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We consider 't Hooft's eigenvalue problem for the meson spectrum in two-dimensional quantum

chromodynamics by defining some alternative formulations whose equivalence we prove. Hence we are able to
prove that the spectrum is discrete and of finite multiplicity and to derive bounds (upper and lower) for the

eigenvalues (ground state, neth state, and n —+ 00 state). We prove that the functions are analytic and use this

to carry out explicit numerical calculations of the wave functions for various values of the quark masses and

to recalculate the meson spectrum.

I. INTRODUCTION

The aim of this paper is to analyze the mathe-
matical structure of 't Hooft's two-dimensional
quantum-chromodynamic (@CD) model for mesons
and to present the numerical solutions of the
problem. Sections II and III of this paper contain
the mathematical results of 't Hooft's eigenvalue
problem (HEP) which will be proved elsewhere. '
The main feature is the use of Bardeen and Ein-
horn's' equivalent eigenvalue problem for harmon-
ic functions (BEP). Applying a variational ap-
proach for quadratic forms we obtain the whole
spectrum and the complete spectral decomposition
of HEP and BEP. The eigenfunctions are harmonic
functions in the upper half plane which are con-'

tinuous on its closure X, real analytic on K
=K -(0, 1), and vanish on the real axis outside
the interval (0, 1). The spectrum is purely dis-
crete and consists of denumerably many positive
eigenvalues of finite multiplicity which tend to in-
finity. '

In particular, the lowest eigenvalue X, is simple
and positive, and the corresponding eigenfunction
of HEP has strictly one sign on (0, 1). The number
k(n) of nodes of the nth eigenfunction of HEP is
bounded by 1 ( k & 2n - 1 for n &1. The meson
masses depend continuously on the quark masses
and the mass of the ground state tends to zero with
the quark masses. Finally, the eigenfunctions of
HEP behave at the boundary points x =0 and x =1
like powers x~~ and (1 —x) ', where the powers P,
and P~ tend to zero with the quark masses.

In Sec. IV we describe another variational ap-
proach to the problem which will be the basis of
our .explicit calculations. %e derive upper and
lower bounds on the first eigenvalue and also on
the higher ones in terms of the quark masses and
the order n. In particular, we give the bounds for-
(he asymptotic behavior of X„as e-~.

Finally, in Sec. V we describe our numerical
procedure and display our results for the spectrum
and the eigenfunctions. (A complete set of nu-
merical results together with some other calcula-
tions of physical interest will appear in Ref. 4.)

II, VARIOUS EQUIVALENT EIGENVALUE PROBLEMS

By performing the 1/N expansion' in the U(N)
gauge field theory in one space plus one time
dimension for fermions, 't Hoof t' . obtained the
eigenvalue equation (HEP),

Xy(x) = —'+ ' y(x) —P —,dy,A(y)
x 1 —x, (x —y)'

O(x(1 0(0) =o, Q(1) =o, (2.1)

for the meson wave function as a bound state of the
quark-antiquark pair. The eigenvalue parameter
X is essentially the squared mass of the bound state,

7TWL
A. =-—

g'N (2.2)

(2.3)

The light-cone scaling variable is x =P /~, P
andx being the minus components of the quarka and
meson momenta, respectively. The principal
value in (2.1} is defined by

4(v) d
(x —y)'

= lim
s-+P 2 (x —y+ iE)' (x —y —. ie)'+ . 2 (y)dy

(2.4}

where rn is th|. meson mass, N is the number of
colors, and g denotes the coupling constant. If the
meson consists of the quarks a and b with the
masses m, and m„ then n, =y, -1, n, =y, —1, where
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It has been observed by Bardeen and Einhorn'
that HEP is equivalent to another eigenvalue
problem called BEP, at least, if we take some
sufficient precautions. BEP is defined as follows.
Determine a real-valued function v(x, y) which is
harmonic in the upper half plane K =f(x,y): y) 0),
continuous on its closure 3C, and satisfies the
boundary conditions =B(e„) . (2.9)

finitely many eigenvalues X„with the associated
eigenvectors e„of AEP, n=1, 2, . . . , such that
~1 ~ X2 X3 llm„„X„=oo, and

