by solution (1"I) di-
verge.

IV. OTHER SOLUTIONS

One can make another ansatz, instead of Eq.
(15}:

,. e,(r)+1,, e,(r) (, ,f er2 ate + ey3 ta i a ~

(27)

p = mr+ ln
~

2X
) q ~"'

~

—ln(1+ qe""),

where b, A. , and g are arbitrary constants. More
explicitly we have

~cos8 q„. x sin8
B;.= +

( )
", +

( ), (r'8„—x;x,),
5b x' (35a)
e (r+b)r'

cos8Xx q„. x sin8Xx
sink(r+ b) er' sink(r+ b)er'

x (r'5, , —x,. x.),
x'

[I ~r cot~(r+ b)] —,

The self-duality condition (16) implies that

(28)
+a

e

cos82A. (g )' 'e~" q„x 2A. lq (' 'e'"
gg e2 AF er ' (1+rIP'") er '

x (r'5, .—x,. x,),
(35c)

2y Xge'" x'

where tan&= c,/c, . It is very interesting to note
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that if we choose c, = —
~
c~, c, =0, b=0, and A. =i p

in Eq. (35b) we have precisely the Prasad and
Sommerfield solution

~a 1
p+ &sin~

sinhpr er'
x'

A; = ——sinhy(l —ps coth pr) —,, (36)

x'
Q'= ——coshy(1 —pr cothpr)

e y'

Qne of the complex solutions is the Hsu and Mac
Minkowski- space solution

P«a&n&
sinh pv er '

x'
c,' = i(1 —px cothpr) er'

V. CONCLUSION

All the exact dyon solutions we found so far are
singular at the origin, except the Prasad and
Sommerfield solution (36). In fact we proved that

Moreover, it easy to show by calculating TrI „„I',„,
that the solutions with different values of 8 in Eqs.
(35) are not gauge equivalent.

this one is the only possible regular, and thus fi-
nite-energy, solution as long as we use the ansatz
(11) and p, = X= 0; this follows since the ansatz (11)
is a special case of ansatz (27) while the solution
(36) is the only regular solution among the solu-
tions (35). However, the divergence we encounter
here may not be a fundamental problem to the ex-
tent that we are in the same situation as for an
electron. A peculiar property of these dyon solu-
tions is that while magnetic unit charge is con-
centrated at the center, the electric charges of
both sign are spread all over the space.

Even though the complex-field:solution in Min-
kowski space in the SU(2) case given by the pre-
scription (14) has complex isotopic spin, it is all
real in SL(2, C). As pointed out by Wu and Yang,
their physical meaning is not clear at this mo-
ment. We conclude with the remark that it is ra-
ther straightforward to prove that any solution
with ansatz (27) and Eq. (16) indeed satisfies the
field equation in Euclidean space.

Finally, I deeply appreciate the many discus-
sions with Professor R. C. Hwa and kindnesses he
extended to me. I also thank Professor N. Desh-
pande, Professor J. Leahy, and K. Choi for dis-
cussions.
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