X, =inf (B(u): K(u) =1] =B(e,),
X„=inf JB (u): K(u) = 1, K(u, e,.) = 0, 1 ~j ~ n —1)

v(x, p) =0 for xg [0,1] (2.5)
The eigenvalues X„and the eigenvectors e„of AEP
satisfy

and

-&v„{&,0)+(—'& ' )v(x, o)=X&(x, o) . (2.6)

B(e„,(t)) =XK(er, (t)) for all P(= H

and the completeness relation

(2.10)

The eigenvalue pa.rameter X is to be determined as
well, . and v(x, y) must not be identically zero.

The eigenvalue problems HEP and BEP are
related as follows. lf (t)(g) is a solution of HEP
possessing Holder continuous first derivatives on

(0, 1), then

(,X) =1
$ —x —iy

(2.7)

is a solution of BEP. Conversely if v(x, y) is a
solution of HEP which is of the class C"I on
K LI (0, 1) for some o. (= (0, 1), then (t)(x) =v(x, p)
is an eigenfunction of BEP.

The basis of our mathematical discussion is a
result about simultaneous diagonalization of two .

quadratic forms on a Hilbert space which is essen-
tially due to Courant and Hilbert. ' lt can be proved
by the classical variational technique of Courant,
translated into Hilbert- space language.
.
- For this purpose, . consider an infinite-dimen-

sional real Hilbert space JI with the scalar product
(u, v) and the norm [~u~~ =(u, u)'~'. Let B(u, v) and

K(u, v) be bounded, symmetric bilinear forms such
that the quadratic form K(u) =K(u, u) is completely
continuous and non-negative, and the K(u) & 0 on
an infinite-dimensional subset of H, while B(u)
=B(u, u) satisfies the inequality

B(u) ~ c()u[P —c*K(u), for all u(= H (2.8)
I

for suitable fixed numbers c)0 and c*~0. Let us
consider the following abstyact eigenvalue problem
(AEI ).

Determine real numbers X and vectors u(= H with
K(u)&0 such that

B(u, (t)) =A.K(u, (t)) for all Q(= H .
We call u an eigenvector and X an eigenvalue of
AEP. Then, the following holds: There are in-

K(u) = P Ic„~', where c„=K(u, e„) .
n ~1

(2.11)

III. PROPERTIES OF THE EIGENVALUES

AND EIGENFUNCTIONS

Let us apply these results to BEP choosing II
as the Hilbert space of real-valued, locally
square-integrable functions u(x, y) on the upper
half plane K having generalized first-order
derivatives u„and u, on K with

(3.1)

and such that u(x, 0) =0 for xg [0,1] . We define
II with the scalar product

(u, v) =mD(u, v)+K(u, v),
where K(u, v) is defined by

(3 2)

K(u, v) = u(x, p)v(x, p)dx . (3.3)

Pinally, we define B (u, v) on H by

B(u, v) = (u„v„+u,v, )dx dy

1

~ ~
—+-1 ' ux, Ovx, Odx.

It is not difficult to check that the triple H, B,K
satisfies the assumptions stated before. In par-
ticular, the proof of (2.8) and of the boundedness
of B(u, v) rests on the inequality

Therefore, all eigenvalues of AEP appear among
the X„, every eigenvector u is a linear combination
of finitely many e„, and II is the span of
e„e„.. . , e„, . . . . Moreover, X„can also be
characterized by the well-known Courant-Weyl
maximum-minimum principle.
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which holds for all u(=- H. Hence, the results for
AEP hold for the triple H, B,K. Thus we obtain
"eigenvalues" ~„X„.. . and eigenfunctions
e„e„.. . satisfying (2.9)-(2.11).

However, one ean prove that the functions
e„(x,y) are harmonic in the upper half plane K,
continuous on its closure K, and real analytic on
K =R -(0, 1). Furthermore, the e„(x,y) satisfy
the boundary conditions

lim P, (y,) =0, lim P, (y~) =0,
p y ~ p

Q b

and that

( e„(x,y) (

& K,~»
for 0 & ~ & ~ y = (x'+y')»'

~e„(x,y)j K,~('2

for 0 &r & r„r=[(1—x)'+y']'t'

(3.12)

and

e„(x,0) =0 for xg (0, 1) (3.6)

8—)) —e„(x,y)+ —'+ ' e„(x,0) =A.„e„(x,0)

holds for appropriate positive constants K„K„
x„r, depending only on y„y» and n.

In particular, we have

iP„(x)i &Kx ' for 0& x&r,

for 0 & x & l. (3.7)
and

~Q„(x)
~

&K,(l-x)~2 for 1 —r, &x«1 .
(3.13)

Therefore, X„and e„(x,y) are the eigenvalues
and eigenfunctions of BEP, and X„and (t)„(x)
=e„(x,0), 0& x & 1, are the eigenvalues and eigen-
-functions of HEP. In this way, we have con-
structed the complete spectrum and the complete
spectral decomposition of HEP and BEP. In par-
ticular, it follows that the spectrum of HEP and
BEP is Purely discrete and consists of de-
nurnerawy many eigenealues of finite ntulti
plicgt3p .

For the eigenvalues X„and the eigenfunctions
e„(x,y) and &f)„(x)=e„(x,0), 0&x& 1, of BEP and

HEP, one can prove the following additional
properties:

The lowest eigenvalue X, is simple and
positive, i.e.,

For any pair y„yb& 0, let us denote the associated
nth eigenvalue X„of HEP (or BEP) by

The function X„(y,, y, ) depends continuously on y,
and y„and &,(y, y,)-0 as y, -0 and y~-0.

IV. ANOTHER VARIATIONAL APPROACH
AND BOUNDS ON THE EIGENVALUES

One can treat HEP by still another approach.
For this purpose, we define the quadratic forms

(4.1a)

(4.1b)
0(X, & X, , (3 8)

and (t), (x) = e, (x, 0) does not vanish in 0 & x & 1, that
is (t), (x) has strictly one sign in (0, 1). Moreover,
let k(n) be the number of zeros ("nodes") of P„(x)
= e„(x,0) in 0 & x & 1, and denote by d(n) the number
of (connected) components of the set

v(y)= -+,1 1

. 0

1

~(()=Q((')' '( '
) l((")l*&

(4.1c)

(4.1d)
f(x, y)(=-X: e„(x,y)w 0j .

Then

1, & k(n) & 2n —1 for n) 2 (3.9)

e„(x,y)-0 as (x,y)-(0, 0) or (1,0) . (3.11)

Moreover, there are numbers p, (y,) ) 0 and

p, (y,) &0 such that,

d(n) & n for n & 1 .

2. As we have already stated, every eigenfunc-
tion e„(x,y) behaves continuously at each of the
two singular points x=0, y =0, and x=1, y =0,
whence

for real-valued function Q(x) on 0 & x & 1, and a
Hilbert space @ which is defined as the completion
of Cc(0, 1) in the norm [Q((()))+V((t))]'t'. Then, @
is a proper linear submanifold of the space
W, 't'((0, 1)) of L, functions (t)(x) on (0, 1) with
half a derivative which i s square integrable.

If we now rep'lace H, J3,K in AEP by the triple @,
E, C, the procedure described before yields all
the eigenfunctions @„(x)(=e„ in AEP) and eigen-
values X„of HEP. This variational problem is
completely equivalent to the one described in Sec.
II. However, the present approach is.much more
appropriate for explicit calculations and for de-
riving bounds for the eigenvalues.

One could try to calculate the critical points of
E((t)) on@ with respect to the constraint condition
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C(p) =1 approximately by the simple polynomial
ansatz

N

for &f&cCz„with C(P) = l. This turns out to be
equivalent to the matrix eigenvalue problem,

y(x) =x(l —x) Q a„x" .
0 =0

(4.2) (y, A +y, B+C)a = XDa, (4.4)

E(p, g) = XC(P, () for all Pc@„„, (4.3)

This means that we replace 8 by an (N+1)-dimen-
sional subspace@~„, and (1.1) by the eigenvalue
problem

for eigenvalues X and eigenvectors a =(a„a„.. . ,
~~) with a ~ Da =1, where the (N+1) x(N+1)
matrices A, B,C, D with the matrix elements
A, ,-, B,, , C,, , D,, are given by

(i+j+2)(i+j+3)(x+a+ 4) '

2

(i +j + 3)(i+j+ 4)

1
i+j +3 b~o (k+1)(k+2)[(i+j+2) —k] b-0 (k+1)(k+2)[(i+j+2) —k]

(4.5a)

(4.5b)

2

~ o ~, (k+m+ 1)(k+m+2)(k+m+3)(i+ j —k- m+1) ' (4.5c)

(i +j+ 3)(i+j+4)(i+j+ 5) (4.5d)

We were not able to derive an explicit solution
of Eq. (4.4) for every N and to carry out the
limiting procedure N-~, and for numerical
purposes, the Fourier ansatz (5.1) proved to be
more eff icient. However, for N = 1, the ansatz
(4.2) yields a good upper bound for the lowest
eigenvalue X, of HEP. Together with a lower

bound for X, derived in Ref. 1, we obtain

(~r, +~&, )' ~ ~,(y„yb) -3(y, +yb)+'

—[2(y. +yb ) - 3y.yb

+4(y. +yb)+16]'~' . (4.6)

For N=O, we obtain the estimate

~, (y„yb) ~ l(1+y, +y,), (4 7)

which is less sharp but handier.
For y, =y„=y the upper bounds in (4.6) and (4.7)

are identical, and we find

12

40
123

30-

20-

10-

6 mq 8

FIG. 1. The mass of the ground state as a function of
the quark mass (m =m-). (1) and (3) are the upper and
lower bounds. (2) is the result of the numerical calcula-
tion. All masses are in units 1/Me'.
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FIG. 2. The "Hegge trajectories" for the mesons with
qq0(1)&03(2)&05(3)pand1. 5(4) in units

1/We '.



1622 STK FAN HI LDKBRAN DT AND VLADIMIR VIS N JIC

2-

4 (X) $, (x)

0.5
X

1

0.5 X
.

1

FIG. 5. The ground-state wave functions for the
mesons with m 0 3& Rzq 0 5p and rnq 0 3& Nlq 1 5
in 1/ o.'.

PIG. 3. The ground-state wave functions for the
mesons with vlq' Blq 0 3 (l)p 0 5 (2)p 1 5 (3) in 1/W~'.

(1+P)7m+ ~ ~ ~ ~ X (y y )

4y-&, (y, y)- '. +5y .- (4 8)
n+ ' for n

(4.11)
The higher eigenvalues can be estimated as fol-
lows:

2(n-1)+(~y. +hb )'

1 —— n-1 m'+, 4.92q ~
2p't)'

'r

2(1+P)vv„- X„(y.,y,), (4.10)

where (v„) denotes the sequence 0, 1, 1,2, 2, . . . ,
and p=minl0, n„n,je(-1,0]. Therefore,

4,(x)

2-

where y =- max(y„y, ), and the upper bound is valid
for every ac (0, &/2).

In certain cases, the following estimates from
below are slightly better:

for every number 8& 1. The bounds (4.8) are dis-
played in Fig. 1.

V. NUMERICAL RESUI.TS

To get numerical solutions to the variational
problem (4.1), the Fourier ansatz

P(x) = Q a~sinkmx (5.1)

is more suitable than the polynomial one (3.3), but in
this case the integrals in (4.1) cannot be computed
analytically. We approximate @by a subspace @„
of dimension %=170. This leads to an order of
accuracy of & 10 ' for the approximate eigenvalues
compared with the exact ones.

Figure 1 shows how the mass of the ground state
increases with the quark mass for quark-antiquark
pairs of the same mass. The spectra and the
eigenfunctions for various quark masses are
shown in Figs. 2, 3, 4, and 5. The numerical
procedure did not reveal any sign of degeneracy.

/

FIG. 4. The first-excited-state wave functions for the
same values as Fig. 3.
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